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ABSTRACT 

parameter 

We study the properties of two adaptive observers/identifiers, 
initially proposed for linear time-invariant systems, respectively by 
Kreisselmeier and Luders-Narendra, when the parameters are allowed to 
vary . We show the connections between these two observers, and derive 
upper bounds for the asymptotic tracking errors. 

I . INTRODUCTION 11 . THE KREISSELMEIER ADAPTIVE ESTIMATOR 

In the 1970's both Kreisselmeier (1977) and Luders 
and Narendra (1973) have proposed adaptive 
observers/identifiers for single-input single­
output (5150) linear time-invariant systems with 
unknown parameters . They both used special and 
different canonical state-space forms for the 
representation of the system . They then derived an 
estimation algorithm for the estimation of the 
states and the parameters of the system, and 
showed that the estimation errors converged to 
zero exponentially fast provided a regression 
vector was persistently exciting (P.E . ). Here we 
show that both adaptive observers/identifiers can 
also be used when the parameters are allowed to be 
time-varying, and we derive asymptotic bounds on 
the tracking errors . 

Our contributions in this short paper are as 
follows. First we show the connections between the 
respective estimators of Kreisselmeier and Luder s ­
Narendra . These estimators are derived from 
canonical forms that use a certain number of 
freely assigned design parameters. We show that 
the Luders-Narendra canonical form can be obtained 
from the Kreisselmeier canonical form by a 
similarity transformation, provided the two sets 
of design parameters are related in a specific 
way . We propose a simplification of the Luders and 
Narendra observer, which is then shown to be a 
reduced-order equivalent of the Kreisselmeier 
observer. 

We extend these identifiers to the case where the 
full state is measured, in which case the 
regression vector becomes a regression matrix . We 
discuss the persistence of excitation conditions, 
in particular for the new situation where the full 
state is observed . We show that the sufficient 
richness condition on the input becomes extremely 
simple in this case. Finally we discuss the effect 
of the various design parameters on the asymptotic 
tracking errors . 

5 

We consider linear time varying 
represented in canonical observer form 

x(t) 
y(t) 

where 

A(t)x(t) + b(t)u(t) T 
(1 0 .. . 0) x(t) = c x(t) 

A(t) a(t) 

0 .. .. 0 

(-a 1 (t) an(t» 
(b1 (t) .. .. bn(t» 

systems 

(2 . 1) 

(2 . 2) 

(2 . 3a) 
(2 . 3b) 

We assume that a(t) and b(t) have bounded and 
continuous derivatives and that (2.1) is BIBO 
stable . A large family of linear time-varying 
systems can be trans formed to (2 . 1) by a Lyapunov 
transformation . 

The system (2.1) can be rewritten as 

t
X(t) 

y(t) 

where 

F 

O(t) 
(nx2n) 

and 

Fx(t) + O(t)9(t) 

CTx(t) 

o 0 

[

y. u. 0 J 
O"'yO "'u 

(2.4) 

(2.5a) 

(2.5b) 
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9(t) 

[
f - a(t)] 

b(t) 

Here f = [f 1 . . . fn]T is a vector of parameters that 
can be freely assigned ; they are chosen such that 
F is a stability matrix. Their influence on the 
convergence speed and the asymptotic tracking 
error of the parameter estimator will become 
apparent soon. The canonical form (2 . 4) was 
proposed in Kreisselmeier (1977) for observable 
5150 linear time-invariant systems, i.e. with 9(t) 
= 9 = constant. 5uppose now that u(t) and yet) are 
measured and that it is required to obtain on­
line estimates of x(t) and 9(t) . 

Adaptive observer/identifier 

Consider the following adaptive observer for (2.4): 

A. A A TA 
x(t)=Fx(t)+O(t)9(t) ~(t)r~(t)[y(t)-C x(t)] (2.7a) 

(2 . 7b) 
• T 
get) = r~(t)[y(t)-C ~(t)] 

where r = rT)O is a gain matrix, and ~(t) and ~(t) 
are respectively the nx2n matrix state and the 2n 
vector output of the auxiliary filter ; 

(2.8) i(t) = net) + O(t), 

~T(t) = CT~(t) 
Notice that this is 
t¥e whole state x(t) 
C x(t) is measured. 

a full-order observer, i.e. 
is estimated, even though 

Simplified adaptive observer/identifier 

It is very easy to check that 

~ (k - ~e) = F(~-~9) 

i . e . ~ ~(t) converges 
't(t) 9(t) . 

exponentially 

(2.9) 

fast to 

This suggests the following simplified estimator ; 

x(t) ~(t)a(t) 
. T ~ 

B(t) = r~(t)[y(t) - ~(t)9(t)] 

(2.10a) 

(2.10b) 

together with (2.8) . For constant parameter 
systems, this was precisely the adaptive observer 
proposed and analyzed by Kreisselmeier (1977) . We 
now study the robustness of this estimator to 
parameter variations. 

Error system 

The error system for both (2 . 7)-(2.8) 
(2.8) is 

[;) = [~~::~cT ~) [~] + [~] 

or (2 . 10), 

(2.11 ) 

where x = x-x and e A _ 

9-9. By defining e ~ x-
.9, it can be rewritten as 

(2.12) 

We have the 
theorem. 

following uniform boundedeness 

Theorem 2.1 

Assume that 
A1) the system (2.1) is BIBO stable 
A2) u(t) is continuous and bounded ; 

suplu(t)1 ~ U < 00 

t 

A3) supli(t) I ~ M < 00 

t 

A4) the input u(t) is such that the regressor 
vector ~(t) is persistently exciting, i.e. 
3s o' T, a, p > 0 such that 

1 
aI ~ '1' 

A5) f 1 , ... , fn ,are chosen such that F is a 
stability matr~x. 

Then 
Pl) the state wet) of the auxiliary filter (2.8) 

is uniformly bounded ; 

lim sup "wet)" c K1U for some R1 > 0 
t ... oo 

P2) the estimation errors of the estimators (2.7) 
or (2 . 10) are bounded and 

x(t) 
lim SUP"I(t)" , C(U).M 
t ... oo 

where C(U) is a strictly increasing, positive 
function of U. 

Proof : The proof follows directly from the error 
system in the form (2 . 12) . See Gevers et al. 
(1987) for details. 

We have thus shown that the Kreisselmeier observer 
is robust to parameter variations . This is due to 
the uniform asymptotic stability of the 
homogeneous part of (2 . 11) . That error system has 
been analyzed in some detail in Mareels et al. 
(1987), where some robustness properties to 
multiplicative errors have also been demontrated. 

Comment 2. 1. 

A crucial condition for the boundedness of the 
estimation errors is the PE condition A4 . Since 
the auxiliary filter (2 . 8) is stable and output 
reachable, this condition can be translated into a 
sufficient richness condition on (y u) ; see the 
form (2 . 5b) of the input 0 Given that the 
relation between u and y is given by the linear 
time-varying system (2.1), this is in turn can be 
translated into a sufficient richness on u(t) and 
some bounds on the spped of parameter variations, 
using the results of Mareels and Gevers (1988) . 

Ill. THE LUDER5-NARENDRA ADAPTIVE ESTIMATOR 

The Kreisselmeier observer was derived using the 
fact that any observable 5150 system can be 
written in the canonical form (2.4) - (2 . 5) where 
f

1
, ... , fn can be freely chosen . In Liiders and 

Narendra (1974) it was shown that any observable 
5150 system can be transformed to the following 
canonical form where c 2 ' .. . , cn can be fr eely 
chosen ; 
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z (t) Gz(t) + O(t)C(t) 

y(t) CTz(t) (3.1) 

(t) is a 2n-vector of parameters, O(t) and cT are 
as before, and 

G [1 -C 2 o-J 0 (3.2) 

In Ltiders and Narendra, ,It) was of course 
constant. We first establish that the canonical 
forms (2.4)-(2.6) and (3.1)-(3.2) are related by a 
similarity transformation provided the following 
relation holds between t.he respective design 
parameters : n n-1 
det.(sI-F) = 5 +f 1s + ... +f n_1s+f n 

=s(s+c 2) ... (s+cn ) = det(sI-G) (3.3) 

This requires in particular that fn = 0. Let. then 
Ql' Q2 be, respectivTly, the T observability 
matrices of the pairs (C ,F) and (C ,G) and define 

z = Tx, (3.4) 

Then it is easy to see that (2.4) is equivalent 
with (3.1) with 

(t) = Te(t) (3.5) 

Adaptive observer/identifier 

For the representation (3.1), with 'It) , 
constant, Ltiders and Narendra (1974) proposed t.he 
following adaptive observer/identifier 

,It) r~(t) (y(t)-Zl(t)) (3.6b) 

where Cl is an arbitrary positive constant, r=rT>o 
is a gain matrix and ~2 (of dimension (n-1)x2n) 
and ~ are defined via t.he auxiliary filt.er : 

G2~2(t) + 02(t) (3.7) 

(1 ..... 1) ~2(t) + 01(t.) 

G d · ( ) E lR(n-1 )x(n-l) (3 8) 
2 =- lag c 2 '" "Cn . 

O(t) = [Ol(t)] with 01(t)EIR 1x2n ,02(t)EIR(n-1)X2n 
°2(t) (3.9) 

Note that the original Liiders"Narendra observer 
looks rather more complicated than (3.6) - (3.9), 
but it can be rewritten in the present form. 

Simplified adaptive observer/identifier 

Denote zT ~ (Zl' Z2T), where Zl(t) and Z2(t) are, 
respectively, the first and the n-l remaining 
components of z(t). Denote also G2 ~ diag (-c2 ' 

--cn). Then it is easy to see that 

(3.10) 

Compare with (2.9) This leads us to suggest the 
following simplified adaptive estimator 

(1 ...... 1)z2(t) + 01(t)£(t) 

+ Cl (y(t) - Zl (t)) (3.11a) 

(3.11b) 

t(t) = r~(t)(y(t) (3.11c) 

together with the auxiliary filt.er (3.7). 

Error system 

Denote z(t) ~ z(t)-~(t) , '(t) = C(t) - 'It) and 

e(t) = z(t) (3.12) 

We then have the following error 
(3.6) - (3.9) and (3.7) - (3.11) 

system for both 

e 

, 

where 

G = 1 

G1 

-

-r~ 

I - - -
I" 

° 2nx(n-l) I 

T e ° ~ + 
0(n-l)x2n -1/12 

- - - -

°2nx2n 
, I 

(3.13 ) 

(3.14) 

The following Theorem shows that the Ltiders­
Narendra estimator (3.6) (3.9) and its 
simplified form (3.11) and (3.7) are robust w.r.t. 
parameter variations. 

Theorem 3.1. 

Assume that 
Bl) the system (3.1) is BIBO stable 
B2)u(t) has continuous and bounded derivatives and 

suplu(t) I ~ U < 
t 

B3) suplt(t) I ~ M < 00 

t 

B4) A4 holds 
B5) Ct' c 2 ' ••. , Cn are all positive and different. 

Then: 

Pl' : lim SUplll/l2(t)1I ~ K1U for some Kt > 0 
t-

P2 ' '. z(t) lim SUpll[(t)11 , C(U)M 
t ... oo 

where C(U) is a strictly increasing positive 
fuction of U. 

Proof: See Bastin and Gevers (1988). 

Comment 3. 1. 

Neglecting exponentially decaying 
initial conditions, the homogeneous 
error system (3.13) can be described 
notation as 

terms due to 
part of the 
in shorthand 

(3.15 ) 
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Comment 3.2. 

The regressor ~(t) has a very simple form 

1 
(y s+c Y 

2 

1 
s+c

n 
y 

1 
u -- u s+c2 

1 
s+c u) 

n 

(3.16) 

Given that the relation between u and y is linear 
time-varying, the PE condition A4 can again be 
translated into a sufficient richness condition on 
u(t) provided the parameter variations are 
sufficiently slow or integral small : see Mareels 
and Gevers (1988) for details. 

IV. THE CASE OF MATRIX REGRESSORS 

In some applications, it is desired to construct 
an adaptive parameter estimator for 8(t) where 
8(t) is related to a fully observed state vector 
x(t) by the following model 

x(t) = Fx(t) + O(x,u,t)9(t) (4.1) 

where F is any constant known nxn matrix, O(x,u,t) 
is a nxp matrix of known functions of the measured 
state x(t) and an external s~gnal u(t). In 
analogy with the adaptive estimtor (2.10), (2.8), 
we then propose the following adaptive 
observer/identifier 

8(t) = r~T(t)(x - ~(t)9(t» 
with the auxiliary filter 

~(t) = F~(t) + O(x,u,t) 

(4.2) 

(4.3) 

Denote : X ~ x-~, a ~ 9 - 8 and e = x - ~9. 
We then have the following error system 

(4.4) 

The tracking properties of the estimator (4.2) -
(4.3) are given by the following theorem. 

Theorem 4.1. 

Assume that 
Cl) F is a stability matrix 
C2) supnO(x,u,t)n, U < • 

t . 
C3) sup\8(t)\' M < 

t 

c4) O(x,u,t) is such that 3so,T,~,p ) 0 for which 

s+T 
~I , ~ J s ~T(t)~(t)dt' PI 

Then the estimation error n9(t)n is bounded and 

lim supn9(t) 11 , C(U)M 
t .. • 

where C(U) is a strictly increasing positive 
function of U. 

Proof : Conditions Cl and C2 imply the boundedness 
~ The proof then follows directly from the 
structure of (4.4). 

We now examine the persistence of 
condition C4 more closely and translate 
sufficient richness condition on O(t). 

excitation 
it into a 

Theorem 4.2 

The matrix regressor ~(t) is PE in the sense of C4 
if O(x,u,t) is such that there exist S1' T1 , ~1 
and P1 ) 0 for which 

(4.5) 

where 

Z = y Z + 0 for any y ) 0 (4.6) 

Proof :Condition C4 can equivalently be stated as: 

Vc E: IRP with ncn = 1, 

1 IS
+

T 
T T 

~ 'T s c ~ ~c dt , P 

Define ~c = x and Oc = u. Then by (4.3) 

x = Fx + u with x,u E: IRn 

Similarly define 

y = yy + u with y, u E: IRn 

(4.7) 

(4.8) 

(4.9) 

Conditions (4.5) - (4.6) imply that 

1 IS
+

T
1 ~1 , ! ny(t)n 2dt , P1 (4.10) 

1 S 

The required conditon on nx(t) 11, and hence on ~T~, 
follows by using the swapping lemma of Mareels and 
Gevers (1988). 

V. DISCCUSION OF THE ASYMPTOTIC BOUNDS. 

We briefly discuss the influence of the design 
parameters f 1 , ... , fn and r on the asymptotic 
tracking error bounds for the estimator (2.10), 
(2.8). For simplicity we shall assume that r = yI. 
From the block-triangular structure of (2.12), we 
can write, using A3, Pl and 

Ft. -at 
ne I"K2e , 

Hm sup ne(t) n , ~ MU 
a 

t .. • 

The second part of (2.12) can be rewritten as 

6(t) = - y~(t)~T(t)9(t) + v(t) 

Y 2 2 
lim sup nv(t)n , (1 + i K1K2ncn U2)M 
t .. • 

(5.1 ) 

(5.2) 

(5.3) 

Using asymptotic 
and Mitra (1976) 
we obtain 

upper bounds derived by Sondhi 
for equations of the form (5.2) 

where 

1 
b = - 1f In(l-p) 

p 2~YT 
HYPT + h 2p2T2 

"2" 

(5.5) 

(5.6) 

Here ~, P and T are as defined in the PE condition 
A4, while y is the parameter adaptation gain. 
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Discussion 

1) The expression (5.4) shows that the upper bound 
on the tracking error is proportional to U2 
and M, and inversely proportional to a, with 
-a being the largest eigenvalue of F. This is 
to be expected. However, the dependence on the 
total eigenstructure of F is less clear, since 
the eigenstructure of F also effects K2K1 2. We 
shall return to this below . 

2) The dependence on the adaptation gain y is 
rather complicated . Sondhi and Mitra (1976) 
show that, for fixed parameters a, P and T of 
the PE condition, there is an optimum value of 
y* for the factor 

T 

~ 

Notice that, since y also appears in the other 
factor of (5.4) , the optimum adaptation gain 
will be smaller than y* . 

3) The use of (5.4) for the choice of the design 
parameters of F is made complicated by the 
very complex dependence of K2 (and hence K1 , 

which is proportional to K2) on the 
eigenvalues of F. For a second order system 

with JU 1 (t) J :( U1 , Ju 2(t) J ~ U2, and S2 + f 1 s + f2 
= (s - }.1) (5 )..2)')..2 <)..1 < 0, the following 
bounds can be computed (see Dochain (1986» : 

lim supJe 1 (t)J :( 
t ..... 

).. ~ 
/~1 [(~»)..1:l':2 _ (~»)..1-)..2] 

1 ).. 2 }.2 )..2 

The authors know of no similar expressions for 
higher order systems . The optimization of these 
bounds w.r.t. )..1 = a and )..2 ' even in this simple 
case, is not straightforward . 
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