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Abstract- This paper presents an original method for 
maximum likelihood parameter estimation in nonlinear 
dynamical systems with highly correlated residuals. The 
method relies on an autoregressive representation of the 
residuals to build an estimate of the inverse of its covari- 
ante matrix. Theoretical concepts are developed and we 
provides a successful application of the method on a two- 
parameters estimation problem with data collected on a 
real plant. This experimental study shows that the sta- 
tistical properties of the estimated parameters are sig- 
nificantly improved with our method in comparison to 
classical estimation techniques that usually rely on an 
uncorrelated representation of the residuals. In addi- 
tion, a far better estimation of the confidence region 
around the parameter vector is obtained. 

Keywords- Parameter Estimation; Nonlinear System; 
Maximum Likelihood; Correlated Residuals; Autore- 
gressive. 

Notations- PDF: Probability Density Function, WLS: 
Weighted Least Squares, MLH: Maximum Likelihood, ICM: In- 
verse Covariance Matrix, AR: Auto-Regressive. 

I. INTRODUCTION 

The model of the system under consideration is writ- 
ten under the form of a differential parametric deter- 
ministic state-space representation of the form: 

x(t) E R”, u(t) E R”, 8 E RP 
(1) 

where ~(t)=[~l(t), 52(t), . . . , xn(t)] T is the state vec- 
tor, .u(t)=[ul(t), . . . , urn(t)] T the input vector and 
e=p1,. . . , eplT the vector of parameters. The param- 
eter estimation problem is to estimate the parameter 
values from input and state data. 

We assume that an experiment has been performed 
with a known input signal u(t) and that measure- 
ments of the state z(t) have been recorded at evenly 
distributed time instants tl, t2, , . . : tN. The assump- 
tion that all state variables are measured could be 
easily removed, it has been used here for simplicity. 

This paper presents research results of the Belgian Programme 
on Interuniversity Poles of Attraction, initiated by the Belgian 
State, Prime Minister’s Office for Science, Technology and Cul- 
ture. The scientific responsibility rests with its authors. 

The measurements are denoted: y(tl), . . . , y(tN) with 
Y(tj)=[Yl(tjL.. . dh&)lT. 

For a given input signal u(t) and a given initial 
state z(to), the solution of the differential system (1) 
is parametrized by the parameter vector 0 and denoted 
x(t, 0). 

The inherent uncertainty of the model is reflected 
by the fact that, whatever the quality of the model, 
there is always a deviation between the state x(tj, 0) 
computed with the model and the measurement y(tj). 
This deviation is called the modeling uncertainty and 
denoted: 

w(tj, e) = y(tj) - z(tj,e) j = 1,. . . ,N. 
A natural approach to solve the parameter estima- 

tion problem is evidently to select the parameter values 
in order to make the modeling uncertainty as small as 
possible. This may be achieved by minimizing a cost 
function which represents the average magnitude of the 
deviations w(tj, 0) in a compact way. The most clas- 
sical cost function in engineering studies is the least 
squares criterion: 

The best (or optimal) parameter estimate 6 is then de- 
fined as the value of 0 which minimizes the cost func- 
tion: 

4 = argmin J(B). 

This cost minimization approach has an important 
drawback: it does not allow to assess the quality of the 
model in any way. This drawback is removed with the 
maximum likelihood method which relies on a repre- 
sentation of the sequence of model uncertainty vect,ors 
w(tj, 0) at the sampling instants as a realization of a 
stochastic process. 

The situation is depicted as shown in Fig.1. The sys- 
tem under consideration is now represented by the addi- 
tive combination of the deterministic state space model 
(1) and a stochastic uncertainty model. The optimal 
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Fig, 1. Representation of the model uncertainty m a stochas-
tic process

parameter estimate e is then defined as the parameter
vector which maximizes the likelihood that y(t ~) is a
measurement of Z(tj, 6) in a technical sense that will

be explained later on. In this set-up, the estimate ~ is
viewed as a realization of a random vector. This allows
us to define the covariance matrix of the estimator:

Ce = E{(4 - E(@))(e – qe))~}

which can be used to compute confidence intervals of
the parameter estimates.

In practice, the uncertainty sequences W(tj, O) may
be highly correlated. There exist quite popular tools
for the linear discrete time case that take into account a
correlation of the uncertainty part of the model, see e.g.
[1] or [2]. However most of the parameter estimation
techniques used in engineering for nonlinear continuous
time system do not care about that correlation at all.
In this paper we describe an estimation algorithm based
on the maximum likelihood framework that allows us to
take into account the way the model uncertainty vectors
are correlated in time, An empirical Monte-Carlo study
will show that the algorithm manages to reduce the
variance of the estimated parameters and provides a
better estimate of the confidence region around them.

The efficiency of the algorithm has already been re-
vealed in [3] from a simulation case study, it is rein-
forced here from experimental results.

The paper is organized as follows. Section II briefly
outlines the maximum likelihood parameter estimation
technique and its statist ical properties, The estimat ion
algorithm developed in [3] and the estimate of the in-
verse covariance matrix the algorithm is based on are
summarized in Section 111. Section IV illustrates, from
experimental data, the performances of the algorithm.
Section V deals with confidence ellipsoid estimation and
finally, conclusions are drawn in Section VI.

II. MAXIMUM LIKELIHOODPARAMETER
ESTIMATION

The vector of the parameter dependent state vari-
ables Zi (t, O) evaluated at the sampling instants
tj=tl, . . . , tN is denoted Zi(e)=[%(tl,0),....~~(t,AJ,tq]~,
i=l, . . ..n. The vector of the measurements of the
state variable xi(0) at the sampling instants is denoted

Yi = [Yi(tl ),... , Yi (tN)]T. similarly the vector wi (@) is
defined by Wi(0) = yi – ~i (0).

The estimation of the parameter vector O will result
from the maximization of a function describing the like-
lihood that the n vectors yi are measurements of the n
vectors xi(0). In order to build thki likelihood function,
we assume that Wi is a random vector that takes val-
ues in lRN with a zero mean normal probability density
function (PDF) given by, see e.g. [4]:

(2)

where Za is the covariance matrix of the random vector
Wa:

xi = .E{(~i – lil(wi))(~i – E(wi))T}.

The random vector yi has also a normal PDF with co-
variance matrix Xi and mean xi(6). We make the addi-
tional often realistic assumption that all Wavectors are
independent from each other, i.e.

E{w~,(t~, )wi, (tj, )} = O ~~l,~z and WI # 22.

That means that the measurements of each state vari-
able are supposed to be corrupted by independent
stochastic processes. Still each process may be highly
correlated in time, this correlation being nested in the
Xi matrices. It is essential to emphasize here that we
are considering time auto-correlation of each wi but no
cross-correlation between the Wavectors.

This assumption allows us to compute readily the
joint probabilityy density for all yi vectors (i=l,. . . . n)
to be observed, as a function of r9:

This function of O is called the likelihood function. We
seek the parameter vector @ that maximizes this func-
tion. It is equivalent to maximize the log-likelihood
function given by:

Maximizing the log-likelihood function amounts to min-
imizing the last term of (4) (with a reversed sign) since
the other terms do not depend on 9. The estimation
problem is therefore formulated as follows:

8 = argm~n~(y~ – ~~(d))~ll~l(y~ – ~~(d)). (5)
;=1

Under mild assumptions, the maximum likelihood es-
timate has the following appealing asymptotic proper-
ties [5]: it is asymptotically unbiased (E(e)=O* where
9* denotes the true value of 6), consistent, asymptoti-
cally eficient and asymptotically Gaussian. The latter
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implies that the distribution of 0 converges to a nor- 
mal distribution with a covariance matrix given by the 
Cramer-Rao bound that is also the inverse of the Fisher 
information matrix: Cr+, = M-r with 

M = -E $ ln.fyl,.,. 
t3=l?’ 

(6) 

Note that the inverse of the covariance matrix Xi1 
of each wi vector has to be known to compute the esti- 
mate fi in (5) and an asymptotic estimate of its covari- 
ante matrix C’s with (6). In practice, these matrices 
are not known and have to be estimated in one way or 
another. Often they are replaced by identity matrices 
which amounts to considering uncorrelated wi vectors. 
The next Section will present an efficient way to build 
an estimator of the inverse covariance matrix CL1 (ICM) 
directly from a linear autoregressive (AR) model of the 
uncertainty process wi(tj). The estimation algorithm 
based upon this ICM estimate will be described subse- 
quently. 

III. ESTIMATION ALGORITHM 

Let us consider a stable, stationary and scalar AR 
stochastic process u(j) described by: 

w(j) = e(j) - alw(j - 1) - . . . - adv(j - d), 

where e(j) are independent identically distributed nor- 
mal random variables with zero mean and variance 
cr’. Let II be the random vector formed by N con- 
secutive values of u(j): v = [w(l), . . . , v(N)]~, and 
C, = E((w - E(v))(w - E(w))~) its covariance matrix. 

The following result, proof is given in [3], provides 
an elegant analytical expression of the ICM of the ran- 
dom vector u. It is a straightforward application of the 
Gohberg-Semencul’s matrix equality, see [6] or [7]. 

c,’ = -$ [UTU - VW] (7) 
where U and V are N2 lower triangular Toeplitz matri- 
ces of the form: 

‘1 ‘0 
al . 

u= a/: . 
0. . . 

:VAd... . 
. . . 

0 ’ 6 ad al 1 
. . . 

-al ado 0 
(8) 

This is used to compute the ICM of an AR pro: 
cess from the knowledge of its parameter vector a = 
[al,...7ad]T and its innovation variance a2. 

Suppose now we wish to compute C;l from the 
knowledge of one single realization of v, the parame- 
ters a and a2 being unknown. The idea is to first com- 
pute estimates of u,a2 and use them to compute the 

ICM. Let us use the very classical minimum 
estimate of ala2 given by, see e.g. [l] or [8]: 

& = R-lF, 62 zz [ai - b]T[wi - b] 
N-d 

with R = QT@,, F = QTb and 

variance 

[ 

u(d) . . . 
!Pk= : li(‘) 

v(N’- 1) . . . u(N‘- d) 
] ,b= [ -;(?)“] . 

The proposed estimator of the ICM of 2, is therefore 
given by (7) h w ere 6’ is replaced by d2 and U and V 
are computed for 6. With a slight abuse of notation, 
this estimator may be written: 

2,l = c,l(ci, b-2) (9) 
In order to implement the estimator in (9), the or- 

der d of the AR model must also be estimated. The 
standard model order selection strategy based upon the 
Rissanen’s minimum description length criterion (also 
known as the Akaike’s bayesian information criterion, 
BIC) has been used here. Other strategies could be in- 
vestigated as well, see e.g. [9], but this is beyond the 
scope of this paper. 

As already mentioned, the computation of the MLH 
estimator of 8 requires the n matrices CT1 to be known. 
The idea is thus to estimate first an AR model for each 
wi sequence and then to compute an estimate of its ICM 
with (9). Obviously the n vectors wi have to be known 
in order to compute the AR models. Since we do not 
know B* which is precisely the parameter vector we are 
looking for, wi can only be obtained from a preliminary 
rough estimate 0. To achieve this one could for instance 
use a weighted least squares (WLS) estimator that does 
not require the covariance matrices to be known 

The weights <i are used here to normalize the residu- 
als so that the influences of each state variable in (10) 
are balanced. Those weights can be determined from 
a preliminary data analysis. For instance, one could 
take them proportional to the variances of the state 
measurements. 

From a computational point of view, it is not nec- 
essary to build the matrix 2;’ explicitly because the 
scalar wi(e)%;‘wi(e) in (5) can be obtained easily by 
appropriate filterings of wi(e). Indeed, combining (7) 
and (9), wi(0)TgX:l wi(0) can be written: 

&:r (u(~i)wi(e))T(u(~i)w~(e)) 
2 (v(~i)wi(e))T(v(~i)wi(e))]. (11) 

Let us define zUi(j, 0) = wi(j, 0) for j 5 d (0 otherwise) 
and the following discrete filters: 

z$(.+) = 1 -+ iii,Jz-1 + . . + iiQZ-d, 
A;(z-‘) = iii,d + t&d-& + . . . + c$JZ-~+‘. 
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Considering the following filtered sequences and their
associated vector:

ri(j,6) = Ai(z–l)wi(j, e), Ta(o)=[ri(l, e), . . ..~i(~. @)lT)
F~(j,8) = Ai(z-l)tii(j, O), Fi(6)=[Fi(l,6),....F2(d.6)]T,

it becomes trivial to see from (8) that (11) is equivalent
to:

+[T;(0)T,(.9)-F;(e)ij(q].
%

This allows us to rewrite (5) in the following elegant
way:

1X2

I

where ra is the a posteriori innovation of the AR process
and ?~?a can be seen as a transient correction term.

Hence, the proposed algorithm for MLHparameter es-
timation in dynamical systems is as follows:

1. obtain (~ from data analysis,
2. compute a preliminary WLS estimate of 0 with (10),

3. compute the residuals: w~(~w~’) = y~ – G(;w”),
4. estimate an AR model for each w~: &, d?,

5. compute the MLH estimate @LH with (12).

This may be viewed as an extension to dynamical
system oft he algorithm suggested in [1O]for static non-
linear regression.

One might go furthe~ and suggest an iterative algo-
rithm. That is to plug 6MLH from step 5 into step 3 and
itcrate several times. However, there is no guarantee of
convergence of such an algorithm in general. Moreover,
some experimental tests have shown that the improve-
ment by an additional iteration is not very significant
in practice.

IV. EXPERIMENTALRESULTS

In this Section we illustrate with an empirical Monte-
Carlo study, the benefits of the proposed algorithm on
the statistical properties of the estimator. A two pa-
rameters est imat ion problem for a second order nonlin-
ear dynamical model is treated. The data are collected
on a real (laboratory) plant.

The plant, depicted in Fig.2, is a two-tank system
consisting of two vertical plexiglas cylinders with sim-
ilar cross sections of 154 cm2. The two cylinders are
connected together from the bottom by a cylindrical
pipe. The first tank possess also an outflow pipe at its
bottom and is fed with water from its top. The level
measurements of the two tanks are carried out by piezo-
resistive difference pressure sensors and are recorded in
cm. These levels are the state variables while the in-
put flow rate, in cm3/s, is the command signal. The
dynamical model of the system is as follows:

154* I =u–ql(zl, e~) –q~(z~ –zz,o~)
154 iz = qz(zl – X2,62)

(13)

Fig, 2. Two-tank system. u: inlet flow rate, Zi: water levels,
ql: outlet flow rate, q2: connection flow rate, 01: outlet
flow characteristic and 02: connection flow characteristic.

where the outflow rate ql and the connection flow rate
q2 are modeled using Torricelli’s rule:

where g is the earth acceleration, S1 and S2 are the
sect ions of the outflow and connection pipes, al and
a2 are unknown correction dimensionless factors de-
pending upon the flow properties. Those parameters
are grouped together to form the parameters subject to
identification: 131and t92.In some sense, the parameters
6’1and 02 describe the characteristic of the outflow and
the connection pipes respectively.

1. I

w, .yl-xl
0.5

0,5

o Time 12000 Tune 12X2

Fig, 3. Two-tank system. Top: inlet flow rate w [cm3/s]; middle:
measured levels yi [cm] in plain line and modeled trajectories
~a [cm] in dashed line; bottom: correlated residuals Wi [cm].
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Fig. 4. WLS and MLH parameter estimates. The bold circles point the average values pw~s and 
HMLN. The confidence ellipses and their axes are drawn for one estimate chosen arbitrarily. 

A series of 1000 similar experiments have been car- 
ried out on this system. The purpose is to perform a 
Monte-Carlo experimental case study. For each experi- 
ment, the system is excited with the same input signal 
u and the resulting level trajectories are recorded. The 
sampling period is 12 s and the duration of one experi- 
ment is 1200 s such that 100 data samples are available 
per experiment. The input signal ‘IL is designed to be 
sufficiently exciting for identification purpose. The ini- 
tial state is about [22, 221T for each experiment. 

One estimate of 0 has been computed for each ex- 
periment, using the algorithm described in Section III. 
The parameters estimated by WLS have been recorded 
as well for comparison purpose. Exhaustive search has 
been used for the optimization in order to ensure global 
minimization of the cost within a given bounded grid. 

The input signal, one example of the measured tra- 
jectories and the corresponding estimated model trajec- 
tories 5i (I!+““) are illustrated in Fig.3. The resulting 
residuals wi are represented as well. Let us notice that 
they exhibit a severe auto-correlation. Therefore, we 
may legitimately expect an improvement with MLH es- 
timation method with respect to the WLS one. 

The 1000 parameter estimates obtained by WLS and 
MLH are represented in Fig.4 while Table I gives their 
mean and standard deviation. The orders of the identi- 
fied AR models are distributed between 1 and 5 for wr 

TABLE I i=l 
MEAN AND STANDARD DEVIATIONS OF 6 where 

PWLS PMLH UWLS OMLH 

81 14.20 14.19 0.1316 0.1201 
e2 10.00 10.04 0.1116 0.0571 

and between 2 and 6 for w2 with the higher occurrence 
of order 3 for both variables. 

It clearly appears that the parameter estimates are 
much less scattered with the MLH estimator. The im- 
provement may be quantified by computing the follow- 
ing ratio: 

where ]CrLs] and ]CrLHJ are the determinants of the 
empirical covariance matrices of the WLS and MLH esti- 
mates, i.e. computed from the 1000 realizations. This 
scalar indicator basically tells that the area of the cloud 
of points is approximately twice smaller in the MLH 
case. 

V. CONFIDENCE REGION 
It is evident that the same experiment is rarely re- 

peated 1000 times in order to have an idea of the pa- 
rameter dispersion. Most often, only one experiment is 
carried out and a confidence region around the identi- 
fied parameter vector has to be evaluated. The covari- 
ante matrix of one identified parameter vector, C,, is 
commonly estimated using its Cramer-Rao bound com- 
puted for 8 and 2;‘. Combining (6) and (3) one can 
easily verify that: 

6, = axi z de 63=l9 
and 2;’ is obtained by (9) in the MLH case and by Id/t?? 
in the WLS case, where df is the a posteriori unbiased 
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estimate of the noise variance:

62 = (?A - %(f@’’))T(l/i- %(ew”))t N–p

Let S(t) be the state sensitivity matrix, defined
follows:

th(t,e)s(t) = ~.

S(t) is a n by p time-dependent matrix that can

as

be
computed by the integration of the following matrix
differential equation [5]:

All Ga matrices can then be obtained from S(t) evalu-
ated at the sampling instants: Gi = [si (tl )T, . . . . Si(tN )T]T
where si(tj ) is the i’th row of S(t ~).

The square-root of k’th diagonal element of CD gives

an estimate of the standard deviation of bh, the k’th
component of ~. Assuming a normal distribution of ~,
an approximate 100(1 – a) YOconfidence region for the
parameter vector e is given by, see [11] or [1]:

{~: (6 - 8)%; ’(O – @ < p~;Iv-p}> (14)

where .F~,N_P is the upper a critical value of the FP,N_P
distribution. For cr=O.01, p=2 and N=1OO, 3~N_P =
4.82. The set described by (14) is the inner space of

an ellipsoid centered on ~. The directions of its axes
are the eigenvectors of c; 1 and the axes lengths are
proportional to the eigenvalues.

In Fig.4 we have represented the 99910confidence el-
lipses of one estimate chosen arbitrarily. We clearly see
that the confidence region estimated by MLH is better
than the one estimated by WLS. It includes the mean
point which could be considered as representing the true
parameter. The shape of the ellipse estimated by WLS
is far from what we could expect. Actually, the variance
on the first parameter is quite underevaluated while the
variance on the second one is a bit overevaluated.

The computation of de has been done systematically
for each ~arameter vector estimated in the previous Sec-
tion. If O had really been normally distributed and the
estimate of each confidence region had been exact, 99%
of those regions would have included the mean. Since
those conditions are far to be verified, we find that only
7.6% of the confidence regions include the mean in the
WLS case. This percentage becomes 43.8% in the MLH
case! This provides a quantitative evaluation of the
improvement obtained in the confidence region estima-
tion.

VI. CONCLUSION

An analytical solution has been given to directly com-
pute the inverse of the covariance matrix of a random

vector formed by N consecutive observations of an au-
toregressive stationary stochastic process. The com-
putation requires the polynomial coefficients of the AR
filter and the innovation variance to be known. A min-
imum variance estimate of these parameters is used to
build an estimator of the ICM that only requires one
single realization of the AR process. An algorithm us-
ing the proposed ICM estimate has been subsequently
proposed for maximum likelihood estimation of the pa-
rameters of a dynamical system from state measure-
ment data.

The efficiency of the algorithm has been emphasized
from an experimental Monte-Carlo study involving a
nonlinear two-tank system. This study shows that the
extent of the estimate distribution can be significantly
reduced using the proposed algorithm. In addition to
the improvement on the parameter variance itself, the
method produces also a far better estimate of the con-
fidence region around the estimated parameter.

As already mentioned, the idea of using AR model
of the residuals is already used in nonlinear regression
for static function fitting, see [10], [12], [13] or [11]. It
is also a basic idea in linear system identification. It
seemed thus natural to extend this idea to parameter
est imat ion for nonlinear dynamical system.
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