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Abstract— This paper addresses the problem of esti-
mating, from measurement data corrupted by highly
correlated noise, the shape of an unknown scalar and
univariate function hidden in a known phenomenological
model of the system. The method makes use of the Vap-
nik’s support vector regression to find the structure of a
parametrized black box model of the unknown function.
Then the parameters of the black box model are iden-
tified using a maximum likelihood estimation method
specially well suited to cope with correlated noise. The
ability of the method to provide an accurate confidence
bound for the unknown function is clearly illustrated
from a simulation example.

Keywords—Hybrid Identification; Support Vector Ma-
chine; Nonlinear System; Correlated Residuals; Maxi-
mum Likelihood.

I. Introduction

In [1], [2], [3], a maximum likelihood (ml) parame-
ter estimation method has been developed for dynami-
cal systems with auto and crosscorrelated measurement
noise. This method allows to compute an accurate
confidence region around the parameter estimate. The
purpose of this paper is to extend this method to esti-
mate an unknown function hidden in a phenomenolog-
ical model and to provide a fair confidence bound on
this function.
To achieve this objective, a linear expansion of basis

functions is used as a parametrized black box model for
the unknown function. In a first stage, the structure of
the model (i.e. the number of terms in the linear ex-
pansion) and a preliminary value of the parameters are
determined by using the support vector regression in-
troduced by Vapnik [4], [5], [6] for function estimation
problems. The so-called ν-sv method [7] that results in
a convex optimization problems is used to fit the black
box model. This method allows to easily control the
number of terms of the expansion and consequently al-
lows to force a reduced number of parameters. This
is essential for the second stage where the above men-
tioned ml parameter estimation method is applied to
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the computation of refined parameter estimates and to
the construction of the confidence bound on the un-
known function.
A main contribution of the paper is to emphasize

how critical the second stage is, in order to obtain an
accurate estimation of the confidence region in case of
auto and crosscorrelated measurement noise (which is
the common situation in practice). The methodology
is illustrated with a simulation example.
Compared to a brute force iterative identification

procedure (involving both order selection and nonlin-
ear parameter estimation), the method proposed in this
paper has the advantage to decompose the identifica-
tion procedure into several simple tasks which allow the
user to better apprehend the relevance of the identified
model.

II. Problem Formulation

The system under investigation is assumed to be ex-
actly described by the following state-space equation:

ẋ(t) = f(x(t), u(t)) + F (x(t), u(t))ψ(xr(t)), (1)

where f and F are nonlinear functions of x(t)
and u(t), x(t)=[x1(t), . . . , xn(t)]

T is the state vec-
tor, u(t)=[u1(t), . . . , um(t)]

T is the input vector and
ψ(xr(t)) is an unknown univariate scalar function of
xr(t), r is known.
The purpose is to identify a black box model and

provide accurate confidence bounds for the unknown
function ψ from a single noisy experiment performed
on the system. It is assumed that all the state vari-
ables are measured, that the input signal u(t) and the
initial state x(t0) are known and that the measurements
take place at evenly distributed time instants t1,...,tN
where tj=jTs. The noisy state measurements are de-
noted z(j)=[z1(j), ..., zn(j)]

T with:

z(j) = x(tj) + v(j).

The noise sequence v(j) is assumed to be an auto and
crosscorrelated zero mean stationary random vector se-
quence.



III. Estimation Method

The estimation method is organized into two ma-
jor stages. The goal of the first stage is to select a
parametrized black box structure of the unknown func-
tion and to compute a first estimate of the parameter
vector, regardless of statistical content of the noise. A
linear radial basis function (rbf) expansion is identi-
fied using the support vector machine (svm) method.
The goal of the second stage is to refine the first esti-
mate using a two-step ml estimation procedure, taking
into account the correlation in the measurement noise.
This second stage also provides a fair estimate of the
covariance matrix of the parameter vector which is sub-
sequently used to build confidence bounds around the
estimated function.

A. Fitting the RBF model

Non parametric estimates ψ̃(tj) of the unknown func-
tion ψ at the sampling instants are required to imple-
ment the svm. Obviously, an explicit expression of ψ(t)
as a function of x(t) and ẋ(t) can be derived from (1)
but it would not be appropriate to just replace x(t)
and ẋ(t) by the measurements z(j) and their (approx-
imate) derivatives ż(j) to compute ψ̃(tj) due to the
noise amplification by the derivatives. Therefore, a cu-
bic smoothing spline [8] is first fitted on the measured
trajectories. The smoothed curve and its derivative are
then used to compute the non parametric estimates.
Let us therefore consider the cubic smoothing spline
interpolant of x(t) in the piecewise polynomial form:

x̃i(t) =

3∑
k=0

β
(j)
i,k t

k, (j − 1)Ts ≤ t ≤ jTs.

The 4n(N − 1) spline coefficients β(j)i,k are determined
by minimizing:

λ

N∑
j=1

(zi(j)− x̃i(tj))
2 + (1− λ)

∫
¨̃x
2

i ,

where the factor λ ranges from 0 to 1 and allows to tune
the smoothness of the spline.
Replacing x(t) and ẋ(t) by x̃(t) and ˙̃x(t) in (1), a

least-squares estimate of ψ(t) can be computed at any
time instant t:

ψ̃(t) = [FT (x̃, u)F (x̃, u)]−1FT (x̃, u)( ˙̃x− f(x̃, u)). (2)

Evaluating (2) at the sampling time instants yields
the non parametric estimates of the unknown function
and allows us to build the desired set of input-output
pairs:

{[zr(j), ψ̃(tj)], j = 1, ..., N} (3)

that will in turn be used to fit the linear rbf expansion:

Ψ(xr, θ) =

p−1∑
k=1

θkk(ck, xr) + θp, (4)

where the rbf are Gaussian kernels of the form:

k(ck, xr) = e
− 1
2σ2
‖ck−xr‖

2

.

The variance of the rbf , σ2, is identical for all ker-
nels and has to be fixed by the user. The number of
kernels and their center ck are automatically provided if
the svm method is used to find the parameter values θk.
The classical method stated in [4] to fit an svm on a

set of input-output data solves a constrained optimiza-
tion problem in its dual formulation. Loosely speaking,
one could say that the method automatically select the
most relevant centers ck among all input data points
and find the parameters θk that minimizes a particular
fitting criterion while ensuring a sufficient smoothness
of the model. The centers ck are called the support vec-
tors in the svm framework even though in the context
of this paper these are scalar values since the unknown
function is univariate. The svm method presents two
major advantages: It involves a convex optimization
problem, more specifically a quadratic programming
(qp) problem, and the model complexity (the number
of kernels) does not need to be fixed a priori.
Among several alternatives to this method [9], the

so-called ν-sv method [7] presents an additional advan-
tage that is particularly useful in the context of this
paper. In the ν-sv method, the qp problem is slightly
modified by introducing a tuning coefficient ν that is
proven in [7] to be a lower bound on the fraction of
support vectors among all possible candidates, that is
all input values, (ν ≤ p−1

N
). This tuning coefficient

gives a control on the number of parameters necessary
to describe the function. This is of great interest here
since a model with a reduced number of parameters is
desired for the second stage.
Similarly to the classical Vapnik’s method, the ν-sv

method solve the qp problem in its dual formulation.
It takes the following form:

max
αj ,α∗j




− 12
N∑
j1=1
j2=1

(αj1 -α
∗
j1
)(αj2 -α

∗
j2
)k(zr(j1), zr(j2))

+
N∑
j=1

ψ̃(tj)(αj − α∗j )

(5)

s.t.




N∑
j=1

(αj − α∗j ) = 0

N∑
j=1

(αj + α
∗
j ) ≤ CνN

αj , α
∗
j ∈ [0, C]

This problem contains 2N decision variables (αj , α
∗
j )

but its solution is typically sparse. That is, a large
number of the variables are zero at the optimum. The
parameters θk (k = 1, ..., p − 1) are then given by the

non-zero α
(∗)
j and the centers of the rbf kernels ck are

the corresponding support vectors zr(j). We see that



the number of kernels (i.e. the number of non-zero α
(∗)
j )

and their centers are automatically obtained as a by-
product of the solution of the qp problem.
The qp problem contains two tuning coefficients: ν

which has already been defined and C that determines
the tradeoff between the smoothness of the model and
the accuracy of the fitting. This coefficient is also an

upper bound on the absolute value of each α
(∗)
j .

The last parameter θp of (4) is given by:

θp =
1
2 [ψ̃(tj1)−

N∑
j=1

αjk(zr(j), zr(j1))

+ψ̃(tj2)−
N∑
j=1

α∗jk(zr(j), zr(j2))]

for any j1, j2 such that αj1 , α
∗
j2
∈ (0, C).

In this stage, the structure (number and position of
the kernels) of the black box model has been identified
based on the input-output values of the unknown func-
tion reconstructed using spline. The parameter vector
θ=[θ1, . . . , θp] obtained will now serve as an initial value
for the second stage.

B. ML refining

From now on, we thus assume that the number p of
kernels and the values of the centers ck of the black
box model (4) are fixed. Only the linear coefficients θk
are still modifiable. The model (1) is rewritten in its
parametrized form:

ẋ(t, θ) = f(x(t, θ), u(t)) + F (x(t, θ), u(t))Ψ(xr(t, θ), θ).
(6)

In [3] an originalml parameter estimation method for
nonlinear dynamical system was proposed for the case
of highly correlated measurement noise. The method
identifies the auto and the crosscorrelation features in
the residual sequences and builds the inverse of the
noise covariance matrix required for the ml estimation.
The method is made of two steps that are summarized
hereafter.
1— In the first step, a weighted least-squares (wls)

estimate of θ is computed by minimizing the simulation
error:

θ̂WLS = argmin
θ

N∑
j=1

(z(j)− x(tj , θ))
T ζ(z(j)− x(tj , θ)),

(7)
where ζ is a n by n diagonal weighting matrix used to
normalize the residuals in order to balance the individ-
ual contribution of each state variable. The weights can
be determined from a preliminary data analysis. For in-
stance, one could take them inversely proportional to
the variances of the state measurements.
Assuming that the resulting model Ψ(xr, θ̂WLS ) of

the unknown function is close enough to the actual func-
tion, the residuals of this wls estimation are expected
to be close to the actual noise sequence:

w(j, θ̂WLS ) = z(j)− x(tj , θ̂WLS ) ≈ v(j).

2— In the second step, the residuals of the wls es-
timate are used to identify the inverse of the covariance
matrix of the noise sequence, then the ml estimate of
θ is computed.
Let us define the following stacked vectors:

x(θ) = [x(t1, θ)
T , . . . , x(tN , θ)

T ]T ∈ IRnN ,
z = [z(1)T , . . . , z(N)T ]T ∈ IRnN ,
v = [v(1)T , . . . , v(N)T ]T ∈ IRnN ,
w(θ) = z− x(θ).

The full covariance matrix, Σ = E{vvT }, of the ran-
dom vector v is a very large block-Toeplitz matrix of
the form:

Σ =



Σ0 Σ−1 Σ1−N
Σ1 · ·

· · ·
· · Σ−1

ΣN−1 Σ1 Σ0


 ∈ IRnN×nN ,

where

Σk = E{v(j)v(j − k)
T } ∈ IRn×n

is the covariance matrix at lag k of the stationary ran-
dom vector sequence v(j).
Since the noise is supposed to be auto and crosscor-

related, the large matrix Σ is full. Using the approach
developed in [3], an estimate of the inverse of the un-

known matrix Σ is directly computed using w(θ̂WLS).
This requires to identify a causal and an anticausal mul-
tidimensional ar model of the residuals, defined by the
following relations:

{
w(j, θ̂WLS ) +

∑d
l=1 A

+

l w(j − l, θ̂
WLS ) = e+(j),

w(j, θ̂WLS ) +
∑d
l=1A

−

l w(j + l, θ̂
WLS ) = e−(j),

where A+r and A−r are n by n matrices containing
the coefficients of the causal and anticausal ar mod-
els, e+(j) and e−(j) are independently and identi-
cally distributed random vectors with covariance ma-
trix equal respectively to Σe+=E{e+(j)e+(j)T } and
Σe−=E{e−(j)e−(j)T }, ∀j.
Once the coefficients of the ar models, A+,−l and

Σe+,− , are obtained, it is proven in [3] that an appro-
priate estimate of the inverse of the covariance matrix
is given by the following explicit formula:

Σ−1 = UTΣ−1e+U−V
TΣ−1e−V, (8)

where U and V are nN × nN lower triangular block-
Toeplitz matrices of the form:

U =




Iq
A+1 ·
· ·

A+d · ·
0 · · ·
· · · ·

0 0 A+d A+1 Iq



,V =




0
·

0 ·
A−d · ·
· · ·
· · ·

A−1 A−d 0 0



,



while Σ−1e+ and Σ−1e− are nN × nN block-diagonal ma-
trices of the form:

Σ−1e+ =



Σ−1e+

·
·
·
Σ−1e+


 ,Σ−1e− =



Σ−1e−

·
·
·
Σ−1e−


 .

Assuming furthermore a normal probability density
function (pdf) for v, the ml estimate of θ for Σ−1 fixed
is then given by, see e.g. [10]:

θ̂ML = argmin
θ
w(θ)TΣ−1w(θ). (9)

Note that the effective computation of the cost func-
tion in (9) for a given value of θ does not require to form
explicitly the large inverse covariance matrix. Indeed,
it is shown in [3] that it reduces, due to the particular
form of (8), to the application of appropriate filters to

the sequence w(j, θ̂WLS).

Remark— Both minimization problems (7,9) in-
volved in this second stage are computationally very
expensive because they require the integration of a
dynamical system (6) at each iteration. The load of
these minimization problems obviously increases with
the number of parameters. This is the reason why it
was important to force a rather small model order in
the first stage. The minimization routine is initialized
at the parameter value obtained in the first stage. The
ml estimate is only guaranteed to be a local minimum
of (9) near the initial value. For that reason we rather
speak about a ml refining of the initial estimate. How-
ever this ml estimate will allow us to build accurate
confidence bounds around the final estimate of the un-
known function Ψ(xr, θ̂ML).

IV. Confidence bounds

It is known that if the true system belongs to the
model set (6), that is the selected black box struc-
ture (4) encompasses the true function, and if the noise
covariance matrix is exactly known, the ml estimate
converges asymptotically to a normal distribution with
a covariance matrix given by the Cramér-Rao lower
bound. In our case, the true function does likely not
belong to the model set and moreover, the noise covari-
ance matrix we use is only an estimate. Nevertheless, it
is of common practice to use even though the Cramér-
Rao bound as an approximate of the covariance matrix
of the estimate. This bound is given by:

Σθ̂ML ≈ [G(θ̂ML)TΣ−1G(θ̂ML)]−1 (10)

where the stacked state sensitivity matrix

G(θ)=[G(t1, θ)
T , . . . , G(tN , θ)

T ]T , G(tj , θ)=
∂x(tj , θ)

∂θ

is obtained by the integration of the following matrix
differential equation along with the system state equa-
tions, see e.g. [11]:

d

dt
G(t, θ) =

[
∂f

∂xT
+Ψ

∂F

∂xT
+ F

∂Ψ

∂xT

]
G(t, θ) + F

∂Ψ

∂θ
.

Again, it is proven in [3] that the computation of (10)
does not require to form explicitly the large inverse co-
variance matrix.
Assuming a normal pdf N (θ̂ML ,Σθ̂ML) for the ml

estimate, it becomes trivial to derive the pdf of any
point of the estimated function Ψ(xr, θ̂ML). Since this
function depends linearly on the parameters, it admits
also a normal pdf given by:

N (Ψ(xr , θ̂ML), R(xr)Σθ̂MLR(xr)
T ),

where

R(xr) =
∂Ψ(xr, θ)

∂θ
= [k(c1, xr), . . . , k(cp−1, xr), 1].

The 99% confidence interval is therefore given for any
input point xr by:

Ψ(xr, θ̂ML)± 2.58
√
R(xr)Σθ̂MLR(xr)

T .

V. Simulation Example

Let us consider the following two-dimensional non-
linear state-space model:

{
ẋ1 = −x1 − ψ(x1) + u
ẋ2 = −x2 + ψ(x1)

where the function ψ(x1) has the following (supposed
unknown) expression:

ψ(x1) = 2
x1

1 + x41
.

The state trajectories of this model are computed for a
zero initial state. A double ramp command signal has
been specially selected in order to ensure a rich enough
coverage of the input space of ψ:

u(t) = 3.5

[
1−
|t− 5|

5

]
.

The experiment lasts 10 seconds and the state trajec-
tories are sampled with a frequency of 20Hz such that
N=200 data samples are available for the identification.
The measurement noise is generated by a first order
bidimensional ar stochastic process with i.i.d. normal
random innovation vectors. The exact structure of the
process is:



v(j) +

[
−0.65 −0.6
−0.2 −0.55

]
v(j − 1) = e(j),

Σe = 10
−3
[
0.625 0.0625
0.0625 0.1563

]
.
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Fig. 1. State trajectories: the dotted lines represent the actual trajectories xi(tj ), the noisy lines represent the measured
trajectories zi(j) and the plain lines represent the measured trajectories smoothed by cubic splines x̃i(tj ).

The coefficients of this stochastic process have been
scaled to produce highly auto and crosscorrelated noise
sequences with signal-to-noise ratio of about 20dB on
each state measurement.

Fig.1 illustrates the true state trajectories, the mea-
sured trajectories and the cubic spline interpolant with
a smoothing factor of λ=0.95.

The size of the qp problem (5) involved in the fitting
of the svm is twice the number of data pairs. It can
therefore becomes computationally too expensive as N
increases. For large values of N it could be necessary
to fit the svm using only a subset of pairs. Here is an
example of an iterative pruning procedure that could
be applied:

0 0.5 1 1.5 2 2.5 3
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0.6
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x
1

Ψ
(x
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Fig. 2. First estimate of Ψ(xr): the thin line represents the
actual function, the bold line represents the svm estimate,
the small dots are the 100 dropped pairs, the big dots are the
100 selected pairs and the circles on the base line point the
support vectors.

0. Compute the mean distance l(j) of each pair rel-
atively to its two neighbors:

l(j) = 1
2

[
‖(zr(j), Ψ̃(tj))− (zr(j − 1), Ψ̃(tj−1))‖

+ ‖(zr(j), Ψ̃(tj))− (zr(j + 1), Ψ̃(tj+1))‖
]

1. Find the pair with the minimum distance and re-
move it from the set,

2. update the mean distance of the two neighbors of
the dropped pair according to their new neighbor,

3. return to 1. until the size of the remaining set is
small enough.

The advantage of this pruning procedure is to pre-
serve, as much as possible, the spatial coverage of the
function. Only pairs that are close to other ones are re-
moved, in an iterative way. In other words, redundant
pairs are dropped.
We have applied this scheme in order to extract, from

the set of 200 input and reconstructed output values, a
subset of 100 pairs that are effectively used to fit the
svm. The qp problem has been solved using the fol-
lowing tuning coefficients: C=5, ν = 0.03 and σ = 0.4.

This yields six support vectors (six non-zero α
(∗)
j ) and

thus seven parameters in θ. The selected and dropped
pairs are represented in Fig.2 along with the true func-
tion and the function estimated by the svm. The posi-
tion of the six support vectors are also represented. We
can already see that this preliminary estimate of the
unknown function is quite rough and must be refined.
The first step of the refining, that is the wls esti-

mate, results in a quite better shape for the unknown
function as it is illustrated in the left plot of Fig.3.
In this case the confidence bounds are computed using
(10) with a diagonal Σ containing the weighting ma-
trix factor ζ. We see that in this case, the confidence
bounds around the estimated function are quite under-
estimated. A large part of the true function lies outside
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Fig. 3. Second (wls) and third (ml) estimates of Ψ(xr): the thin line represents the actual function, the bold line represents
the svm estimate and the shaded area represents the 99% confidence bounds.

the confidence bounds. This results from the fact that
the correlation features of the noise is still not taken
into account in the wls estimation step.
The second step of the refining, that is the ml es-

timate, results in a model of the function that is still
closer to the true one. This last estimate is illustrated
in the right plot of Fig.3. With respect to the wls
estimate, the improvement in terms of the function es-
timate is not really impressive. However, the confidence
bounds obtained in this last step, using a full noise co-
variance matrix, are quite more realistic. They encom-
pass the true function almost in the entire input area
covered by the trajectory x1. This is a result of taking
into account the correlation in the noise.
The parameter values for the three estimates are

given in Table I along with the support vectors.

VI. Conclusion

A two stage method has been developed in this pa-
per to identify an unknown function hidden in a known
state space representation of the system. The method
is particularly intended for the context of correlated
measurement noise. The purpose of the first stage is
to identify a black box structure for the unknown func-
tion using its input-output values reconstructed from
the measurement data using spline. The purpose of the

TABLE I

Parameter values and support vectors.

θ1 θ2 θ3 θ4 θ5 θ6 θ7
First fit -2.34 -5.00 0.25 -0.14 2.25 5.00 0.41

wls step -2.29 -5.11 0.59 -0.19 2.25 4.87 0.28

ml step -2.33 -4.25 0.62 -0.12 2.15 4.17 0.24

sv’s -0.01 0.16 1.00 2.67 0.20 0.14

second stage is to refine the model, using a maximum
likelihood estimation method that captures the corre-
lated features of the noise. An important message of
this paper is to tell how it is essential to take into ac-
count the non whiteness of the noise to obtain a good
estimate of the function and especially to build realistic
confidence bounds.
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