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We study the propagation of information in social networks. To do so, we focus on a cascade model where
nodes are infected with probability p1 after their first contact with the information and with probability p2 at all
subsequent contacts. The diffusion starts from one random node and leads to a cascade of infection. It is shown
that first and subsequent trials play different roles in the propagation and that the size of the cascade depends
in a nontrivial way on p1, p2, and on the network structure. Second trials are shown to amplify the propagation
in dense parts of the network while first trials are dominant for the exploration of new parts of the network and
launching new seeds of infection.
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I. INTRODUCTION

The propagation of information and new ideas has long
been a fundamental question in the social sciences. Propaga-
tion may be driven by exogenous causes, when people are
informed in a mean-field way by an external source, e.g.,
television, but also by endogenous mechanisms, when a few
early adopters may influence their friends, who may in turn
influence their own friends and possibly lead to a cascade of
influence �1�. This self-organizing process, which reminds of
the dynamics of an epidemic, is usually called the word-of-
mouth phenomenon. It has attracted more and more attention
in the last few years due to the emergence of the internet and
of online social networks, which have led to more decentral-
ized media of communication. A typical example is the
blogosphere, where blogs are written and read by web users
and where debates and/or discussions may take place among
the bloggers. As of today, the blogosphere is extremely in-
fluential in the adoption or rejection of products but also in
politics, as more and more citizens voice their opinions and
mobilize community efforts around their candidates. From a
practical point of view, the emergence of these participative
media has changed the way elections take place, by allowing
politicians to reach new audiences, raise money, communi-
cate to voters and even consider all of them as a gigantic
think tank �2�, and also to open new ways to promote com-
mercial products via recommendation networks or viral mar-
keting methods. It is therefore interesting to better under-
stand how such information cascades take place in social
networks �3–8�.

A good description of the word-of-mouth phenomenon
requires two elements: A model of propagation and a net-
work structure. The model of propagation defines the way
information �e.g., a marketing campaign for a specific prod-
uct, an information� flows between acquaintances. One of the
most common models of propagation is the independent cas-
cade model �ICM� �4,5�, where one starts from an initial set
of infected nodes. When a new node becomes infected, it
tries one single time to infect each of its neighbors with
independent probability p. The process stops when no new
node has been infected. The size of the information cascade

is given by the number of infected nodes and one says that
an epidemic outbreak �keeping in mind that the models de-
scribed in this paper apply only to information diffusion, not
to the epidemical spread of diseases� takes place when the
fraction of people who are infected does not vanish as the
network size increases. It is straightforward to show that
ICM is equivalent to the epidemiological SIR model, where
nodes are divided in three classes, i.e., susceptible, infec-
tious, and removed �9�, and where infectious nodes infect
their neighbors with rate p and are removed with rate 1. It is
also possible to view ICM as a bond percolation problem, the
final number of infected nodes being the sum of the sizes of
the connected components the initial nodes belong to. Sec-
ond, this viral process must be applied on a realistic social
network, where each node defines a member of the society
and edges are drawn between acquaintances. For a long time
the design of these social networks was purely theoretical
and real social networks were generally limited in size, but
the advent of the Internet and of cheap computer power now
allows us to study social networks composed of millions of
individuals and to characterize the statistical properties of
their topology. For instance, it has been shown that social
networks typically exhibit the small-world property �10�,
heavy-tailed degree distributions �11�, assortative mixing
�12�, modular structure �13�, etc. An important challenge is
therefore to understand how the topology of the social net-
work affects the propagation of information but also to find
statistical indicators for the most influential nodes in the net-
work �4,14–16�.

The ICM is a direct implementation of an epidemiological
model in a social context. There are, however, drastic differ-
ences between the propagation of a virus and the propagation
of ideas. Indeed, recent experiments have shown that the
memory of the individuals may play a dominant role in the
latter case. For instance, in the case of recommendation net-
works, the probability that people buy an item depends in a
nontrivial way on the number of times they received a rec-
ommendation for this item �17�. In the case of online social
networks, it was also shown that the probability to join a
community depends on the number of your friends in that
community �18�. In general, empirical studies show that the
probability of getting infected increases with the number of
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contacts k and saturates for large values of k. Several models
have been introduced in order to take into account this prop-
erty, such as general ICM, threshold, and cascade models
�19–23� or generalized voter models �24,25�. The way such
dynamics is affected by the network topology is, however,
still poorly understood �26�, even though some studies focus
on specific topologies �27–30�. The goal of this paper is to
bridge this gap by focusing on a generalization of ICM
which includes in the simplest way a dependence on the
number of contacts. The model is applied on small-world
networks in order to highlight the importance of the network
randomness. As a first step, we focus on simplified cases
where the network is directed, which allows us to obtain an
analytical description of the propagation. It is shown that the
birth of large cascades of information is strongly influenced
by the network topology and that first and subsequent trials
play very different roles in the propagation. Computer simu-
lations are also performed on directed and on more realistic
undirected networks, and confirm the above observations.

II. PROPERTIES OF THE MODEL

Our generalization of ICM is defined as follows. The net-
work is composed of N nodes and one node is initially in-
fected. Each time a new node is infected, it contacts all of its
neighbors, and they each get infected with a probability p1 if
it is the first time they are contacted and with a probability p2
for all subsequent contacts �see Fig. 1�. The dynamics stops
when no new node is infected. The classical ICM is therefore
recovered when p1= p2. Since the ICM and SIR model are
equivalent, one can also interpret the generalized ICM as an
extension of the SIR model. The dependence in the number
of contacts leads to a new class of nodes, namely contacted
nodes, which have already been unsuccessfully attacked by
infectious nodes. In that framework, the probability of a sus-
ceptible node to be infected by a neighboring infectious node
is p1 while it becomes contacted with probability 1− p1.
When a contacted node is attacked by an infectious node, its
probability to become infected is p2. Finally, an infectious

node becomes removed once it has attacked each of its
neighbors. The model can also be related to threshold models
�3,4� where each node receives a random threshold generated
following a given distribution. A node becomes infected
when the number of infected neighbors exceeds this thresh-
old. The probability of having a threshold of value 1 is the
probability of being infected at the first trial, in our case p1.
In this way, one can generate for every couple �p1 , p2� the
thresholds of the equivalent threshold model with the follow-
ing expressions:

P�� = 1� = p1, �1�

P�� = k� = �1 − p1��1 − p2�k−2p2, ∀ k � 2. �2�

It is also interesting to note that our model may be related to
percolation. The case p1= p2 is well known to be equivalent
to bond percolation but the case p2=0 can also be seen as a
node percolation problem. Indeed, in that case, each neigh-
bor of an infected node is infected with a probability p1 only
if it is the first time it is in contact with the information. The
total number of infected nodes may therefore be obtained by
removing nodes from the network with a probability 1− p1
and by looking at the size of the connected components. For
general values of p1 and p2, however, the system is much
more complicated and the probabilities of infection are not
straightforward to compute.

III. RANDOM NETWORKS

In this paper, we are interested in the conditions for a
large cascade to emerge. We therefore look for the critical
couple �p1c

, p2c
� such that a random node infects a nonvan-

ishing fraction of the network for any couple �p1 , p2�
� �p1c

, p2c
� where the inequalities are componentwise. This

couple determines the epidemic threshold of this network.
Let us first focus on a directed random Erdös-Renyi network,
composed of N nodes and where the probability to have a
link between two randomly selected nodes is per. As we will
show, the proportion of second attacks vanishes when N

FIG. 1. �Color online� Illustration of the generalized ICM. Infected nodes contact their neighbors only once. These neighbors get infected
with probability p1 if it is the first time they are contacted �and therefore remain uninfected with probability 1− p1� and p2 otherwise. The
presence of triangles and, by extension of local structures, is crucial for second and subsequent trials to be frequent.
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tends to infinity when one is below the epidemic threshold.
Therefore, the threshold in such topology hardly depends on
p2 and we recover the same threshold as for the ICM model.
Even though this result was predictable, the probability p2
still plays a role when the size of the network is finite. Let
S�t�, C�t�, I�t�, and R�t� be the number of susceptible, con-
tacted, infectious, and removed nodes, respectively, at time t.
By using a mean-field approximation, one obtains the num-
ber of links between different types of nodes. For instance,
the number of links going from infectious nodes to suscep-
tible nodes is S�t�I�t�per, which also represents the number of
attacks at time t from infectious nodes on susceptible nodes.
The average number of susceptible nodes that become in-
fected at time t is therefore given by S�t�I�t�perp1. Similar
calculations lead to the set of equations

ṡ = − sid ,

ċ = sid�1 − p1� − cidp2,

i̇ = − i + sidp1 + cidp2,

ṙ = i �3�

for the densities s, c, i, and r, where s= S
N , c= C

N , i= I
N , r= R

N ,
and where d=Nper is the average degree of the network.

The epidemic threshold is found by linearizing this non-
linear dynamical system around the stationary solution x0
= �1,0 ,0 ,0� where all nodes are susceptible, and looking at
the eigenvalues of the linearized matrix. The behavior of the
system is then essentially governed by the linearized equa-

tion i̇= i�−1+dp1�, which implies that x0 is stable if dp1�1
and therefore that the infection will not reach a nonvanishing
fraction of the network in that case. This result, which is well
known in percolation theory when p2= p1, also shows that
the epidemic threshold does not depend on the parameter p2.
This may be understood by noting that second and subse-
quent trials are statistically relevant only when a finite frac-
tion of nodes have been infected, which implies that the epi-
demic threshold may be evaluated without taking them into
account. This also implies that for a nonvanishing initial
fraction of contacted nodes, we then have a dependency on
p2 and the threshold will change accordingly. Above the epi-
demic threshold, the system of equations �3� ceases to be
valid because it does not incorporate multiple attacks �i.e.,
several edges attacking a node at the same time�, thereby
leading to an overestimation of the number of infections. In
that case, we have therefore performed computer simulations
of the model which show that the total fraction of nodes r���
having been infected increases with p2, as expected. This
becomes even more obvious for N decreasing. Finally, when
N is relatively small, the proportion of second attacks is no
more negligible and the threshold varies with p1 and p2.

IV. DIRECTED SMALL-WORLD NETWORK

In order to highlight the role played by the network topol-
ogy, we have applied the model on a directed version of the

well-known Watts-Strogatz model for small-world networks
�10�. The main reason for looking at this directed version
rests in the equations of propagation that becomes tractable.
However, the simulations show that both cases, directed and
undirected, exhibit similar couple of thresholds. The directed
version is built from a directed one-dimensional lattice of N
sites, with periodic boundary conditions, i.e., a ring, each
vertex k pointing to two neighbors k+1, k+2, see Fig. 2.
With probability �, these “regular” links are removed and
replaced by random links. This network therefore exhibits an
interplay between order and randomness. By increasing the
parameter �, one increases the randomness of the topology
and one recovers a random network when �=1.

It is instructive to first consider the case of a regular lat-
tice, i.e., �=0. In that case, the information propagates in the
system in an ordered way and the state of each site k is only
influenced by the sites k−2 and k−1. For this reason one
does not need to store separately the state “contacted” any-
more. Let nij;k, with i , j� �0,1� be the probability that node k
is i and node k+1 is j, with the following correspondence:
1=infectious, 0=not infectious. By definition, �i,jnij;k=1 for
any k. Let us assume that one starts the propagation at node
k=1, so that n01;0=1. Then, it is straightforward to show that
the quantities nij;k=1 satisfy the recurrence

n11;k+1 = �p1 + �1 − p1�p2�n11;k + p1n01;k,

n01;k+1 = p1n10;k,

n10;k+1 = �1 − p1 − �1 − p1�p2�n11;k + �1 − p1�n0,1 �4�

while the probability that the dynamics ends grows mono-
tonically like

n00;k+1 = n00;k + �1 − p1�n10;k. �5�

This corresponds to the four states Markov chain represented
in Fig. 3. By definition, the expected number of infected
nodes is N�= 1

2�i,j,,knij;k+1.

FIG. 2. For different values of �, the topology is a regular
lattice ��=0�, a small-world network ��=0.2� or a random network
��=1�.
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The asymptotic number of infected nodes grows like the
largest eigenvalue of the matrix associated with the linear
system �4�,

A = � p1 + �1 − p1�p2 p1 0

0 0 p1

�1 − p1��1 − p2� �1 − p1� 0
	 . �6�

This largest eigenvalue is smaller than 1 for any p1, p2, ex-
cept when p1=1 or p2=1, which implies that an epidemic
outbreak takes place only in these trivial cases. In contrast,
when p1 and p2 are different from 1, only a finite number of
nodes gets asymptotically infected. This is due to the one
dimensionality of the topology, which implies that two nodes
at most may spread the infection at each step and that the
probability that no new node gets infected is different from
zero when p1�1 and p2�1. As expected, increasing values
of p1 or p2 increase the total number of infected nodes. The
analytical expression for N� when p1 , p2�0 is given by

N� =
1

2
�2 1 1��

k=0

�

Ak�0 1 0�T,

=
1

2
�2 1 1��I − A�−1�0 1 0�T,

=
�1 − p1��1 − p2� + p1

�1 − p1�2�1 − p2�
. �7�

Let us now focus on a topology where a fraction of the
links is displaced in a random way. In order to generalize the
results of the preceding section, it is useful to label each
node with its position k on the underlying one-dimensional
lattice. By construction, each node k points to k+1 and k
+2 when �=0 but such links only exist with probability 1
−� in general. In a system where � is sufficiently small and
where only a vanishing fraction of the nodes gets activated,
one may decouple the dynamics as follows �31�. The initial
seed may infect a segment of nodes which are contiguous on
the underlying lattice, thereby leading to N1�p1 , p2� contigu-
ous infected nodes. This number may be evaluated by gen-
eralizing the set of equations �4� and taking into account the
fact that some links are missing. The associated matrix with
this linear system is

A� = �1 − ��2A + 2��1 − ���
p1

p1

2
0

0 0
p1

2

1 − p1 1 −
p1

2
0
	

+ �2�0 0 0

0 0 0

1 1 0
	 , �8�

where we consider three cases: No missing link, this occurs
with probability �1−��2, and then we recover the matrix A in
Eq. �6�, second we have with probability 2��1−�� one miss-
ing link and the corresponding transition matrix, and finally
we have with probability �2 no link accompanied by a
simple transition matrix. By using arguments similar to those
for the regular lattice, one finds that the average number of
contiguously infected nodes is

N1�p1,p2� =
1 − �1 − p1�p2�1 − ��2 − p1�1 − ���

�1 − p1�1 − ����1 − p2�1 − ��2 − p1�1 − ���1 − p2�1 − �� + ���
. �9�

This segment of N1�p1 , p2� infected nodes may
in turn infect 2�p1N1�p1 , p2� distant nodes which
will play the role of a new seed, each of them infecting
a new segment of average size N1�p1 , p2�, etc. Below

the epidemic threshold, only a vanishing proportion of nodes
is infected and one may assume that the different segments
do not overlap. The total number of infected links is there-
fore

FIG. 3. On a regular lattice, the states of the nodes k and k+1,
denoted by i and j, respectively, fully determine the state of node
k+2. The dynamics is therefore specified by the succession of states
�i , j�. The dynamics ends when two successive zeros, i.e., a state �0,
0�, take place.
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N� = N1�p1,p2��
i=0

�

�2�p1N1�p1,p2��i �10�

which converges to

N� = N1�p1,p2�/�1 − 2�p1N1�p1,p2�� �11�

if

2�p1N1�p1,p2� � 1. �12�

The line 2�p1N1�p1 , p2�=1 therefore separates two re-
gimes, one in which the spreading dies out and another one
in which an infinite number of nodes is asymptotically in-
fected. By using Eq. �9� and solving Eq. �12�, one finds an
analytical formula for the critical value

p2c =
1 − �2 + � − �2�p1 + �1 − � + �2 − �3�p1

2

�1 − ��2�1 − p1��1 − p1 − p1��
, �13�

such that an epidemic takes place when p2� p2c �see Fig. 4�.
It is interesting to note that the epidemic threshold depends
both on p1 and p2 for general values of �, but that these
parameters are associated with different mechanisms. The
probability p2 plays an important role in the local propaga-
tion of the infection among neighboring sites. The probabil-
ity p1 also plays a role for such propagations but it is also
responsible for the infection of new distant seeds, a process
that is crucial for exploring several disconnected parts of the
network and that favors the emergence of an epidemic. One
observes from Eqs. �9� and �12� that p2 is less and less im-
portant as � increases. In the limit �→1 of a random net-
work, the length of infected segments N1�p1 , p2� goes to 1,
which implies that the epidemic threshold is p1=1 /2, inde-
pendently of p2, as predicted in our analysis of the Erdös-
Rényi network. It is also interesting to note that the total
number of infected nodes �11� may decrease when � is in-

creased, which is in contradiction with the usual belief that
shortcuts promote the propagation �29,30�.

We have checked the validity of Eq. �12� by performing
computer simulations of the generalized ICM on a directed
small-world network with N=104 nodes and by averaging
the results over 104 realizations of the dynamics. As shown
in Fig. 5, the critical threshold for a given p2 is evaluated by
looking at the probability p1 for which the slope of N� is
maximal when the Y axis is in logarithmic scale. In Fig. 4
these critical points are drawn for �=0.3, �=0.1, and �
=0.01. The case �=0.001 is not shown because of the very
small number of shortcuts in that case and therefore of the
very large fluctuations from one realization of the network to
another one. The simulation results show large fluctuations
but are nonetheless in good agreement with the theoretical
predictions.

Finally, we have also studied numerically our model when
it is applied to an undirected small-world network made of
104 nodes and with an average degree 4. As expected �the
mean degree is 2 times larger�, the frontiers are shifted to the
left meaning that smaller probabilities are sufficient to ob-
serve significant cascades in the network �see Fig. 6�. Quali-
tatively, however, the system behaves in the same way as in
the directed case and the lines determining the epidemic
threshold have similar shapes. Theoretically, when �=1, the
network is random and the epidemic threshold should not
depend on p2, i.e., it is a vertical line. However, the finite
size of the network implies that the proportion of triangles
does not vanish and therefore that second attacks may occur
due to finite size effects. Consequently the experiments show
a slight dependency on p2 and the frontier is not exactly
vertical when �=1. However, we recover the threshold of
the ICM model when p1= p2=0.25.

V. CONCLUSION

In this paper, we have focused on a very simple model for
the cascade of information in social networks. The model
consists in considering different probabilities for being in-
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fected depending on the number of contacts with the infor-
mation. The model has been applied on a directed small-
world network in order to show how the randomness of the
network topology affects the propagation. It is shown that
first and subsequent trials play very different roles: First tri-
als are primordial in order to discover unexplored parts of
the network and launch new seeds of infection, while second
and subsequent trials influence the propagation in ordered
parts of the network, where triangles �and other dense mo-
tifs� are frequent. The epidemic threshold, which determines
the success of the cascade, depends in a nontrivial way on
these two mechanisms and on the randomness of the network
topology, but it is dominated by the success of first trials.

The importance of first trials should be put in perspective
with Granovetter’s famous work on “the strength of weak
ties” �32,33�, which states that weak links keep the network
connected whereas strong links are mostly concentrated
within communities. In the context of information diffusion,
our model shows that the first trials play a similar cohesive
role by connecting different communities, while second and
subsequent trials accelerate the propagation inside the com-
munities. This is due to the fact that dense parts in the net-
work make possible the existence of several infected paths to
each node, and therefore increase the number of time one
node is contacted. In the extreme scenario of a k clique, for
instance, where k nodes are fully connected, after the first
step, all further steps will be considered as second trials.

To conclude, our model is motivated by recent experi-
ments which have shown that an accumulation of contacts
favors the propagation of information and that, in particular,
second and subsequent trials are more successful than first
trials. Interestingly, our model also reproduces the fact that
locally dense subnetworks accelerate the propagation
�34,35�, a property which has been observed for the adoption
of new services among users of mobile phone networks �36�
and which is not reproduced by the original ICM.
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