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Abstract. This paper suggests how nonlinear adaptive control of non linear 
bacterial growth systems could be performed. The process is described by a 
time vary ing model (linear in the parameters) obtained using usual material 
balance equations . It does not require any specific analytic description of 
the bacterial growth rate . The parameters (which have a clear physical 
meaning) are identified in real time using a standard RLS algorithm. This 
parameter estimation algorithm is then combined with a Clarke-Gawthrop 
controller to obtain an adaptive controller. The special case of 
biomethanization (involving anaerobic waste water treatment) is analyzed. 
Three different control problems are considered: depollution control, 
methane gas production control and wash-out control. For each of these 
cases an adaptive control algorithm is proposed and its effectiveness is 
shown by stimulation experiments . 

Keywords. Modeling of biochemical process, non linear systems, self tuning 
adaptive control. 

o. INTRODUCTION 

A commonly used approach for the adaptive 
control of non linear systems is to consider 
them as time varying linear systems and to 
use black- box linear approximate models to 
implement the control law. This approach has 
been used by the authors in previous works 
on the control of fermentation processes 
[1,4]. But, since the underlying process is 
non linear, improved control can be expected 
by exploiting the non linear structure of 
the model . Such an idea is pursued in the 
present paper : we suggest how non linear 
adaptive control can be performed for the 
control of non linear bacterial growth 
systems . A similar idea has been recently 
used for the adaptive dissolved oxygen 
control in waste water treatment [ 12], but 
under a somewhat different form than in the 
pres ent paper . 
The layout of the paper is as follows. 
In section 1, the process is described by a 
non linear state-space time varying model 
obtained from usual mass balance equations . 
This model does not require any specific 
anal ytical description of the bacterial 
growth- rate . In section 2, the (physical) 
parameters are identified in real time with 
a standard RLS algorithm. Then we specialize 
to the analysis of biomethanization plants; 
the parameter estimation algorithm is 
combined with Clarke-Gawthrop controllers to 
obtain adaptive controllers in three 
different cases : depollution control 
(section 3), methane gas production control 
(section 4) and wash-out control(section 5) . 
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1. DESCRIPTION OF THE 
MODEL 

We consider the usual state-space 
representation of bacterial growth 
systems by mass balance equations 

X(t) (~(t) -U(t) )X(t) 

set) - k1~(t) X(t) + U(t) (V(t) - S(t)) (1) 

yet) k2~ (t) X(t) 

where X is the bacterial concentration 
S and V are the inner and input 

substrates 
U is the dilution rate 
~ is the growth rate 
k1 and k2 are yield coefficients 

Y is the product of the reaction . 

In order to facilitate the physical 
interpretation of the later discussions, we 
shall specialize ., to the biomethanization 
anaerobic waste treatment process[ 1] ,[ 4] 
where : 

Vet) is the input organic load 
(i . e . input pollution level) . 

Set) is the output pollution level 
yet) is a methane gas flow rate . 

but, obviously, the discussion can also 
apply to other biochemical processes with 
the same structure. 
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We could think of adopting an analytical 
expression for the bacterial growth rate 
~ (t) - The most popular expression is 
certainly the MonoO law: 

p S 
Monod : ~ (t) = ~ 

m 

but many other expressions have been 
suggested like 

Blackman: ~ (t) 

Contois: 

Haldane: 

~(t)=P S:;~ 

o S 
K X + S 

c 

The choice of an appropriate model for ~(t) 
is far from being an easy task and is the 
matter of continuing research (e . g.[ 6] : 
Spriet[S] lists nine different models for 
~ (t) which have been proposed in the 
literature, without even mentioning those 
which involve inhibitions like the Haldane 
model . 
Furthermore, it is well known that important 
identifiability difficulties occur when 
estimating the parameters (pand Km or Kb or 

Kc . .. ) from real life data(e . g . [2],[3l,[4] ) . 

Therefore we prefer to "short- circuit" the 
problem of this choice and to identify the 
parameter ~(t) in real time . 
Throughout the paper, we shall assume that : 

the dilution rate U(t) is the control 
input 
the organic load Vet) is an external 
measurable distu r bance input 
the output pollution level Set) is 
measurable 
the output methane gas flowrate yet) is 
measurable . 

2. ON LINE PARAMETER ESTIMATION 

Using a first-order Euler approximation for 

X(t) and Set), with a sampling period T, we 
have : 

St+I ~ St- Tk ~ X + TU (V -S ) I t t t t t 
(2) 

We make the following approximation : 

(3) 

Then, substituting for Xt and Xt+lfrom (3) 

into (2), we have: 

Y Yt - T Ut Y 
I (4 ) = a + £t+1 t+ I t t 

2 
S = k Y + St + T Ut(Vt-St)+ £t+1 (5) t+1 t t 

with a 
t 

I + T~ t 

It 
kl 

- T-
k2 

A time varying parameter k is considered in 
order to allow for paramet~r variations 
"due to unobservable physiological or genetic 
events" [ 21. 

1 2 
£t+1 and £t+1 represent errors due to noise, 

discretization and approximation(3). 
Equations(4) and (5) constitute the basic 
model for the parameter e stimation and the 
adaptive control. 
Since the basic model is linear in the 
parameters a and k , re cursive least- square s 
estimates ca~ be reidily obtained (DI]) : 

11 = 11 + 
t+ I t 

O<y~1 0 t=O or I 

( 5 ) 

Po » 0 (7) 

y is the :orge~ting factor to allow the 
tracking of time var ying parameters and 0 

(equal to 0 or I) is a switching coeffici~nt 
to hold the parameter estimates constant 
whenever the prediction errors ?t-Ytor St-St 

hecome smaller than a prespecified bound 
(see[ 11] for the details) . 
Notice that the estimation of both parameters 
is decoupled but with a common gain Pt. 

3. DEPOLLUTION CONTROL 

The aim of the control is to regulate the 
output pollution level S at a prescribed 
(usually low) level S*de§pite the disturbance 
input V

t
' by acting on the dilution rate Ut. 

Notice that it is n~t interesting to reach 
levels lower than S since they would 
necessarily correspond to unusefully low 
treatment rates . 
A dic r ete-time Clarke-Gawthrop controlleEI 
[9], with a dynamic control weight A(I-z ) 
in the performance index [ 10], is considered.. 
At each sampling time, the control input U 
is computed by minimizing the criterion t 

(8) 
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where St+1 is a prediction of the output 

pollution level. 
A is a free parameter 

From th~ basic model(S), it is natural to 
define St+1 as follows: 

The non linear ~ontrol law is readily 
obtained since St+1 is linear in Ut: 

+ A 2U ] 
t-I 

(9) 

A block diagram of the closed loop system is 
presented in fig . I . 

4. METHANE GAS PRODUCTION CONTROL . 

The biomethanization process can be viewed 
as an energy cOllversion process. An amount 
of "organic" energy is available in the 
influent under the form of the input organic 
load Vet) . This energy is converted into 
methane gas yet) by the reactor . Obviously, 
the output energy yet) cannot, in the mean, 
be larger than the available input energy. 
When the aim of the plant is not depollution 
but energy production (as in industrial farms) 
the control objective is to continuously 
adapt the output production yet) to the 
available input load V(ti. Therefore , the 
desired gas production Y (t) is defined as 
follows: 

Y*(t+l) = B Vet) - BB > 0 B > 0 
o 0 

The coefficients B and B have to be selected 
carefully by the user sigce if, by lack of 
knowledge, B is chosen too large or B too 
small (i.e. if we require from the fe~mentor 
more methane gas than it can actually provide) 
then the process can be driven by the 
controller to a wash-out steady state.[ 7] , 
i . e. to a state where the bacterial life has 
completely disappeared and where the reactor 
is definitely stopped . * 
The control objective is ihus to bring yet) 
to follow the set-point Y (t)= B V(t) - B : 
it is a kind of load tracking. 0 

As in the previous section, a Clarke- Gawthrop 
controller is used . 
Ut is chosen to minimize the criterion: 

(I I) 

By equation (4), we have : 

(X)Further details on wash-out steady-states 
together with a steady- state analysis and a 

and then 

A block diagram of the closed- loop is shown 
in fig. 2. 

5. PREVENTING A WASH- OUT 

An imperative requirement, for any control 
scheme of continuous biomethanization 
processes, is to prevent a wash-out of the 
plant . Wash-out steady-states occur when, 
for a fixed dilution rate U, the input organic 
load drops below a critical level and becomes 
insufficient to maintain the bacterial life. 
In such a case, the only efficient action is 
to quickly decrease the dilution rate U . 
A wash-out steady state is characterized by 
the following steady-state values: 

x o Y = 0 S = V (13) 

These expressions suggest that prevention 
from wash-out can be performed by monitoring 
(Vt-S

t
) : if (Vt-S t ) becomes smaller than a 

prespecified bound: 

Vt-St 
V ~ C O<C<I 

t 

then the Clarke-Gawthrop controller is 
disconnected and replaced by : 

O<a<1 

(14 ) 

(15) 

which ensures a quick decrease of dilution 
rate Ut. 

Obviously, the Clarke- Gawthrop controller is 
reconnected whenever Vt - St>C Vt . 

6 . CONCLUSIONS 

Simple adaptive controllers for a class of 
bacterial growth systems have been proposed. 
Then effectiveness has been demonstrated by 
simulation experiments which will be shown 
during the presentation at the workshop. 

An advantage of the non linear control 
approach of this paper is that the identified 
parameters correspond clearly to physical 
parameters(namely growth rate and yield 
coefficient) : tnerefore they can provide 
useful information, in real time, on the 
state of the biomass. 

Although the model(l) is well suited for 
industrial applications like most treatment 
in sugar industries where the organic load 
V is acetic acid, in many other applications, 
tRe model (I) is only the last stage of a 
complex multi-stage reaction: a typical 
situation is a five-state twelve - parameter 
model (e.g . [ 1,4] describing a sequence of 
three reactions (solubilization, 

stability analysis of the biomethanization process can be found in ref.[ 7] and [8}. 
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acidification , methanization) . This is a 
further reason to explore the possibility of 
simple control schemes for the different 
stages of such high- orde r highly non-linea r 
systems . 
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APPENDIX 

CONVERGENCE OF THE DEPOLLUTION 

CONTROL ALGORITHM. 

In case of - minimum variance control 
(i.e. >' =0) 

- constant input pollution level 
(V(t)=V) 

- RLS es timation with forgetting 
factor y=1 

The convergence of the depollution control 
algorithm can be proved . We give only the 
main steps of the proof. A detailed 
demonstration can be found in a workpaperD4 ] . 

STEP I. BIBO stability of the process. 

Assume that I) 0 ~ U(t)~Umax t >.O 

2) The growth-rate ~ is 
a function of S with : 

~(s)=O if S=O 

O~~(S)~D for all S~ 0 

O<~ <C <00 for all S~ O dS 2 -

0<C3< ~oo for S=O. 

(Notice that the Blackman, Monod and Haldane 
models presented in section I all fulfill 
these conditions). 

Then if O~S(O)~V and O~Y(O)~Y 
max 

Set) and Y(t),t~O, are bo~nded 
as follows : 
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Convergence of the parameter 
estimation algorithm 

Assume I) the parameter 
algorithm for 
with y=l. 

estimation 
kt (section2) 

Then 

2) E~+I in (S) represents 

the discTetization error 
and : 1 e:~+1 I:; ll ;t ?; 0 

3) 0 t=1 if 

[ SS ] 2 
t+ 1 t+ 1 

--'--~'---'-- > 
1+0 y2p 1 

t t-

otherwise 

2 

A 2 
lim sup Is -S I:;(I+Y P) ll t t max 0 

t -+ 00 

STEP 3. Convergence of the control algorithm 

Assume I) the depollution control 
algorithm of section 3 
with A= 0 

2) V-Set»~ 0 t ~ 0 

3) The contr~l law: A 

S - S - ktY t 

Then: lim 

U (t) = __ ..c.t _----"--....:......_ 
o 

U =U (t) if O:;U (t):;U too max 

U =0 
t 

if U (t)< 0 
o 

Ut=Umax if Uo(t»Umax 

sup Is - s* I:;(I+y2 
P ) ll . t max 0 

The proof of Step 2 is similar to that used 
by Goodwin and al. for the control of bilinear 
systems [ 13]. The proof of Steps 1 and 3 ~s 
established by exploiting the particular 
structure of the system. 


