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Abstract

An anisotropic adaptation process is applied to a three-dimensional incompressible two-phase flow solver. The solver
uses a level set/finite element method on unstructured tetrahedral meshes. We show how the level set function can be used
to build an anisotropic mesh with good properties. Some computations with a strong transient character and large den-
sities ratios (1/1000) are presented. We show that the efficiency of the computations can be deeply enhanced by mesh
adaptations.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Among all the problems that have to be addressed in the numerical simulations of two-phase flow prob-
lems, obtaining an accurate representation of the interface is certainly the most difficult issue. At least two
arguments lead to this observation:

� most of the fluid vorticity is concentrated near the interface [1],
� the rapid variation of the fluid properties generates spurious oscillations in the velocities close to the inter-

face [2].

Those issues are even more critical in the presence of large density and/or viscosity jumps across the inter-
face. This is indeed the case in many practical applications, and among those are the ones that involve inter-
faces between air and water. There, the density ratio is about 1/1000 while the viscosity ratio is about 1/100.
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In previous works [3–5], our team has developed a technique to accurately model three dimensional two-
phase flows. A level set [4,6,7] approach was chosen to model the interface.1 The level set function /ð~x; tÞ is an
implicit function that is defined on the whole mesh. Its iso-zero /0 � /ð~x; tÞ ¼ 0 is a surface that evolves in
time and that represents the fluid interface. The property of the fluid at one point x is identified by the sign
of the function. The level set function / is transported and deformed by the fluid flow. An equation of trans-
port is solved at each time step that allows to move the fluid interface [3]. The level set method is well suited to
represent complex flows with dramatic changes in the interface topology. Applications of level set in two-
phase flow calculations have been extensively described by Sussman et al. in [7,16,17] and used by [18–21]
among others.

This paper starts from the following observation: in two-phase flow problems, the denser is the mesh at the
vicinity of the interface, the better is the solution. In other words, an adaptive strategy is required in order to
put the effort in the region where the solution is more complex.

Adaptive mesh refinement (AMR) has now been used for two decades in flow problems. The first
achievements are those of Berger et al. [22,23] who developed a block-structured grid method to solve com-
pressible [23–25] and incompressible flows problems [26]. Those methods have been more recently applied to
two-phase flow problems by Sussman et al. [1,27]. Block-structured grid methods allow to increase the res-
olution with multiple levels of refinements on blocks located near regions where the scales cannot be
resolved by the coarse grid. This technique is quite appropriate to solve problems on uniform grids, as well
as the quadtree based methods. The quadtree grids are more general and more efficient than the block-struc-
tured grids in the sense that additional points are only added where it is required. Nevertheless, quadtrees
require complex data structures which results in complicated algorithms and impacts on the computational
time. Results of the coupling of the Euler incompressible equations with the quadtree method have been
presented by Popinet [28]. Two-phase flow computations were first performed by Losasso et al. [29], and
recently Greaves proposed a coupling with a volume-of-fluid method [30]. Finally, we mention the methods
based on the minimization of a mesh energy used by Cristini et al. [31–33]. In those methods, a spring-like
energy is associated with each edge and is dependent of its length and the local scales of the flow. A more
detailed review of the AMR techniques coupled with level set methods and incompressible flows can be
found in [34].

In this paper we describe an alternative method to the techniques presented above. Its simplicity allows
robust anisotropic mesh adaptations [35,36]. Because our aim is to adapt the mesh in time, we use an
adaptive procedure that is based on local mesh modification operators. Starting from an existing mesh,
we apply local mesh modification operators until each edge of the resulting mesh has a non-dimensional
length that is close to 1. Non-dimensional edge lengths are computed using a non-uniform anisotropic met-
ric field that is based on the position of the interface. An interest of using anisotropic elements is that the
high variations of density and viscosity across the interface can be captured in a more efficient way by
having more elements along the crossing direction. As a consequence, mesh adaptation can be seen as
an alternative to the common solution consisting in smoothing the fluid properties on a thin layer around
the interface [17,21]. In the same way, the high pressure gradients generated at the interface in presence of
surface tension forces can be evaluated more efficiently with anisotropic elements, which reduces spurious
velocities.

The remainder of this paper is organized as follows. In Section 2, the physical model is described as well as
the numerical methods used in the flow solver. Section 3 presents the adaptation technique while Section 4
gives numerical examples that show the accuracy and the efficiency of the method.

2. Two-phase flow computation

In this section, we give a rapid summary of the different ingredients that are used in the simulations: con-
stitutive equations, numerical methods and coupling between the fluid and the interface solvers. For more
details of the recipe, see [4].
1 Level set and volume of fluid [8–10] can be classified as interface capturing methods. They differ from interface tracking methods
[11–15] in the sense that interface tracking methods use an explicit representation of the interface.
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2.1. Constitutive equations

Our solver computes three-dimensional laminar flows involving two incompressible non-miscible fluids.
The fluids are identified by (+) and (�), and their density and viscosity are respectively (q+,l+) and (q�,l�).

The physics of the fluids are given by the two-phase incompressible Navier–Stokes equations:
Du

Dt
¼ � rp

qð/Þ þ
1

qð/Þ
1

Re
r � ð2lð/ÞSÞ þ eg

Fr2
þ jn

We
; ð1Þ

r � u ¼ 0; ð2Þ
where u and p are the non-dimensional velocity and static pressure of the fluids, q(/) and l(/) are the non-
dimensional density and dynamic viscosity, S ¼ 1

2
ðruþruTÞ is the deformation rate tensor, eg is the direction

in which the gravity (g) acts, j is the curvature of the interface and Re, Fr and We are the numbers of Rey-
nolds, Froude and Weber defined as
Re ¼ qRU RLR

lR

; Fr ¼ U Rffiffiffiffiffiffiffiffi
gLR

p ; We ¼ qRU 2
RLR

rR

; ð3Þ
where the subscript R denotes the reference value and r is the surface tension. The solutions in both phases are
obtained simultaneously.

The interface is captured using a level set method. This method implies a function / named the level set

whose value is 0 on the interface (/0), positive in one fluid and negative in the other. Complex configurations
like sloshing problems with bubbles, separations and merging can then be represented.

This function is advected using a tracer equation that can be written in a conservative form:
ot/þr � ðu/Þ ¼ 0: ð4Þ

Further details about the level set method in two-phase flow problems can be found in [4,16].

2.2. Numerical method

We use a finite element method for computing the fluid flow (Eqs. (1) and (2)). Both velocity and pressure
are approximated using a piecewise linear continuous polynomials. As this representation violates the Bab-
uska–Brezzi (BB) condition [37], spurious pressure modes have to be removed from the solution. These oscil-
lations can be avoided using a pressure stabilized Petrov Galerkin (PSPG) method. The inviscid fluxes are
discretized in a stable manner using an upwind finite volume stabilization [38,39].

A second-order three-point backward difference scheme is employed for the time-integration. An inexact
Newton method based on a finite difference Newton–Krylov algorithm [40] is used to solve at each time step
the system of nonlinear equations. The iterative solution of the large sparse linear systems that arises at each
Newton iteration is solved by the GMRES method preconditioned by the RAS [41] algorithm.

The interface equation (4) is discretized using discontinuous finite elements. The solution is represented
using piecewise discontinuous polynomials (Np) of order p. The discontinuity of this numerical approximation
is not to be confused with the discontinuous nature of the solution of two-phase flows. In other methods like in
the ghost fluid method [42] the physical discontinuity is exactly fitted by a discontinuity in the model and a
specific treatment of the interface is designed to handle the jump conditions. This specific treatment leads
to the advantage of very small spurious velocities. Here, the interface is represented by the iso-zero of a con-
tinuous level set function which is discretized in a discontinuous way that is not related to the physical discon-
tinuities. The surface tension forces are computed according to the continuum surface force method of
Brackbill et al. [43]. Further details about the computation of the surface tension forces can be found in
[5]. The discontinuity of the physical properties of the fluid (density and viscosity) are handled by an exact
discontinuous integration over the elements overlapping the interface [44,45].

As Eq. (4) involves $/ and u, we should use a discretization of the level set for which the gradient is at least
in the space of the velocity, i.e. p P 2. Nevertheless, as it is shown for the two-dimensional dam break problem
presented in the last section of this paper, the use of first order polynomials is often more efficient if we use an
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adaptation procedure. Indeed, for the same computational time, we can build a finer mesh near the interface
with a first order discretization than with a second or a third. The difference in terms of accuracy due to the
order of discretization will be exceeded by the level of refinement of the mesh.

A Runge–Kutta algorithm of order p + 1 is employed for the time discretization. More details about the
time and space discretization of the level set function can be found in [3].

2.3. Coupling of the two solvers

The coupling between the fluid and the interface solvers requires a special attention as the discretization
differs. The level set function is discretized by using discontinuous p-order elements, while the flow solver uses
continuous linear approximations (N1) for the velocity u
u ¼
X4

i¼1

uiN 1
i and / ¼

Xnp

i¼1

/iN
p
i ;
where np is the number of Lagrangian points in each tetrahedral element
np ¼ ðp þ 1Þðp þ 2Þðp þ 3Þ=6:
For efficiency reasons, the same mesh is used by both solvers.
The algorithm that couples the solvers is summarized as follows. At initial time t0, initialize the level set /.

Then, for each time tn, n = 1, 2,. . .

(1) Solve the Navier–Stokes equations in time t 2 [t, t + Dt] to find u(t + Dt) and p(t + Dt).
(2) Project the velocity field onto the degrees of freedom of the level set.
(3) Solve the interface equation in time t 2 [t, t + Dt] using sub-time steps to find /(t + Dt).
(4) Project the level set function onto the degrees of freedom of the velocity.
(5) Increment in time t = t + Dt and go back to step (1).

3. Mesh adaptation

The appropriate way to ensure that a mesh-based numerical analysis procedure produces the most effective
solution results is to apply an adaptive solution strategy. Efforts on the development of these techniques have
been underway for over 25 years.

In this work, a local approach is used for adapting the mesh. The size field that is used for building the
optimized mesh is build up using principally the fluid interface data’s.

3.1. Adapting the mesh using local mesh modifications

It is only recently that authors have developed adaptive methods for transient problems that are able to be
applied to unstructured grids. Transient adaptive simulations require to modify the mesh in time. For that
purpose, two approaches are possible. The first one requires to build a new mesh any time the mesh has to
be adapted [46–48]. In those global remeshing techniques, the issues related to mesh-to-mesh interpolation
are critical. In order to control the mesh interpolation errors, Alauzet et al. [49] were able to reduce the num-
ber of remeshings using a fixed point algorithm. A metric field M is computed using the intersection of metric
fields at successive times t1, t2, . . ., tn. The simulation is rewinded at time t1 and the mesh is adapted against
metric field M. The adapted mesh is valid for a large time interval and it is therefore adapted less often.

The other way of doing the adaptation in time is to locally modify the mesh [35,36,50,51]. A common belief
is that doing local mesh modifications has to be faster than remeshing. This is not usually the case. Global
remeshing procedures are in fact usually faster than local mesh modifications techniques. This is the case
essentially because global remeshing algorithms converge much faster: they allow to create vertices that are
readily at their right locations when local mesh modification procedures iteratively add and remove vertices
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in the mesh. For transient adaptive computations, local mesh modifications have determinant advantages that
are not linked with their computational efficiency:

� local solution projection procedures can be easily set up that ensure the exact conservation of conservative
quantities [35,36],
� the mesh remains unchanged in most of the domain, allowing to adapt the mesh frequently,
� local mesh modifications can be performed in parallel, enabling transient adaptive simulation to run on par-

allel computers.

Local mesh modification operators all consist in replacing a cavity of elements C by another one C0.
In our adaptation procedure, we have set up a moment when both cavities C and C0 are simulta-
neously present. At this point, both fluid and interface solvers are called back so that a local solution
projection procedure can be performed. The solution in the new cavity C0 is computed using the infor-
mation in C. More details about this mesh adaptation procedure can be found in previous papers
[35,36,50,53].

As the level set is represented by discontinuous polynomials, projections are made at the elementary level.
This is one of the major advantages of the DG method. The fluid solution, i.e. velocities and pressures, uses
continuous piecewise linear approximations. Both fields are located at mesh vertices. In our projection algo-
rithm, the only local mesh modification that requires some work is the edge splitting. When a new vertex is
inserted in the mesh, the fluid solution is simply taken as the average of the solutions at the two nodes of
the initial edge.

3.2. The mesh metric field

A mesh metric field is a smooth tensor valued Mðx; y; zÞ defined over the domain. The metric at a point is a
symmetric positive definite tensor. Let us consider a mesh edge e that defines a vector e that goes from its ini-
tial vertex to its final one. The non-dimensional length Le of e is computed as
Le ¼
Z

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
etMðx; yÞe

p
dl: ð5Þ
The aim of the mesh adaptation procedure is to modify an existing mesh to make it a unit mesh, i.e. a mesh
for which every edge is of size Le = 1. The use of a tensor valued metric field allows the construction of aniso-
tropic meshes.

Local mesh modification operators are essentially edge-based operators in the sense that they locally mod-
ify mesh cavities composed of all the tetrahedrons. The mesh adaptation algorithm works as follow:

(1) Loop over all edges of the mesh, consider the edge e of size Leffiffiffip

� Refinement: if Le > 2, e is a long edge. Edge e is therefore split in its middle, according to the metric.
� Coarsening: if Le < 1=

ffiffiffi
2
p

, e is a short edge. The cavity surrounding e has therefore to be investi-
gated and a coarsening procedure [54] in which e could be collapsed by merging its two nodes is
applied.

� Shape optimization: the edge e is eliminated using an edge swapping algorithm if a better configura-
tion is obtained after swapping.
(2) Go back to (1) if any short or long edge is still present in the mesh.
(3) Do one more step of shape optimization.

Typically, the algorithm stops when every edge of the domain has a dimensionless size in the interval
Le 2 ½1=

ffiffiffi
2
p

;
ffiffiffi
2
p
�. Using this interval for short and long edges ensures that the two new edges created by a bisec-

tion will not be short edges. Oscillations between coarsening operations and refinements are therefore
prevented.

The metric field is computed at every node of the present mesh using the results of a procedure that is
described below.
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For every vertex v of the mesh,

� Both the normal vector n and the normal curvature j of the level set are computed using the classical
formulas
Fig. 1.
positio
the ne
n ¼ r/
kr/k ; j ¼ �r � n:
� Two vectors t1 and t2 are found such that (n, t1, t2) form an orthonormal basis of R3.
� The distance d from the vertex v to the interface is computed. This step is achieved using a fast search tree

method, namely the Approximate Nearest Neighbor algorithm (ANN) [55,56].
� Mesh sizes Sn, St1, St2 are computed in the three directions n, t1, t2 as a function of d and j. The kind of

parametrization that is used in this work is presented in the remainder of this section (Section 3.3).
� The metric field M at vertex v is computed by
M ¼ RTDR;

R ¼ ð n; t1; t2 Þ; and D ¼
S�2

n 0 0

0 S�2
t1 0

0 0 S�2
t2

0
B@

1
CA: ð6Þ
3.3. Size field parametrization

Because most of the complex physics involved in two-phase flows is located near the interface, the mesh is
refined at the vicinity of the iso-zero of the level set. To be more quantitative, we introduce a distance param-
eter 2d that represents the thickness of the refined region [/0 � d,/0 + d] around the interface i.e. the thickness
of the zone that has the maximal mesh refinement. We call this region the proximity zone. In our algorithm, we
ensure that the interface never leaves the proximity zone. When the interface gets too close to the end of the
proximity zone, the mesh is modified. Fig. 1 shows schematically how the interface is kept inside the refined
region. The parameter d has to be chosen carefully. If d is big, the number of nodes of the mesh increases and
so goes the time spent in the flow solver. If d is small, the number of mesh adaptations increases because the
interface leaves the proximity zone quicker. A typical choice for d is five times the element size in the proximity
zone.

Outside the proximity zone, we build an isotropic mesh of variable size Liso(d) (see Fig. 2) where:
LisoðdÞ ¼
h0 þ s1ðd � dÞ for d < d 6 d1;

h1 þ s2ðd � d1Þ for d1 < d 6 d2;

h2 for d2 < d;

8><
>: ð7Þ
where s1 and s2 are defined by
s1 ¼
h1 � h0

d1 � d
; s2 ¼

d2 � d1

d2 � d1

: ð8Þ
Schematic view of the proximity zone during a simulation: (a) proximity zone just after a mesh adaptation procedure, (b) new
n of the interface close to the boundaries after several iterations of the fluid solver and (c) new position of the proximity zone after

xt mesh adaptation procedure.
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In this setup, h0, h1, h2 are user-defined mesh sizes: h0 is the smallest size that defines the resolution of the
mesh in the proximity zone, h1 is an intermediary size between d < d < d1 and h2 is the mesh size in the far field.
Following the definition (6) of the metric, we have
Fig. 3.
The m
d = 0.0
SnðdÞ ¼ St1ðdÞ ¼ St2ðdÞ ¼ LisoðdÞ for d > d: ð9Þ

Liso is a parameter that is similar to the length of the edges about a sphere defined in [33], except that two

slopes are defined and that constant and anisotropic lengths are prescribed in the proximity zone. The length is
maintained constant in this zone in order to allow the flow solver to advect the interface with a constant res-
olution without having to adapt the mesh at each time step.

One of the advantages of the mesh refinement near the interface is the ability to reduce spurious velocity
oscillations arising from a strong difference of properties between the fluids. We denote by Rn the mesh size
reduction factor in the normal direction to the interface. The reference length Sn in the proximity zone is then
Sn ¼
h0

Rn

for d 6 d: ð10Þ
The ratio Rn is constant in time and space (in the proximity zone). Simulations were performed using iso-
tropic and anisotropic mesh refinements. Fig. 3 shows the difference between results obtained with both iso-
tropic and anisotropic refinements for a dam break simulation. More explanations about this simulation are
Comparison of the meshes and the interfaces /0 in a dam break simulation after a ‘small’ time for isotropic and anisotropic meshes.
eshes have almost the same number of nodes (about 2850 nodes). For the first mesh, h0 = 0.075, d = 0.1. For the second, h0 = 0.15,
5, Rn = 4. The other parameters are identical for the two simulations.
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given in the section related to the computational results. During the computation, both meshes keep almost
the same number of nodes (about 2850 nodes in Fig. 3). The meshes are adapted according to the following
parameters:

� for the first mesh, h0 = 0.075, d = 0.1,
� for the second mesh, h0 = 0.15, d = 0.05, Rn = 4.

In both cases, the roughness of the interface is due to spurious velocity oscillations and the interface is
clearly smoother using meshes that are adapted directionally.

Another advantage of refining the mesh at the interface is the ability to capture smaller scales. This ability
can still be improved by taking the curvature j of the interface into account in the definition of the mesh sizes
[57]. To this end, we define a reducing ratio Rt(j) as follows:
RtðjÞ ¼ min Rt;max; 1þ
j

jmax

ðRt;max � 1Þ
� �

; ð11Þ
where Rt,max and jmax are arbitrary constants. This ratio is applied in the tangential directions t1, t2 to the
interface:
St1 ¼ St2 ¼
h0

RtðjÞ
for d 6 d: ð12Þ
Fig. 4 summarizes the use of the ratios Rn and Rt(j). Finally, the mesh refinement parameters are defined
as:

� ‘near’ the interface: d, h0, Rn, Rt,max and jmax,
� ‘far’ from the interface: h1, h2, d1 and d2.

4. Computational results

Our two-phase flow solver has already been validated using fixed meshes [4]. The two first tests check that the
spurious velocities are reduced when a finer refinement is applied to the mesh. They also show that the aniso-
tropic refinements exhibit smaller spurious currents than the isotropic ones. The next test checks that the mesh
adaptation procedure at least does not deteriorate the solution of the fixed mesh solver. More complex simu-
lations are then presented to show that the method can be applied to complex and highly transient flows.

In order to make comparisons between adaptive and non-adaptive computations in terms of computational
time, we have to choose an edge length hna for the non-adaptive mesh such that a similar accuracy is obtained
with both approaches. As the non-adaptive meshes are isotropic, we define a criterion for the meshes to give
similar results. We make the assumption that the accuracy at the interface /0 only depends of the size of the
edges in the normal direction to the interface, and we obtain hna as follows:
hna �
h0

Rn

: ð13Þ
Fig. 4. Schematic view of the anisotropic aspect ratios Rn and Rt(j) used near the interface.
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Two effects are not taken into account with this criterion.

� First, with the adaptive technique developed in this paper, the mesh is coarse far from the interface whether
it is homogeneous on the whole domain for the fixed mesh. The modeling of the flow can then be slightly
different.
� Secondly, the positive effects of anisotropicity on the parasitic velocities and the roughness of the interface

discussed in Section 3.3 only acts in adaptive computations.

Unless it is specified, the fluid characteristics are the following for each test (l and g subscribes stand for
liquid and gas):

� density ql = 1000 kg m�3, qg = 1 kg m�3,
� dynamic viscosity ll = 10�3 Pa s, lg = 10�5 Pa s,

and the level set function is discretized using piecewise linear approximations. The density and viscosity ratios
are close to those of air and water.

The tolerance for the GMRES solver has been prescribed to 10�6. All the computations have been per-
formed on a Dual Core AMD Opteron Processor 265 (1800 MHz).

4.1. Parasitic velocities: free surface at rest

As a consequence of the high density ratio of the two fluids, spurious velocity oscillations may occur at
the interface. A way to highlight these velocities is to look on how our scheme is able to resolve the hydro-
static equilibrium. Spurious velocities will hopefully decrease with the size of the elements near the inter-
face. We consider a plane rectangular free surface in a 3D box. The two fluids are at rest at initial time
t = 0 and no perturbation is introduced in the shape of the flat interface. The pressure is initialized to the
hydrostatic equilibrium value. The velocity u is supposed to remain zero and the equation of motion (1)
becomes
Table
Station

hiso
0

0.1
0.01
0.001

For th
rp
qð/Þ ¼

eg

Fr2
: ð14Þ
If elements cross the interface, the exact solution does not belong to the finite element space and spurious
velocities are generated.

The setup of this test is the following. The domain has a width of 2 · 2 and a height of 1 and is equally
divided into air and water. We characterize the parasitic velocities by the infinity norm |Upar|1 of the velocities
on the domain after that it has reached a stable value
jUparj1 ¼ max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

par þ v2
par þ w2

par

q� �
:

Table 1 shows the maximum velocities obtained for different sizes of the elements. Results have been obtained
for isotropic and anisotropic meshes. For the anisotropic refinements the ratio Rn is 4 and the edge length h0 is
multiplied by 2

1
3 in order to have the same mean volume for the elements in the isotropic and anisotropic

computations.
1
ary case: maximum parasitic velocities |Upar|1 with isotropic and anisotropic meshes

Isotropic Anisotropic (Rn = 4)

2.76 · 10�4 1.64 · 10�4

1.39 · 10�5 6.14 · 10�6

2.38 · 10�7 1.22 · 10�7

e anisotropic computations, the ratio Rn is 4 and the edge length haniso
0 ¼ 2

1
3hiso

0 .
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We note that anisotropic meshes need more iterations to reach the tolerance of the GMRES solver. Table 2
shows the number of iterations needed per time step for each computation.

4.2. Parasitic velocities: 3D static droplet

In the case of a spherical droplet with no gravity effects, a stationary equilibrium occurs at the interface
between the pressure forces and the surface tension forces and gives rise to a pressure jump at the vicinity
of the interface. However, since the pressure discontinuity and the discontinuous surface tension forces are
not approximated in exactly the same way, this equilibrium may be perturbed and spurious velocities may
occur near the droplet interface. Several authors have highlighted this phenomena, like Popinet and Zaleski
[58] and Francois et al. [59].

The setup is the same as in [59,60] for the 3D bubble. The domain is a cube of side size C = 8. The bubble
has a diameter of d = 4.0 and is located in the center of the domain. There is no viscosity effect and the density
ratio is set to 0.1 between the two fluids, the bubble having the highest density. A surface tension of c = 73 is
prescribed.

Here we show how the mesh refinement can be used to decrease the parasitic currents. Three levels of mesh
refinements are presented, each one with an isotropic and an anisotropic refinement. The number of elements
is kept approximately constant between corresponding isotropic and anisotropic computations by applying a
factor of 31/3 to h0ðhaniso

0 ¼ 31=3hiso
0 Þ since a ratio Rn of 3 is used. Table 3 shows the maximum velocity Umax at

t = Dt and t = 50Dt, with Dt = 0.001. The results are compared with the best results of Francois et al. in [59]
and Williams et al. in [60] obtained with h ¼ C

40
. We can observe that the velocities decrease with the size of the

elements, which is a common result in the literature. An interesting result is that the anisotropic computations
lead to smaller spurious velocities.

The number of iterations required by the GMRES solver at each time step increases slightly when an aspect
ratio is applied, as shown in Table 4.

4.3. 2D dam break

We consider a column of water maintained by a wall (a dam) that is impulsively removed at t = 0. This test
is the basis of many works which try to predict the effects of a dam break. This test case has been widely
Table 2
Stationary test: number of GMRES iteration performed per time step for the isotropic and anisotropic (Rn = 4) computations

hiso
0 Isotropic Anisotropic

0.1 12 14
0.01 19 22
0.001 44 56

Table 3
Stationary spherical bubble case: maximum velocity Umax with several levels of refinement

hiso
0 t Isotropic Anisotropic Francois et al. [59] Williams et al. [60]

C/20 t = Dt 9.19 · 10�2 7.34 · 10�2

C/20 t = 50Dt 9.26 · 10�1 4.36 · 10�1

C/40 t = Dt 6.80 · 10�2 5.69 · 10�2 4.02 · 10�3 8.55 · 10�2

C/40 t = 50Dt 3.77 · 10�1 1.88 · 10�1 4.02 · 10�2 3.86 · 10�1

C/80 t = Dt 5.73 · 10�2 4.53 · 10�2

C/80 t = 50Dt 2.59 · 10�1 1.31 · 10�1

The time step is Dt = 10�3. The results are obtained for isotropic refinements and anisotropic refinements with a ratio of Rn = 3 and the
same numbers of nodes as in the corresponding isotropic meshes. The results are compared with the best results of Francois et al. in [59]
and Williams et al. in [60] obtained with h ¼ C

40.



Table 4
Stationary spherical bubble case: number of GMRES iterations required for three levels of refinements in isotropic and anisotropic
computations

hiso
0 Isotropic computation Anisotropic computation

C/20 12 14
C/40 18 21
C/80 22 25

The mean volume of the elements in the dense zone is the same between the corresponding isotropic and anisotropic computations.
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studied in the literature using experimental, theoretical and numerical approaches. As this test involves
recombinations and strong deformations of the interface as well as a great unsteady character, it is also a good
test case to validate our adaptive model.

The length of the domain is 6 and its height is 4. The water column is initially at the extreme left of the
domain. The height and the width of the water column are 1. Slip conditions are applied on the bottom
and the side walls, neglecting possible boundary layer effects. A zero-pressure condition is imposed on the
upper boundary.

Two adaptive computations have been performed. Linear and quadratic elements have been used to discret-
ize the level set function. Table 5 shows the two sets of parameters. The effects of surface tension are neglected
because this flow is essentially governed by the gravity. With these parameters, the number of nodes ranges
from 1380 to 3151 for the computation 1, from 1013 to 1848 for computation 2. Fig. 5 shows the interface
and the mesh of the first computation at different times.

The history of the dimensionless horizontal displacement of the water front is shown in Fig. 6. The time is
non-dimensionalized by t ¼

ffiffiffiffiffiffiffiffiffi
hl=g

p
where hl is the height of the water column. The experimental results from

Martin and Moyce [61] and the numerical results from Marchandise and Remacle [4] with a non-adaptive
mesh are added to the diagram. The latter computation has been performed on a domain of height 1.5, with
an unstructured mesh of 10,218 nodes and a mean edge length of about 0.04.

One can see that these results are in good agreement with the non-adaptive computations and the experi-
ment from Martin and Moyce, except for the height of water in the second simulation, for which the number
of nodes is not sufficient to avoid significant mass losses.

For the first computation, the computational time to reach the non-dimensional time 3 was 48 min, with
about 24% spent in the adaptation process (involving projections). A non-adaptive computation with an edge
length hna = 0.033 has been performed with the same domain and fluids setup. The mesh was composed of
46,204 nodes and 230,418 elements. The time 3 was reached after 15.4 h.

The second computation was a bit slower than the first, with 85 min spent to reach time 3 (13.6% in adap-
tation process).

In order to highlight the efficiency of the anisotropic refinements compared to the isotropic refinements,
the evolution of the front position computed with isotropic and anisotropic coarse refinements are presented
in Fig. 7. Two levels of accuracy are proposed, each one being tested with the values 1 and 4 for the ratio
Rn. The size h0 is chosen in such a manner that the number of nodes is roughly the same for the correspond-
ing isotropic and anisotropic computations. The parameters of the meshes are mentioned in Table 6. In
order to emphasize the differences between the results, the meshes are relatively coarse which leads to
big errors.
Table 5
2D dam break test: parameters of the two first computations

p h0 h1 h2 d d1 d2 Rn Rt,max jmax

Computation 1 1 0.1 0.2 0.4 0.1 0.3 0.6 3.0 2.0 10.0
Computation 2 2 0.12 0.3 0.6 0.08 0.3 0.6 3.0 2.0 10.0



Fig. 5. Dam break problem: visualization of the meshes and the level set fields at non-dimensional times 0, 1 and 3 for the first
computation. The upper part of the domain is not represented.
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Fig. 6. Dam break problem: comparison between experimental results, non-adaptive method and present method.
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Fig. 7. Dam break problem: comparison between isotropic and anisotropic coarse refinements.

Table 6
2D dam break test: parameters of the computations 3 to 6

p h0 h1 h2 d d1 d2 Rn Rt,max jmax

Computation 3 1 0.15 0.4 0.4 0.2 0.3 0.6 1.0 1.0 10.0
Computation 4 1 0.3 0.4 0.4 0.2 0.3 0.6 4.0 2.0 10.0

Computation 5 1 0.1 0.4 0.4 0.2 0.3 0.6 1.0 1.0 10.0
Computation 6 1 0.2 0.4 0.4 0.2 0.3 0.6 4.0 2.0 10.0
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4.4. 3D dam break with a square pile

This test case is still a dam break, but the geometry of the problem is 3D. A column of water collapses
under gravity and the path of the wave crosses a square pile, leading to the development of a complex
three-dimensional highly transient flow. The complexity of the shape of the interface and its variability is space
and time makes the adaptive approach highly competitive.

The geometrical setting is the following. The height and the length of the initial water mass are 1. Its width
is 1.6. The distance to the pile is 1.35. The pile has a square base of 0.3 and is shifted of 0.1 to the left. The back
wall is located 3 far from the water. Slipping conditions are applied on all the walls. A zero-pressure condition
is applied on the upper face of the domain, which is located 5 above the bottom wall.

Two computations were performed, with the parameters of Table 7, a Reynolds number of 40,000, a Fro-
ude number of 0.3193 and no surface tension. Note that the Reynolds number is purely indicative because
boundary layers are not captured in our simulation.

With these settings, the number of nodes ranges from 5202 to 29,350 for the first computation and from
3361 to 16,185 for the second. The computational times were, respectively, 33.9 h (21.4% in the adaptation
process) and 51.0 h (12.6% adapt.) hours to reach the non-dimensional time 2.5. In order to build fixed meshes
Table 7
3D dam break case: parameters of the computations

p h0 h1 h2 d d1 d2 Rn Rt,max jmax

Computation 1 1 0.15 0.4 1.0 0.045 0.4 0.6 4.0 3.0 10.0
Computation 2 2 0.2 0.4 1.0 0.06 0.4 0.6 4.0 3.0 10.0
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with the same accuracy according to criterion (13), the number of nodes would have raised to a number of
about 600,000 in the first simulation, and to about 250,000 in the second simulation. Fig. 8 shows the interface
with the meshes of some boundaries at different times, while Fig. 9 represents a cut in the tetrahedral mesh at
time 1.59.
4.5. Axisymmetric bubbles coalescence

In this test case, two air bubbles are immersed in a volume of water. The first one has a bigger radius and is
initially located above the second. The bubbles rise under the effect of gravity, but the second rises faster
because of the depression created by the first. Eventually, the bubbles merge into a single non-spherical bub-
ble. The effects of surface tension are not taken into account.

The computational domain has a length of 1 in x- and y-directions, and 2.3 in z. The radius are respectively
0.15 and 0.10 for the first (above) and the second bubble. The bubbles are at a distance of 0.05. The gravity
Fig. 8. 3D dam break case: interface and surface meshes at times 0, 0.88, 1.17, 1.59, 2.0 and 2.39.



Fig. 9. 3D dam break case: volume of water and tetrahedral mesh at time 1.59.
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acts in the z-direction. Slipping conditions are applied on all the boundaries. The Reynolds number and the
Froude number are the following: Re = 200 and Fr = 1.

First order elements are used to represent the level set function. The meshes have the characteristics given
by Table 8. The meshes produced have a number of nodes ranging from 16,480 to 24,922.

Fig. 10 shows the interface and the meshes at different times. We were able to obtain very smooth interfaces
thanks to the mesh adaptation.

It took 17.7 h to run this computation. About 19% of the time was spent in the adaptation process. A non-
adaptive computation with a similar accuracy, according to (13), would have needed a mesh size hna = 0.01.
With this very small mesh size, the mesh would have contained more than 2,300,000 nodes.
4.6. Oblique bubbles coalescence

For this test, two spherical bubbles of the same radius are immersed in the fluid with a shift between their
horizontal positions. Both phases are initially at rest.

The domain is a parallelipipedron of size [0, 4] · [0,4] · [0,8]. The center of the bubbles are located at posi-
tions (2,2,2.15) and (2.5,2,1). Both bubbles have an initial radius R = 0.5. The following non-dimensional val-
ues are set: Re = 18.8, We = 50, Fr = 1, q1/q2 = 1/20 and l1/l2 = 1/26. The computation has been made with
quadratic shape functions for the level set.

Table 9 summarizes the meshes parameters that have been chosen.
Fig. 11 shows the evolution of the bubbles. The results compare well with those obtained by Marchandise

et al. [5] without mesh adaptation and a grid of 30 · 30 · 60. They also compare well with those obtained by
Table 8
Axisymmetric bubbles coalescence: parameters of the meshes

h0 h1 h2 d d1 d2 Rn Rt,max jmax

0.03 0.15 0.40 0.02 0.02 0.15 3.0 2.0 0.05



Fig. 10. Axisymmetric bubbles coalescence. Re = 200, Fr = 1, q1/q2 = 1/1000 and l1/l2 = 1/100. Interface and meshes at non-dimensional
times (a) 0.2, (b) 0.56 and (c and d) 1.

Table 9
Oblique bubbles coalescence: parameters of the meshes

h0 h1 h2 d d1 d2 Rn Rt,max jmax

0.4 0.4 2.0 0.15 0.3 2.0 4.0 3.0 0.2
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Sussman and Puckett [62] with a 64 · 64 · 128 grid, those of de Sousa et al. [63] and the experimental results
obtained by Narayanan and Goossens [64]. Whereas 54,000 nodes were necessary in [5], all meshes produced
with our computation comprised less than 6000 nodes, leading to a computation of 7 h (about 12% spent for
mesh adaptation) to reach t = 3.

We can see from Fig. 11 that the anisotropic refined mesh combined with quadratic elements for the level
set were able to represent the smallest scales of the interface with a very good accuracy.



Fig. 11. Oblique bubbles coalescence. Re = 18.8, We = 50, Fr = 1, q1/q2 = 1/20 and l1/l2 = 1/26. Position of the interface at different
non-dimensional times ranging from 0 to 2.89. A view of the mesh is superimposed to the view of the interface.
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5. Conclusion

An adaptive procedure to improve the efficiency of the numerical method based on the model described by
Marchandise and Remacle in [4] have been presented.

This model was already able to simulate highly transient flows with high ratios of densities and viscosities,
with the advantages that it simply uses first order elements to represent pressure and velocity variables, and
that it relies on a level set method for the interface, which is very flexible. Numerous applications are also
in the scope of the model as it is able to represent the effects of surface tension in an accurate way.

The CPU time to perform complex simulations has been dramatically reduced by the adaptive improve-
ment, without undermining the accuracy. This enhancement allows us to handle more complex computations
in which either small and large scales are solved.

In the future works, a parallel implementation will be carried out. The fluid solver is already able to per-
form parallel computations. We are now focusing on the parallelization of the adaptive process.
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