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Abstract:  The Gohberg-Heinig explicit formula for the inversion of a block-Toeplitz matrix is used 
to build an estimator of the inverse of the covariance matrix of a multivariable autoregressive process. 
This estimator is then conveniently applied to maximum likelihood parameter estimation in nonlinear 
dynamical systems with measurements corrupted by output additive auto and crosscorrelated noise. 
The efficiency of the obtained estimation scheme is illustrated via Monte-Carlo simulations. These 
simulations show that the proposed method improves significantly the statistical properties of 
the estimator and provides a more accurate confidence region around the estimated parameters, 
in comparison with classical methods. Furthermore, an appealing computational simplification is 
obtained due to the particular form taken by the Gohberg-Heinig formula. Copyright~ 2000 IFAC 
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1. I N T R O D U C T I O N  

In (David and Bastin, 1998), a maximum likeli- 
hood (ML) parameter estimation method for non- 
linear systems was proposed for the case of au- 
tocorrelated output  noise. It was assumed that  
all state variables are measured and that  there 
exist no crosscorrelation between the noise se- 
quences corrupting each state measurement. Ba- 
sically the method consisted of computing a pre- 
liminary weighted least-squares (WLS) estimate of 
the parameter vector, estimating the inverse of 
the noise covariance matrix from the residuals 
of this preliminary estimate and using this in- 
verse covariance matrix (ICM) to compute a ML 
estimate. The originality of the method was in 
the particular estimate of the ICM. This estimate 
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was derived from the Gohberg-Semencul inversion 
formula for a Toeplitz matrix (Gohberg and Se- 
mencul, 1972) and required to identify an autore- 
gressive (AR) model of the residuals. In (David and 
Bastin, 1999) the method was successfully applied 
to a real live application. 

In this paper the method is generalized by re- 
moving two restrictive assumptions. Firstly, the 
measured output  variables are not necessarily the 
state variables and secondly, both the auto and 
the crosscorrelation of the noise sequences are 
taken into account. This leads to a more com- 
plicated block-Toeplitz structure of the covari- 
ance matrix. The generalization of the Gohberg- 
Semencul inversion formula to a block-Toeplitz 
matrix is therefore required in order to follow the 
same approach as in (David and Bastin, 1998). 
This formula is obtained as a particular case of 
(Gohberg and Heinig, 1974) and will require two 
multivariable AR models of the residuals to be 
identified, a causal and an anticausal one. 



2. PROBLEM FORMULATION 

It is assumed that  a phenomenological model of 
the system under consideration is available to 
the user. The model is given under the quite 
general form of a set of deterministic differential 
nonlinear state-space equations combined with a 
set of static nonlinear output equations. Both 
dynamic and static parts may be parametrized, 
the set of parameters being grouped into a single 
vector 0=[01,. . .  ,Op]. The model structure is as 
follows: 

{ ~(t) = f (x ( t ) ,  O, u(t)) (1) 
y(t) = g(x(t), O, u(t)) 

where x( t )=[x l ( t ) , . . . , xn ( t ) ]  T is the state vec- 
tor, u( t )=[u l ( t ) , . . . ,  Um(t)] T the input vector and 
y( t )=[y l ( t ) , . . . ,  yq(t)] T the output  vector. 

The parameter estimation problem is to esti- 
mate the parameter values from input and out- 
put da ta  obtained from a single experiment car- 
ried out on the system in presence of output  
additive correlated noise. The experiment is per- 
formed with a known input signal u(t) and a 
known initial state x(to). The measurements of 
the output  variables are recorded at N evenly dis- 
tr ibuted time instants t l , . . . ,  tN and are denoted: 
z ( j )  = [zl(j),... ,  zq(j)] 
For a given input signal and a given initial state, 
the solution of the state and output  equations 
in (1) is parametrized by 0 and denoted x(t, 0) and 
y(t, 0) respectively. The state sensitivity matrix, 

o '° , is obtained by integrating the following 
matrix differential equation along with the system 
state equations, see (Walter and Pronzato, 1997): 

O~(t,O) Of  Ox(t, O) Of 

In most applications, the residual sequences cor- 
responding to each output  variable are assumed 
to be independent, i.e. not crosscorrelated, which 
amounts to considering a diagonal covariance ma- 
trix. Often also, each residual sequence is assumed 
to be uncorrelated along the time, i.e. not au- 
tocorrelated, which amounts to considering only 
E0. In (David and Bastin, 1998), the case of au- 
tocorrelated residuals was treated only. Here the 
more general problem of auto and crosscorrelated 
residual sequences is addressed. 

Let us define the following compact notations: 

X(0) ~--- [X(tl,0) T , . . . ,  X(tN,O)T]T E ~ n N  
y(0) = [y(tl,0) T , . . . ,  y(tN,o)T] T e F~ aN 
G(0) = [G(tl, 0) T ,..., G(tg ,  o)T] w E j~qYxp 
z = [z(1) T , . . . ,  z(N)T] T e Ft qg 
w(0) = [W(1,0)T , . . . ,  w(N,O)T] T e R aN 

= z - y(0). 

The full covariance matrix, ~ = E{w(O)w(O)T},  
of the random vector w(0) is then a very large 
(qN x qN) block-Toeplitz matrix of the form: 

[ ~'~0 Y']-I Y]I--N ] 
E1 

~. = . (5) 

E-1 J 
~N-I ~'~1 ~"]'0 

Assuming furthermore a normal probability den- 
sity function for w(0), and defining the following 
scalar cost function: 

J(0) = w(0)T~']-lw(O), (6) 

the ML estimate of 0, for ~ known, is then given 
by, see e.g. (Seber and Wild, 1989): 

~M£, ~___ arg rn~n J(0). (7) 

The output  sensitivity matrix is derived from the 
state sensitivity matrix using: 

G(t, e) = Oy(t, O) Og Ox(t, O) Og 
oe = b~ ---v o---V- + ~ "  (3) 

There is always a deviation between the model 
output evaluated at the sampling instants, y(tj ,  8), 
and the measurements z(j) .  The origin of this 
deviation may be multiple: modeling error, input 
or process noise and measurement noise. It is 
usually called the output  error or the residuals 
and is denoted: 

w(j,O) = z( j)  - y ( t j ,e )  j = I , . . . , N .  

In the present framework, the sequence of output  
error vectors w(j,  8) is viewed as a realization of 
a stationary zero mean stochastic process with 
covariance matrix at lag k defined by: 

E k = E { w ( j ) w ( j  - k) T} E Kt qxq. (4) 

The gradient of the cost function and the Cram~r- 
Rao (CR) lower bound on the covariance matrix of 
the estimator are given respectively by: 

OJ(O) 
00  = - 2  (8) 

E~L _ [G(0)TE-IG(8)] -1. (9) 

It turns out that  the ICM, ~-]--1, is required at 
several levels of the computation of the ML esti- 
mate of 8. It appears in the cost function (6) that  
has to be minimized, in the gradient (8) of the 
cost function tha t  is needed if a gradient search 
method is used for the nonlinear minimization 
problem and finally, in the CR lower bound (9) 
which is commonly used to build a confidence 
region around the estimated parameter. This ICM 
is unknown in practice and has therefore to be 
estimated. An original solution to this problem is 
given in the next section. 



3. GOHBERG-HEINIG INVERSE 

In (Gohberg and Semencul, 1972) an explicit 
formula was derived for the inversion of a fi- 
nite Toeplitz matrix. This result was generalized 
two years later (Gohberg and Heinig, 1974) for 
a Toeplitz matrix with entries belonging to a 
noncommutative algebra, the block-Toeplitz ma- 
trix being a particular case. Other formulas exist 
for this inversion problem and several numerical 
methods to solve it have been developed and are 
still under investigation. It will be shown in this 
section that  the Gohberg-Heinig formula can be 
very conveniently used in the ML parameter esti- 
mation framework. 

Let us postulate a causal and an anticausal mul- 
tidimensional AR representation of the residuals, 
defined by the following relations: 

d + • 
w(j) +~-]r=lArW(3 - r )  = e+(j) (10) 

d 
w(j) + ~-~r_lArW(J + r) = e-( j )  

where A + and A~ are q by q matrices containing 
the coefficients of the causal and anticausal AR 
models, e+(j) and e - ( j )  are i.i.d, random vec- 
tors with covariance matrix equal respectively to 
~e+ = Z { e  + (j)e + (j)T} and ~ , -  =E{e-  (j)e- (j)T}. 

The Yule-Walker equations generalized for the 
multidimensional case can be explicitly derived by 
substituting w(j) in (4) by its expression coming 
from (10), taking into account the stationary 
assumption. This provides the following sets of 
relations, for k -- 0 , . . . ,  N - 1: 

+ 
Y'],.=oA~ Ek-~ = 8o,kZ.+, A~ = Iq (11) 

The use of the Gohberg-Heinig formula requires 
first to find the coefficients that  verify the so- 
called generating system. The inverse matrix is 
then obtained explicitly from these coefficients. 
In the general case, this system is constituted of 
four sets of equations. In the particular case of 
symmetric block-Toeplitz matrix, i.e. with blocks 
satisfying ]E-k = ~]T, the generating system is 
reduced to two sets of equations and corresponds 
exactly to (11). Hence, for the inversion of the co- 
variance matrix of an AR process, the coefficients 
of the causal and anticausal AR models are also 
the generating coefficients. Therefore (Gohberg 
and Heinig, 1974, Corollary 1.1) directly gives the 
following explicit expression for the ICM of w(0): 

~ - 1  = u T ~ - + I U _  v T ~ _ I v  (12) 

where U and V are qN x qN lower triangular 
block-Toeplitz matrices of the form: 

u= At 
0 • 

0 0A; A~ Iq 

, V =  

0 

0 

.Ai- A,~ o 0 

while E -1  and -1 e+ E,_  are qN x qN block-diagonal 
matrices of the form: 

~ ' ~ - - 1  . ~ ] ; 1  = . 
e +  : ' " • " 

Z -I E 
e +  

Assuming that  the coefficients of the causal and 
anticausal AI~ models of the residual sequence 
are available, (12) provides a straightforward way 
to obtain the ICM required for computing the 
ML parameter estimate• In (David and Bastin, 
1998), only the causal scalar AR model of each 
independent output  noise sequence was necessary 
to build the ICM. 

Besides the evident advantage that  this ICM over- 
comes matrix inversion, the particular form of (12) 
provides also an appealing computational simpli- 
fication. Indeed, in order to compute expressions 
involving the ICM, like (6), (8) and (9) that are of 
the form L T ~ - I R ,  one has just to apply appro- 
priate filters to the columns of L and R. Here is 
a short proof: 

Let L(j) and R(j)  be any sequences of vector 
(matrices) 2 for j = 1 , . . . ,  N and let L and R be 
their corresponding stacked vectors (matrices): 

L = [L(1) T , . . . ,  L(N)T] T 
R = JR(l) w , . . . ,  R(N)T] T. 

Let us also define the following multidimensional 
discrete filters, associated to the AR models (10): 

¢4+(z -1) = Iq + A~z -1 + . . .  + A~z -d 
A - ( z  -1) = A d + Ad_I z-1 + . . .  + A1 z-d+l 

and let Te+ and Te- denote the square root of 
the innovation covariance matrices: ~e+ =T~+ Te+, 
Ze-=Te-Te- .  Then, considering the filtered ver- 
sions of the L(j) and R(j)  and their corresponding 
stacked matrices: 

Lu(j)=Te-+IJt+(z-1)L(j), Lu=[Lu(1) T .... ,Lu(N)T] T 
RU(j)=Te:~A + (z-1)R(j), RU-----[RU(1)T,. ,Ru(N)T] T 
nv(j)=Te_ ..4- (z-1)L(j), LV =[Lv(1) T ..... Lv(d)T] T 

--1 1 Rv(j)=T e_ ,4- (z- )R(j), RV=[RV(1) T . . . . .  F lv (d )T]  T 

it becomes trivial to see, using the particular form 
of U and V, that:  

L T ~ - I R  = L u T R u  -- L v T R v .  

2 L(j)=w(j) in (6,8) and L(j)=G(tj) in (9), R(j)=w(j) 
in (6) and n0)=a(t~) in (8,9)• 



In practice, to compute expressions involving the 
ICM, like (6), (8) and (9), one has just to apply 
appropriate filters, A + (z -1) and .A-(z-l) ,  to the 
columns or part of the columns of L and R and 
normalize with Te+ and Te-. Hence, only the 
coefficients of the AR filters, A +, At ,  Ee+ and 
Ee- have to be carried along• The large ICM does 
not need to be formed explicitly. This is a major 
advantage that leads us to propose the following 
two-step ML estimation algorithm. 

4. ESTIMATION ALGORITHM 

The idea is to obtain a rough WLS estimate of 8 in 
a first step and identify the causal and anticausal 
Aa models on the residuals of this preliminary 
estimate. The anticausal model is simply obtained 
by presenting the residual vector in the reversed 
order to the Aa model identification procedure. 
Then, these AR models are used to estimate the 
ICM needed to compute the ML estimate in a 
second step. The orders of the AR models can 
be fixed a priori or selected automatically using 
any appropriate order selection criterion, the min- 
imum description length for instance. The WLS 
preliminary estimate is defined by: 

N 

~WLS __-- arg m~n E w(j ,  8)T ¢w(j ,  8) 
i = 1  

where ¢ is a q by q diagonal weighting matrix used 
to normalize the residuals in order to balance the 
individual contribution of each output variable• 
The weights can be determined from a preliminary 
data analysis. For instance, one could take them 
inversely proportional to the variances of the 
output measurements. 

The proposed algorithm for ML parameter estima- 
tion in dynamical systems with auto and crosscor- 
related output noise is then as follows: 

[~ obtain ~ from data analysis, 
(1) compute a preliminary WLS estimate, 

[ i  compute the residuals w(0WLS), 
(2) estimate the AR models of w(~WLS), 

compute the ML estimate. 

5. MONTE-CARLO SIMULATIONS 

The purpose of this section is to illustrate, from 
Monte-Carlo simulations on a particular example, 
the statistical properties of the ML estimator ob- 
tained with the proposed two-step algorithm. 

A three-parameter estimation problem on a non- 
linear fourth order dynamical system with two 
output measurements is treated. The model is as 
follows: 

~2 
~3 
24 

Yl 

Y2 

= u - 81xl 
= --2X2 ÷ hi(x3 ,  x4, 82) 
: Xl - x3 - h2(x2,x3,83)  
= - x 4  + h2(x2, xa, 8a) 

X 4  

---- X4 hl(x3, x4, 82) ---- 1 ÷ x3/82 

= hl(x3,  x4, 82) h2(x2, Xa, 83) 4x3e - ~ 2  

• B (z -1) e;'R(j) ] 
where Bl(Z- 1) and B2 (z- 1) are tenth order scalar 
FIR lowpass discrete filters with normalized cutoff 
frequencies equal to 0.1 and 0.08 respectively and 

F I R  " el,2 (3) are i.i.d, normal random variables with 
unit variance. 

The structure of the two processes have been 
scaled in order to produce highly auto and cross- 
correlated noise sequences with a similar signal- 
to-noise ratio of 20dB on each measured output 
trajectory. 

A bunch of independent realizations of the AR 
azld FIR stochastic processes have been gener- 
ated and added to the model output trajectory 
vector y(tj,8*) to form two benchmarks of 5000 
sets of measurements each. The input signal, the 
model output trajectories and one example of the 
measured output trajectories under both cases of 
stochastic process are illustrated in Fig.1. 

For each set of measurements, an ML estimate 
of the parameter vector has been computed with 

The output trajectories of this model are com- 
puted for a true parameter 8" = [8, 5, 10] and 
zero initial states. The experiment lasts 20 sec- 
onds. The input u(t) is a piecewise constant signal 
and the output trajectories are sampled with a 
frequency of lOHz  to form the y(8*) vector con- 
taining N=200 data samples. 

Two different types of noise generator are used to 
produce the output error sequences. The first type 
is a first order bidimensional AR stochastic process 
with i.i.d, normal random innovation vectors. The 
objective of this first structure is to illustrate the 
behavior of the algorithm when the stochastic part 
of the system belongs to the model set scanned by 
the algorithm• The structure of the process is: 

An'." [ ' -0 .65-1.80]  
w (3)÷ [-0.07 -0.5 J w A n ( j - 1 ) = e A n ( j )  

0[0::0] 
The objective of the second type of noise generator 
is to evaluate the robustness of the algorithm 
when the stochastic part of the system is not in 
the model set. For that case, a bidimensional finite 
impulse response (Pla) filter of the following form 
is used: 
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Fig. 1. Input signal u, output model trajectories Yi in 
dotted line and output measurements z~ in plain line. 

the algorithm. The was estimate obtained in the 
first step has been recorded as well for comparison 
purpose. For a more appropriate comparison, the 
parameters  estimated by a modified two-step algo- 
r i thm is also computed. In tha t  case, the full ICM 

estimate is replaced by the classical sample covari- 
ance estimate. The refined WLS estimate obtained 
with this modified algorithm is denoted aWLS. 

The nonlinear minimization problem required to 
find the parameter  estimates has been solved us- 
ing the Nelder-Mead simplex method. The orders 
of the Aa models were fixed a priori to d=2 for 
the first benchmark and d = l O  for the second one. 

The huge number of simulations will allow us to 
represent accurately several statistical properties 
of the estimators such as their empirical distri- 
bution and their s tandard deviation. Since the 
t rue  parameter  vector and the t rue  noise structure 
are known, the c a  lower bound on the covariance 
matr ix of the parameter  estimates can be com- 
puted exactly using (9). This bound provides the 
m i n i m u m  possible standard deviation that  can be 
achieved and will serve as a comparison basis. 

The  s tandard deviation of the 5000 independent 
WLS, RWLS and ML estimates of 0 obtained un- 
der each case of stochastic process are given in 
Table 1, along with the cR. bounds and quality 
indicators. These indicators measure the improve- 
ment achieved by the ML estimate with respect to 

Table 1. Standard deviations and indicators. 

o.WLS (yaWLS (TML (TOR 6WLS 6aWLS 

O Aa 0.535 0.197 0.136 0.108 1 
~ a  0.400 0.159 0.103 0.085 
~ a  0,286 0.152 0,093 0.069 

~FZa 0.566 0.351 0.136 0.087 1 
~Fza 0.426 0.265 0.101 0.064 2 
(~z~ 0.288 0.100 0.093 0.069 

93.6% 69.2% 
94.3% 75.8% 
89.1% 72.6% 

89.7% 81.3% 
89.9% 81.7% 
89.1% 80.2% 

the WLS and aWLS ones, relatively to the max- 
imum possible improvement. These performance 
indicators range between 0% (no improvement) 
and 100% (maximum possible improvement) and 
are defined by: 

~W~.S--~ML 6 R W L S = 1 0 0 ~ .  6 WLs = i00 ~ _--&-6-~, ~ - a  

The empirical distributions of the est imated pa- 
rameters are illustrated in Fig.2, superimposed 
on normal distributions corresponding to the c a  
lower bound, In the AR case, i.e. the stochastic 
part of the system is in the model set, the ML 
estimate should asymptotically converge to  the 
c a  bound. It stands already very close to this 
bound for N--200 only. Tha t  proves the coherence 
of the method. The improvement with respect to 
the single step WLS estimate is impressive. In the 
FIR. case a very high improvement with respect 
to the WLS estimate is also observed. Tha t  shows 
the ability of the proposed ICM estimate to be 
used also when the actual noise has a different 
structure. This enlarge considerably the domain of 
applicability of the ML estimate presented in this 
paper and let us believe that  it could be used in 
the practical situation where the noise structure is 
even unknown. The  benefit of the ML estimate in 
comparison with the aWLS is also quite valuable. 
This proves that  for the considered example at 
least, the full ICM estimate clearly outperforms 
the classical sample covariance estimate. 

The ICM estimate can still be advantageously ap- 
plied to the construction of a confidence region 
around the est imated parameter  vector. It  is evi- 
dent that  the same experiment is rarely repeated 
5000 times in order to have an idea of the pa- 
rameter  dispersion. Often, only one experiment 
is carried out and a confidence region around 
the identified parameter  has to  be evaluated. The  
covariance matr ix of the parameter  vector, ~#, is 
commonly est imated using its CR bound (9) com- 
puted for 0 and ~ - 1 .  The large matr ix ~ - 1  being 
estimated by inverting the sample covariance in 
the WLS case and with the full ICM estimate in 
the ML case. Assuming a normal distribution for 
0, an approximate 100(1 - a)% confidence region 
for the parameter  vector 0 is given by, see e.g. 
(Seber and Wild, 1989): 

{ 0 : ( 0  -  )t l(0 - < (13)  

where Y=~,j is the upper  a critical value of the J=i,j 
distribution. The set described by (13) is the inner 
space of an ellipsoid centered on 0. 

Fig.3 represents two projections of the 3D plot of 
the 5000 WLS and ML parameter  estimates taken 
from the FIR set. Superimposed are the projec- 
tions of the 99% confidence ellipsoids correspond- 
ing to  one estimate chosen arbitrarily. It  clearly 
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Fig. 2. The histograms are represented with a decreasing degree of line thickness: 3 is for WLS, 2 for RWLS 
and 1 for ML. The dotted lines represent the normal distributions corresponding to CR bounds. 

appears that  the confidence region estimated in 
ML case is far better than the one estimated in 
the WLS case. It includes the t r u e  parameter value 
and its shape better fits the actual parameters 
dispersion. 

The computat ion of ~ has been done system- 
atically for each estimated parameter vector. If 

had really been normally distributed and the 
estimate of each confidence region had been exact, 
99% of those regions would have included the 
true parameter. Since those conditions are far to 
be met, it turns out that  among the confidence 
regions computed with the WLS method, only 6% 
include the t r u e  parameter in the AR case and 21% 
in the FIR case. These percentages become 93% 
and 83% respectively with the ML method. 
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Fig. 3. Projections of the 5000 wI, s and ML parameter es- 
timates. The projections of the confidence ellipsoids 
are drawn for one estimate chosen arbitrarily. The 
bold circles point the true value of O. 

6. CONCLUSION 

The maximum likelihood parameter estimation 
method developed in (David and Bastin, 1998) 
has been generalized in this paper to the case 
of auto and crosscorrelated output  noise. The ef- 
ficiency of the estimation method has been em- 
phasized in comparison with classical one from 
Monte-Carlo simulations. A significant gain is 
achieved in the statistical properties of the estima- 
tor, namely a reduction of its s tandard deviation. 
In addition, the proposed ICM estimate provides 
an efficient way to compute accurately the confi- 
dence region around the estimated parameter.  

The quite general form of the nonlinear determin- 
istic part  of the model (1) and the ability of the 
proposed ICM estimate to be successfully applied 
also when the noise structure is not in the model 
set suggest a wide range of application of the 
proposed method. 
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