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1 Introduction 

In this chapter, we consider the problem of output  feedback control of 
a class of non-linear mass balance models that  describe the behavior of 
certain food-chain systems. These models are of interest, amoung other 
fields, in environmental engineering. 

The control approach we use to solve the stabilization problem builds 
upon some recent developments on passivity-based stabilization of por t -  
controlled Hamiltonian systems reported in [7], [5]. Since the design pro- 
cedure is applicable to a broad class of mass-balance systems of similar 
structure (such as comportamental systems and stirred tank reactors, see 
[1] and the references therein), we present it in a rather general form. In this 
technique the original Hamiltonian structure of the system is preserved in 
closed-loop, and only the energy function and the dissipation are modified 
via the control. Preservation of the Hamiltonian structure allows stabiliza- 
tion to be understood in terms of energy. These feature makes the method 
very appealing in applications, since the action of the control has a clear 
physical interpretation that  simplifies its comissioning. This task is partic- 
ularly difficult in mass-balance systems where the control (and the system 
state) should be positive. 

One further advantage of the method, central for the developments in 
this paper, is that  the restriction of disposing only of output-feedback 
(as opposed to full-state feedback) can be naturally incorporated into the 
controller design. In particular, we show here that  to obtain an ou tpu t -  
feedback control strategy, some of the natural damping of the mass-balance 
equations should be removed, leaving only the damping  of the measurable 
coordinate, which is necessary to ensure asymptotic stability. To better 
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explain this modification we present first a state-feedback solution for the 
simplest second order model. In this case we leave untouched the natural  
damping of the system and apply verbatim the method proposed in [7]. A 
careful observation of the energy-shaping plus damping injection conditions 
of [7] reveals tha t  with a, rather unusual, injection of positive damping 
we can easily obtain an output-feedback solution. Furthermore,  the new 
solution is a simple linear controller, while the state-feedback controller is 
nonlinear, and rather involved. It is interesting to note that ,  the injection 
of positive damping allows us to obtain a stabilizing controller for the n -  
th order model, while the solution without removal of damping cannot be 
extended beyond the second order case. 

Some simulation results are presented to illustrate the properties of the 
controller, and we conclude the chapter with some open questions and final 
remarks. 

2 C o n t r o l l e r  D e s i g n  P r o c e d u r e  

In this section we review the basic material of [7] presented in a form suit- 
able for the problem considered in this chapter. Even though we deal with 
mass-balances instead of energy-balances, to keep up with the s tandard  
notation we will use throughout the word "energy". 

We consider, so-called port-controlled Hamiltonian models of the form 
[6], [11], [101 

: = [J(x) +g(x)u, (6.1) 

where x E ~ _  C ~'~, u C ~ C ~m, are the mass variables, and the 
control, respectively. The set ~_  is the n-dimensional  positive orthant .  
The smooth function H(x) : ~n --* ~, which typically represents the total  
stored energy, will denote for our mass-balance systems the total mass, and 
it will be non-negative. The matrices 

J ( x ) = - J T ( x ) ,  R ( x ) = R T ( x ) > O ,  V x e ~ _ ,  

capture the internal interconnections and the natural  damping of the sys- 
tem, respectively, while g(x) defines the interconnection of the system with 
its environment. We assume measurable the q-dimensionai ou tput  vector 
function y = h(x). This output  should not be confused with the natural  
outputs associated to the port-control led Hamiltonian system E defined as 
gT (x ~ OH (x~ 

The control objective is to stabilize, via output-feedback,  an equilibrium 
c . ~  preserving in closed-loop the Hamiltonian structure. The  lat ter  

property allows us to provide an energy interpretat ion of the control action. 
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We will consider only static controllers, but  as shown in [7] the procedure 
can be easily modified to incorporate controller dynamics. 

Following the principles of passivity-based control [S], [10], we will achieve 
the stabilization objective by the s tandard energy-shaping plus damping 
injection stages. Tha t  is: 

1. Assigning to the closed-loop an energy function Hd(X), which should 
have a strict local minimum at ~. (That  is, there exists an open 
neighbourhood B of �9 such that  Hal(x) > Hd(2) for all x E B.) We 
will define 

Hd(x)A=H(x) + H~(x) (6.2) 

where Ha(x) is a function to be defined. 

2. Injecting some additional damping Ra(x) to get 

Rd(X)A=R(x) + Ra(x) >_ 0, V x E ~_  (6.3) 

Tha t  is, we look for an output-feedback control u(h(x)) such that  

OH OHd 
[J(x) - R(x)] -~x (x) + g(x)u(h(x)) = [J(x) - Rd(X)] ~ (x) 

holds V x E ~_ ,  with Hd(x), Rd(X) defined by (6.2) and (6.3), respectively. 
In this way, the closed-loop dynamics will be defined as 

= [J(x) - Rd(x)l-~(x), (6.4) 

and along the trajectories of (6.4) we will have 

d H [0gd(x)l  T OHd( ) (6.5) 

Thus, 2 will be a stable equilibrium. 
For ease of presentation we will assume throughout  the following: 

A s s u m p t i o n  A [J(x) - Rd(x)] is invertible for every x E ~ .  

It is important  to remark that  this does not imply that  the closed-loop 
system is fully damped. That  is, we do not require Rd(x) > 0, Vx E ~_ .  
Actually, it is shown in [7] that  Assumption A is not needed for the proof 
of the proposition below. 

We have the following basic result. 
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P r o p o s i t i o n  6.1 [7] Given J(x), R(x) ,H(x) ,g(x) .  Assume we can find 
and output-feedback control u(h(x)) and a matrix Ra(x) such that R(x) § 
Ra(x) >_ O, Assumption A hold, and the vector function g (x ) ,  defined as, 

- (R(x) + R~(x))]-l[R~(X)~x(X ) + g(x)u(h(x))] (6.6) K(x)~[J(x)  

satisfies 

�9 (Integrability) K(x) is the gradient of a scalar .function. That is, 

0 x  ( x )  = ( 6 . ~ )  

�9 (Equilibrium assignment) K(x),  at 2, vemfies 

K ( ~ : )  - OH 
Ox (2) (6.8) 

�9 (Lyapunov stability) The Jacobian of K(x),  at ~, satisfies the bound 

OK 02 H 
Ox (~) > - -5~-x 2 (2)  (6.9) 

Then, �9 will be a locally stable equilibrium of the closed-loop. It will be 
asymptotically stable if, furthermore, the largest invariant set under 
the closed-loop dynamics contained in 

x e ~ N B { --~--x ( ) -~d( )-O-'~--x i, ) = 0 (6.10) 

equals {~}, where Hd(X) is given by (6.2). The latter condition will 
be automatically satisfied if we can achieve full damping, that is, if 
R~(x) > 0/07- eve~ x e ~?~. 

P r o o f  
First, notice that,  using (6.2), (6.3) and Assumption A, the identity (6.4) 
may be equivalently written as 

Ox ( z )  = [ J ( x )  - Rd(x)]-I[R~(x) (x) + g(x)u(h(z))] ( 6 . 1 1 )  

For every given u(h(x)), R~(x), this is a linear PDE. A necessary and 
sufficient condition for the solvability of this PDE (on every contractible 
neighbourhood of Nr~ + ) is that  the gradient of the right hand side of (6.11) 
is a symmetric matrix. From (6.3), (6.6) and (6.11) we see that  

og~ 
K(x) = --~-x (x) (6.12) 
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Henceforth, the matr ix  mentioned above will be symmetric iff the integra- 
bility condition (6.7) of the proposition is satisfied. 

The stability proof is concluded invoking standard Lyapunov stability 
arguments [4]. Namely, from i6.5), we conclude that ,  under the standing 
assumptions, Hd(x) qualifies as a Lyapunov function. Asymptot ic  stabil- 
ity follows from a direct application of La Salle's invariance principle and 
i6.10). 

[:]DD 

R e m a r k  6.1 Notice that the construction above does not require the ex- 
plicit derivation of the Lyapunov function Hdix). This can be obtained, 
though, as a by-product integrating K i x  ) OH---~ix ) 

R e m a r k  6.2 Port-controlled Hamiltonian models (6.1) encompass a very 
large class of physical nonlinear systems, strictly containing the class of 
Euler-Lagrange models considered, for instance, in [8]. They result from the 
network modeling of energy-conserving lumped-parameter physical systems 
with independent storage elements, and have been advocated in a series of 
recent papers [6], [11] as an alternative to more classical Euler-Lagrange 
(or standard Hamiltonian) models. 

3 State-Feedback Control of a Simple 
Prey-Predator System 

As pointed out in the introduction, to motivate our output- fedback con- 
trol (which is given in the next section) we present first a s tate-feedback 
stabilizer for a simple second order food-chain system. The controller is 
obtained from a verbatim application of the method described above. This 
is a systematic technique that  can be efficiently combined with symbolic 
computation. See, for instance, the simple Maple code given in Appendix A. 

S y s t e m  Model 

We consider the normalized second order prey-predator  system isee e.g. 
[3]) 

= f ( x ) - z l  

= - f ( x )  - + u (6.13) 

The state variables xl ,  x2 represent the amount  of mass of the two species 
(preys and predators) involved in the system. The function f i  x) describes 
the predation mechanism, we consider here the classical Lotka-Volterra  
mechanism f (x)  = XlX2. The terms - x l , - x 2  in  (6.13) represent the nat-  
ural mortal i ty of the species, while the control action u is a feeding inflow 
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rate of preys. For the output  feedback case, we will consider tha t  the vari- 
able available for measurement is the last one in the chain, in this case, 
X2. 

The evolution of the system is clearly restricted to the positive or thant  
with u > 0. Tha t  is, 

x i ( 0 ) > 0 ,  andu( t )  >_0, Vt > O ~ xi(t) >_ O, Vt >_ O 

It is possible to show that  any equilibrium of the open-loop system with 
a lit constant input fi _ 0 is globally asymptotically stable. The con- 
trol objective is, then, to asymptotically stabilize a given non-zero equi- 
librium 5: E ~R~_ with a positive control. The  achievable equilibria axe 
~" ---- [:~1, X2] T ~-- [X~, 1] T, with x~ > 0 the reference for xl .  

If we define the total  mass 

H(x)  = x 1 -J- x 2 

the system (6.13) may be written in the form (6.1) with 

[ ] [ ] [0] J ( x ) =  0 xlx2 R ( x ) =  Xl 0 g(X)..~_g = 
--XlX2 0 ' 0 X2 1 

The skew-symmetry of J(x)  captures the mass-conservative feature of the 
system without inflows and outflows. 

State-Feedback Stabilization 

Since the system is already fully damped, i.e., R(x)  > O, Vx ~ O, x E ,~_, 
it seems reasonable (as our first try) to set R~(x) = 0. Th a t  is, we will 
not inject additional damping, but  rely instead on the natural  damping of 
the system to ensure the attractivity. In this case, the vector function (6.6) 
reduces to 

K ( x )  = [ kl(X) __ --U(Z) 
k2(x) I I-'~-XiZ2 [ 1 1 

From which we immediately conclude that  

x2k2 (x) = kl (x) (6.14) 

The integrability condition (6.7) in this two-dimensional case reduces to 

Ok1 Ok2 (x), 
ox2 (x) = 

which, combined with (6.14), yields the linear PDE 

0kl 0kl 
( z )  - x2  ~ - - - ( x )  = 0 ( 6 . 1 5 )  

Oxl clx2 
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A family of solutions of this P D E  is easily obtained as 

k (x) = 

~(x) = X l + l O g x : ,  

for all differentiable functions O(.). From (6.14) we also obtain 

k 2 ( x )  = 

The equilibrium condition (6.8) imposes 

k1(2) 1 

297 

(6.16) 

Hence, 0(.)  must  be such tha t  0(C(2)) = - 1 ,  where C(2) = 21 + l o g  22 ---- 
x~. I t  is clear then tha t  we cannot take O(4) = 4. We propose the function 

�9 (r = c l  e •  

with cl, c2 constants to be defined. (Although this choice of function might 
seem a bit contrived, we should note that  this is the function tha t  results 
if we directly apply the method of undetermined coefficients to the P D E  
(6.15). See Appendix A). The equilibrium condition ~(~(2))  --- - 1  fixes the 
first constant as 

Cl = - exp -c~x~ 

We will now verify the Hessian condition (6.9). Some simple calculations 
yield 

OX (X) = ClC 2 expC2r ~'21 x-'~'2 ~'• [1 x2_ c'~2 )1  -- 0X 2 (X) , 

which evaluated in the equilibrium point gives 

The  determinant  of this mat r ix  is 1, hence it is positive definite iff c2 < 0. 
We will investigate now the asymptot ic  stability properties.  To this end, 

we see tha t  the a~-limit set (6.10) is defined as 

{x e N~_ n B I - x , (1  + kl(X)) 2 - x~(1 + k2(x)) 2 = 0} ,  

which consists only of the points x = 0 and x = ~:. But,  it can be easily 
shown, tha t  x = 0 is an unstable equilibrium of the closed loop dynamics.  

We have established the following result. 
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P r o p o s i t i o n  6.2 Consider the system (6.13), with f ( x )  -- XlX2, in closed- 
loop with the positive control 

u(x) = (1 + XlX2)X ~ exp c(xl-x~) (6.17) 

with x~ > 0 the reference for Xl, and c < O. Then, all trajectories starting 
in x(O) E ~2+, will converge asymptotically to the desired equilibrium point 

1) 
DDD 

Let us summarize the calculations carried out above: 

1. Fix the added damping Ra(x) - to 0 in this case, since the open- loop 
system is fully damped -; 

2. Define the vector K(x) ,  (6.6), as a function of u(x); 

3. Use the integrability conditions (6.7) to eliminate the control and 
obtain a linear PDE (6.15) to be solved for K(x) ;  

4. Find a solution of this PDE that  satisfies the equilibrium (6.8) and 
Lyapunov stability conditions (6.9); 

5. Derive the control law (6.17) from the definition of K(x) .  

R e m a r k  6.3 As pointed out in Remark 2 as a by-product of our analysis 
we can get a Lyapunov function, which in our case is 

1 k k~zl-x*~ 1 
Hd(X) : Xl "~ X2 - -  ";-X 2 exp ~ '~ + 7  - (1 + x~) 

H ( x )  Y 
H, , ( x )  

where the third and .fourth right hand constant terms are added to enforce 
Hd(~2) ---- O. It is worth noting that Hd(x) above is the classical Lyapunov 
function for the stability analysis of Lotka-Volterra ecologies (see e.g. [3] 
and [9] among many other references). The design procedure of this paper 
allows to rediscover this Lyapunov function in a very natural way. 

R e m a r k  6.4 There is an easier way to derive the structural constraint 
(6.14) that does not require the inversion of the matrix J (z )  - Rd(x).  To 
this end, rewrite (6. 6) as 

OH 
[J(x) - (R(x) + Ra(x))]K(x)  = [Ra(x)--~xx (X ) + g(x)u(x)] (6.18) 

The first equation of (6.18) for this example yields 

--Xlkl(X ) "~- X l X 2 k 2 ( x  ) ~- 0 
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which, upon division by x l ,  is precisely (6.1~). The second equation s imply 
de.fines the control law, in terms of  K ( x ) ,  as 

u (x )  = - x 2 k 2 ( x )  - x l x 2 k l ( x )  (6.19) 

It  is precisely this observation that will mot ivate  the modification, intro- 
duced in the next  section, that yields an output-feedback stabilizer. 

4 Output-Feedback Stabilization 

There are two impor tan t  drawbacks of the solution proposed in the previous 
section. First, it requires measurement  of all the state�9 Second, it can not 
be extended to t reat  the general food-chain system model, which is of the 
form 

5 1  ~ X l X  2 - -  X 1 

5 2 ~ X 2 X  3 - -  X l X  2 - -  X 2 

5 3 ~ X 3 X  4 - -  X 2 X  3 - -  X 3 

5 n  z - - X ( n _ I ) X  n - -  X n -]- U 

y = x~ (6.20) 

To prove the second statement ,  let us write the model in the form (6.1) 
with H(x )  = E ~ l x i  and 

J ( x )  = 

0 X l X 2  0 " "" 0 

- - X l X  2 0 X 2 X  3 " �9 " 0 

0 0 0 . . .  0 

= - - J T ( x )  

R(x)  = 

xl  0 . . .  0 
0 x2 . . .  0 

0 0 . . .  x~ 

= R T ( x )  > O, g ( x )  = g = 

Then,  notice tha t  the distribution spanned by the vector fields defined by 
the column vectors obtained from the first n - 1 rows of J ( x )  - R ( x )  is not 
involutive. Consequently, the key P D E  

[J(x) - R(x)] ~ x  a (x) = gu(x )  



300 6. Output Feedback Control of Food-Chain Systems 

can not be solved. 
In this section we show how, for our second order example (6.13), these 

limitations can be overcome modifying the damping of the closed-loop. 
In the next section we extend this result to the general n - t h  order model  
(6.20). 

Towards this end, let us remove the damping from the first coordinate.  
Tha t  is, define Ra(x) like 

Ra(x)= [ -xlO 00] 

Notice the negative sign. With  this choice, the vector function (6.6) becomes 
n o w  

g(x)= kl (X)  1 _ 

k 2 ( z )  - ~ 

Choosing the control law as the simple output - feedback  

u(x2) = cx2 + 1, 

with c some constant to be defined, yields 

K(x) = ~1 (6.21) 

which is clearly the gradient of a scalar function. Hence, the integrabili ty 
condition (6.7) is satisfied. We will now verify if we can find a constant  
c such that  the remaining stability conditions of Proposit ion 6.1 are also 
satisfied. The equilibrium condition (6.16) imposes c ---- x~. For the Hessian 

condition (6.9) we first observe from (6.21) and ~ H ( x )  ---- 0, tha t  

~x~X~=-~x ~= o 

Evaluated in the equilibrium point gives 

0 2 H d O K [  1 ] 
ox2 (~) = -~x (~) = 7 ,  o 0 1 ' 

which will be positive definite for any x~ > 0. 
Finally, asymptot ic  stability is ensured because the w-limit  set (6.10) is 

now defined as 

{ - } 1 - o  , 

which consists only of the point x = ~. 
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The  new Lyapunov  funct ion is 

Hd(x) ~- Xl ~- x2 --x~ ln(xl )  -- ln(x2) --(x~ -F 1 -- x~ ln(x~)),  

H(x)  H~(x) 

where the th i rd  right hand  cons tan t  t e rm is, again, added  to  enforce 
Hd(2) = O. 

We have established the following result. 

P r o p o s i t i o n  6.3 Consider the system (6.13), with f ( x )  = XlX2, in closed- 
loop with the positive output-feedback control 

u(x2) --- 1 + x~x2 (6.22) 

with x~ > 0 the reference for x l .  Then, all trajectories starting in x(O) E 
7~2+, will converge asymptotically to the desired equilibrium point (x~, 1). 

D D D  

R e m a r k  6 .5  To increase the speed of convergence it is possible to inject 
some additional damping on the actuated coordinate x2. To this end, we 
choose 

 olxl=[Xl 0] 
0 (r - 1)x2 ' 

with the desired damping a constant 1 < r < 1 + x~. Going through the 
calculations we get the control law 

u(x2) = r + (x~ - r + 1)x2 (6.23) 

It  can be shown that this control law is also globally asymptotically stabiliz- 
ing. Notice that with r = 1 we recover the controller (6.22). 

5 Main Result 

In  this section we present the general izat ion of  the previous result  to  the  
n - t h  order case. 

T h e o r e m  6.1 Consider the general food chain system (6.20) in closed-loop 
with the output:feedback positive control 

.for n odd, and 

u ( z n )  = m x n  + m + Xx, 
n - 1  

? n - -  
2 

n n 
u(x,~) ---- (m + x~)xn +-~,  m---- -~ - I 
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.for n even, with x~ > 0 the reference for  Xl.  Then, all trajectories starting 
in x(O) E ~ _  will converge asymptotically to the desired equilibrium point  

$ - 

= [X 1 , / 2 ,  " ' ,  X n ] "  

D D D  

P r o o f  

M o t i v a t e d  by  the  deve lopmen t s  of the  second  o rde r  case above  we p r o p o s e  
to  remove  the  d a m p i n g  f rom all  n o n - a c t u a t e d  coord ina tes .  T h a t  is, we 
choose  

R a ( x ) =  

- x l  0 
0 - x 2  

0 0 

" ' "  O 

�9 �9 �9 0 

�9 " �9 O 

We will  now veri fy  the  th ree  cond i t ions  of P r o p o s i t i o n  6.1. 

�9 I n t e g r a b i l i t y  

T h e  key equa t ion  (6.11) becomes  then  

0 x l x2  0 
- - X l X 2  0 X 2 X 3  

0 0 0 
0 0 0 

- - X  1 

- - X  2 

- - X n _  1 

�9 .. 0 0 
�9 .. 0 0 

" ' "  0 X n - - l X n  

. . . .  X n _ l X  n X n  

k,(x) 
k2(x) 

 n-l(X) 

which can  be  c o m p a c t l y  w r i t t e n  as f l ' ( x ) K ( x )  = ~(x) .  Now, ,~(x)  a d m i t s  
a f ac to r i za t ion  of the  form 

J ( x )  = d iag{x ,}  

0 1 0 . - .  0 0 
- 1  0 1 . - .  0 0 

0 0 0 . . .  0 1 
0 0 0 . . . .  1 ___1 

d i ag{x i}  
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This leads to 

0 
- 1  

0 
0 

1 0 " " " 

0 1 . - .  

0 0 
0 0 

0 0 
0 0 
: 

0 1 
- 1  _ 1  

Xn 

Xl~I(X) 
X2k2(X) 

Xn--l~n--l(X) 
X~kn(X) 

From which we obtain a system of equations of the form 

- 1  
- 1  

- 1  

XT~ 

x 2 k 2 ( x )  = - 1  

-Xlkl(X)+X3k3(x)  = - 1  

- x 2 k 2 ( x ) + x 4 k 4 ( x )  = - 1  

P 
K(x) = [ Xl 

for n odd, and 

- X n _ 2 k n _ 2 ( x  ) ~-  x n k n ( x  ) = - 1  

- x n - l k n - l ( X ) -  k,~(x) - u ( x )  (6.24) 
X n  

Notice that from the first equation of (6.24) we have 

1 k2(~) - 
X2 

Subsequently, the functions k i ( x ) ,  for i even, have a unique solution, which 
is furthermore of the form k i (x )  = k i (x i ) .  Now, choosing 

C kl(z) - 
Xl 

we can also obtain a unique solution k i ( x i ) ,  for i odd. The vector function 
K ( x )  is finally given by 

1 1 m _ r a t  c I T  I1 - -  1 

x2  " " " xn - -  1 Xn J , IYt - -  2 ' 

,~ ] T 
K ( )  -~- . ~ = ~ - 1 ,  x -= c 1 _ m-t-c n 

Xl  x2  �9 . . x ~ _  1 x,L ' 

for n even. It is clear that, in both cases, the integrability conditions are 
satisfied. 

Also, from the last equation of (6.24) we compute the control law 

U ( X )  ---- - - X n [ X n _ l  k n _ l  ( X )  "~- k n ( X ) ]  
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�9 Equi l ibr ium A s s i g n m e n t  

T h e  equ i l i b r ium cond i t ion  is 

K ( 2 ) -  OH 
a x  = - [ 1  . .  

which is sa t i s f ied  wi th  c = x~. 

= Q ' x~_l,  x~ , 

�9 Lyapunov  Stabil i ty  

We will  now verify the  Hess ian  condi t ion .  Some s imple  ca lcu la t ions  y ie ld  

OK 
a i ( x )  = 

0 0 0 . . .  0 0 

0 ~ 0 0 .-. 0 0 

0 0 ~ 0 . - -  0 0 

0 0 0 . . -  

- . .  0 0 

0 0 0 0 . - -  0 

(6.25) 

This  m a t r i x  will  be  pos i t ive  def ini te  for any  x E ~ _  a n d  any  x~ > 0. F ina l ly ,  

the  w l imi t  set  for n o d d  is def ined as {x C , ~  N 13 [x,,-(m+x;) ~- 0} a n d  
~n 

{x C !}~_ N 13 [x , , - (~)  __- 0} for n even. In  b o t h  cases the  w l imi t  set  x,, 
consis ts  only  of the  po in t  xn = 2n. This ,  t o g e t h e r  w i th  un iqueness  of t he  
equ i l ib r ium,  comple te s  the  p roof  of  a s y m p t o t i c  s tabi l i ty .  

R e m a r k  6 .6  The proposed control design can be easily applied to the more 
general class of Lotka-Volterra ecologies defined as .follows: 

xi = x ~ ( - k ~ + Z a i j x j )  i = l , . . . , n - 1  

3:n ~- Xn(-kn q- E anjXj) -k u 

with k~ > 0 the natural mortality rates, aij ~- -a i j ,Vi  ~ j ,  the predation 
coefficients and u the .feeding rate of species xn, with u(t) >_ 0 Vt. 

The procedure yields the classical Lyapunov function .for Lotka-Volterra 
ecologies 

~ xi - g% ln (x i ) ,  
i = l  

and we obtain the .following output .feedback control law 

u ( x n )  = + - 

with ~t the constant control that assigns the desired equilibrium, and 
0 < A < ~ an arbitrary design parameter. 

X,e 
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Numerical  simulations of the second order model (6.13) were carried out in 
order to show the performance of the proposed controllers. The  parameters  
used in the simulations were, c -- - 0 . 2  for the s ta te  feedback controller 
(6.17), and r -- 1,2.1, for the output  feedback controller (6.23). The  desired 
equilibrium of the system is �9 --- [1.2, 1] T. The initial conditions in all the 
simulations are xl (0) = 2 and x2(0) ---- 2. 

2.,~ 

2 

1.8 

1.6 

14  

1.2 

0.8 

0.6 

0.5 1=,5 2 21.5 3 
xl  

FIGURE 1. Open-loop trajectory 

For the sake of comparison, in Fig. 1 we present the behaviour of the 
open loop t ra jectory in the s tate  space with a constant  input fi -- 2.2, while 
Fig. 2 depicts the behaviour of the s ta te  and ouput  feedback controllers. 
Finally, the control signals are shown in Fig. 3. As seem from the Figs. 2, 
3 the addition of damping effectively increases the convergence ra te  wi th  
the additional advantage of reducing the control effort. 
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1.z 

O. 

0.~ 

~ s t a  te feedback 

output feedback ~ 

0.5 1 1.5 2 2.5 
xl  

FIGURE 2. State space of the closed-loop trajectory 

state feedback 

eedback + damping 
/ output feedback 

1~0 ll5 ;~0 25 
time [sec] 

FIGURE 3. Control signals 

7 Concluding Remarks 

We have illustrated in this chapter how the application of the pass iv i ty-  
based controller design technique of [7] allows us to solve ou tpu t - feedback  
stabilization problems for a class of mass-balance  systems. The  procedure is 
i l lustrated in detail with an n - t h  order food-chain model. I t  can, mutatae- 
mutandi, be applied also to other mass-ba lance  models studied in [1], [3], 
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[9]. For instance, it can be shown that  for the compartmental  model of Sec- 
tion 4 in [1] the technique yields also asymptotically stabilizing controllers. 
However, we require in this case the knowledge of the full state. 

We have not stressed here the advantages of taking a physically-based 
approach for controller design, see e.g. [8], [7], [10] for a detailed discus- 
sion. We should underscore, however, that  the preservation of a physical 
interpretation to the control action (in terms of damping injection) was 
instrumental for our result. Finally, we bring to the readers a t tent ion the 
simplicity of the resulting control law. This important  feature is a charac- 
teristic of passivity-based controllers. 

As shown in this chapter the approach of [7] provides a flexible method-  
ology to design controllers for physical systems. As discussed in tha t  paper, 
we can also aim at modifying the internal interconnection s tructure J ( x ) .  
In this way, we recover some of the results obtained with the technique of 
controlled Lagrangians, reported in [2]. Current research is under way to 
explore this interesting possibility for mass-balance systems. 
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Appendix A: Maple Code 

In this appendix we present a Maple code that  guides us in the solution of 
the example of Section 2. The calculations proceed as follows 

1. Definition of the system (with JmRZX=J(x) - R(x) and gu~gu(x)) : 

> with(linalg) : 
> JmR := matrix(2,2,[-xl,xl*x2,-x1*x2,-x2S); 

[ - x l  x l  x2] 
JmR:=  [ ] 

[ - x l  x2 -x2  ] 

> g u  := v e c t o r ( [ 0 , u ( x l , x 2 ) ] ) ;  

gu := [0, u ( x l ,  x2)]  

2. Computat ion of K(x) and its Jacobian 

> K := multiply(inverse(JmR) ,gu) ; 

[ u(xl, x2) u(xl, x2) I 
K := [-  , ] 

[ 1 + x l  x2 x2 (1 + x l  x2)]  
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> J a c  :=  j a c o b i a n ( K , [ x l , x 2 ] ) ;  

Jac : = 

309 

[ d d ] 
[ - - -  u ( x l ,  x2) - - -  u ( x l ,  x2) ]  
[ u ( x l ,  x2) x2 dx l  u ( x l ,  x2) x l  dx2 ] 

. . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . .  ] 

[ 2 1 + x l  x2 2 1 + x l  x2 ] 
[(i + xl x2) (i + xl x2) ] 

[ d 
[ - - -  u ( x l ,  x2) 
[ u ( x l ,  x2) dx l  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  I 

[ 2 x2 (i + xl x2) 

[(i + xl x2) 

d ] 
- - -  u ( x l ,  x2) ] 

u ( x l ,  x2) u ( x l ,  x2) x l  dx2 ] 
. . . . . . . . . . . . . . .  + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ] 

2 2 x2 (i + xi x2) ]  
x2 (i + xl x2) x2 (i + xl x2) ] 

3. D e f i n i t i o n  of  t h e  t e r m  

) _ 0 k l  

> e q l 2  :=  J a c [ 2 , 1 ] - J a c [ 1 , 2 ] ;  

eql2 := 

u ( x l ,  x2 )  

2 

(I + xl x2) 

d 

- - -  u ( x l ,  x 2 )  

d x l  

x2  (1 + x l  x2 )  

u(xl, x2) xl 

2 

(1 + xl x2) 

d 

- - -  u ( x l ,  x2 )  

dx2  
+ 

1 + xl x2  

4. D e t e r m i n a t i o n  of  t h e  c o n t r o l  u(x) w h i c h  so lves  e q l 2  = 0, i .e.,  w h i c h  

e n s u r e s  t h e  i n t e g r a b i l i t y  c o n d i t i o n .  
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> u_star:=rhs(pdesolve(eql2=O,u(xl,x2))); 

x2 

u_star := _FI( 

exp(-xl) 

) (i + xl x2) 

Notice that  in the line above _ F I ( - )  is any differentiable function. 

5. Evaluation of the Hessian for the given control expression. 

> subs(u(xl,x2)=u_star,evalm(Jac)); 

[ x2 d x2 d ] 

[_FI( ........ ) x2 --- Z1 _FI( ........ ) xl --- ZI ] 

[ exp(-xl) dxl exp(-xi) dx2 ] 
[ .......................... , .......................... ] 

[ i + xl x2 i + xl x2 i + xl x2 i + xl x2] 

[ x2 d 

[_FI( ........ ) --- Z1 

[ exp(-xl) dxl 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

[ i + xl x2 x2 (I + xl x2) 
[ 

x2 x2 d ] 

_FI( ........ ) _FI( ........ ) xl --- ZI ] 

exp(-xl) exp(-xl) dx2 ] 
. . . . . . . . . . . . .  + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ] 

2 x2 (I + xl x2) x2 (I + xl x2)] 

x2 ] 

x2 

~.1 := _FI( ........ ) (I + xl x2) 

exp(-xl) 

6. The design can be concluded selecting a function F I ( - )  tha t  satis- 
ties the equilibrium assignment and Lyapunov stability conditions of 
Proposition 6.1. In Section 2 we have chosen _ F I ( ~ )  -- ~k. 


