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Abstract

A gain scheduling based on a one-parameter family of
Lyapunov functions is presented for the control of lin-
ear systems with affine constraints. The tuning of the
parameter in the control law is assumed to result from
a trade-off between the size of the state-space domain
where the constraints are satisfied and the closed-loop
performance.
A target controller is chosen for local performance in
this family. The proposed online scheduling is aimed
at reaching the target controller in the fastest possible
way, while guaranteeing satisfaction of the constraints
along closed-loop solutions.

1 Introduction

This paper addresses the feedback control design of lin-
ear systems

ẋ = Ax+Bu x ∈ IRn, u ∈ IR (1.1)

subject to p affine constraints

Lx+Mu ≤ N (1.2)

with L ∈ IRp×n, M ∈ IRp, N ∈ IRp.

Even though our primary concern will be the control of
linear systems under input magnitude constraints (as
in [4, 5, 8]) or magnitude and rate constraints ([3, 7]),
the proposed method is, in principle, more general.

The realistic assumption that we adopt as a starting
point is that the constraints (1.2) are not active locally,

that is, any smooth stabilizing feedback satisfies the
constraints in a neighborhood of the origin x = 0.

Assumption 1 If A+BK is an Hurwitz matrix, then
Lx+MKx ≤ N is satisfied for all x in a neighborhood
of the origin.

A stronger assumption adopted throughout the paper
is that the constraints (1.2) can be satisfied with linear
controllers in large regions of the state-space, at the
expense of degraded performance. For instance, this
is the well-known situation encountered when low-gain
designs are used to address magnitude and rate limita-
tions on the actuators.

Choosing an initial controller that ensures a sufficiently
large region of attraction and a final controller that en-
sures good local performance, our objective is to design
a scheduling ensuring the best possible transition be-
tween these two extreme controllers along the closed-
loop solutions.

To this end, we will assume that our “initial” and “fi-
nal” controllers belong to a one-parameter family of
linear controllers:

Ju = −K(λ)x (1.3)

which, for each λ ∈ (0, 1] ensures the decrease of a
quadratic Lyapunov function

V (x, λ) = xTP (λ)x (1.4)

along the solutions of (1.1) in the absence of the con-
straints (1.2) (with K(λ) and P (λ) > 0 continuously



differentiable). The role of the parameter J in (1.3)
will be explained in Section 2. The construction of the
one-parameter family (1.3) and (1.4) is not addressed
in general in this paper, but an efficient procedure is
proposed in [5] based on a parameterized Riccati in-
equality. More specific choices will be discussed in the
applications section.

As a convention, the value λ = 1 will correspond to the
target controller that yields good local performance.
However, we will be interested in dealing with initial
conditions x0 that initially force a smaller value of λ
in order to satisfy the constraints (1.2). Our gain-
scheduling design will show how to adapt the parameter
λ along the closed-loop solutions such as to guarantee
the fastest possible transition to the target controller
while satisfying the constraints and ensuring conver-
gence to the origin. This approach was first proposed
in [5] in the restricted framework of magnitude con-
straints, with a Riccati-based family of Lyapunov func-
tions (1.4) and controllers u = −BTP (λ)x. A different
family of controllers was recently proposed in [1], aimed
at the online invariance of condition BTP (λ)x = 0.

The present paper generalizes the results of [5] and [1] in
a unified framework. The generalization of magnitude
input constraints to arbitrary affine constraints (1.2) is
not merely notational. It is exemplified in the present
paper by a new and successful design scheme for the
control of linear systems under both magnitude and
rate limitations on the control variable.

The paper is organized as follows: Section 2 discusses
two different choices of controllers for a fixed family
of Lyapunov functions. Section 3 describes the gain-
scheduling algorithm itself. Section 4 addresses the par-
ticular case of input magnitude constraints, summariz-
ing the results of [5] and [1] in the unified framework
of this paper. Section 5 addresses the control of linear
systems with input magnitude and rate constraints and
different solutions are illustrated on the double integra-
tor system.

2 Controller gain

The parameter J is introduced in (1.3) to distinguish
between explicit control laws u = −K(λ)x (J = 1)
and implicit control laws specified by the invariance
condition K(λ)x = 0 (J = 0). The reason why this
distinction is rather important for the proposed gain-
scheduling is now briefly explained.

By assumption, any fixed controller (1.3) will satisfy
the constraints (1.2) in a neighborhood of the origin. A
Lyapunov estimate of this region is given by the min-
imum level set V̄ (λ) where one of the constraints be-
comes active.

The online requirement V (x, λ) ≤ V̄ (λ) will guarantee
closed-loop convergence to the origin, but it is the main
source of conservatism in the adaptation of λ.

In the case J = 1, V̄ (λ) is computed as

V̄ (λ) = minx∈IRn x
TP (λ)x

s.t. ∃i : (Li −MiK(λ))x = Ni
(2.5)

In the implicit case J = 0, we assume the relative degree
one condition K(λ)B �= 0, so that, when λ is fixed,
the invariance condition K(λ)x = 0 is ensured by the

control law u = −K(λ)AxK(λ)B . V̄ (λ) is then computed as

V̄ (λ) = minx∈IRn x
TP (λ)x

s.t.

{
∃i : (Li −Mi

K(λ)A
K(λ)B )x = Ni

K(λ)x = 0

(2.6)

Both in the explicit and implicit cases, V̄ (λ) results
from the minimization of the quadratic function under
affine constraints. Presumably, the additional equality
constraint in (2.6) will result in a larger value V̄ (λ),
thereby reducing the conservatism of the Lyapunov es-
timate.

The specification of the controller through the implicit
relation K(λ)x = 0 may of course pose a problem for
the initialization of the control scheme. If no λ0 ex-
ists such that K(λ0)x0 = 0, an initial phase of the
control algorithm is necessary to bring the solution in
an admissible region of the state-space. This part of
the algorithm is somewhat decoupled from the gain-
scheduling problem addressed here and will not be fur-
ther discussed in the present paper. It is discussed in [1]
in analogy with a sliding mode control approach where
K(λ)x = 0 would be the sliding surface and a “reach-
ing mode” is necessary for initial conditions that do not
belong to the sliding surface. In the sequel, the gain-
scheduling will be called “explicit” in the case J = 1
and “implicit” in the case J = 0.

3 Gain-scheduling

Consider the feasibility region Γ determined by

Γ =
{
(x, λ) ∈ IRn × (0, 1]|xTP (λ)x ≤ V̄ (λ)

}

By definition of V̄ (λ) the fixed parameter controller
Ju +K(λ0)x = 0 yields closed-loop convergence with-
out constraint violation for any initial condition x0 such
that (x0, λ0) ∈ Γ. Our gain-scheduling algorithm will
determine an adaptation rule λ̇ ≥ 0 and the accom-
panying control law such as to maximize λ̇ along the
closed-loop solutions and satisfy the constraints (1.2),



while ensuring the closed-loop invariance of Γ. Invari-
ance of Γ will imply that the adaptation can be stopped
at any time, the convergence of x(t) to the origin being
then guaranteed by the preceding argument.

In the explicit case u = −K(λ)x, invariance of the feasi-
ble region Γ guarantees that the constraints are satisfied
along the closed-loop solutions because the definition of
V̄ (λ) implies that Lx−MK(λ)x ≤ N when (x, λ) ∈ Γ.

Invariance of Γ and satisfaction of the constraints is
then guaranteed by the feedback rule:

λ(x(t)) = max{η ∈ (0, 1] : V (x, η) ≤ V̄ (η)} (3.7)

or through the adaptation rule

max λ̇ s.t.
d
dt
(V (x, λ) − V̄ (λ))+ ≤ 0 if V (x, λ) = V̄ (λ)

(3.8)

The feedback rule (3.7) was proposed by Megretski
[5] in the particular case of the input magnitude con-
straints while (3.8) will be used for comparison with the
implicit gain-scheduling developed below.

Rewriting the differential constraint in (3.8) as

∂V

∂x
ẋ+

(
∂V

∂λ
−

(
∂V̄

∂λ

)
+

)
λ̇ ≤ 0

we see that, for an initial condition (x0, λ0) satisfying
V (x0, λ0) = V̄ (λ0), the adaptation rule is uniquely de-
termined as

λ̇ = −

(
∂V

∂λ
−

(
∂V̄

∂λ

)
+

)−1
∂V

∂x
ẋ (3.9)

under the monotonicity assumption

∂V (x, λ)

∂λ
−

(
∂V̄ (λ)

∂λ

)
+

> 0 (3.10)

Assumption (3.10) guarantees a continuous evolution of
λ(t), in which case the feedback rule (3.7) is just the
integral form of the adaptation rule (3.8) and expresses
that the closed-loop solution (x(t), λ(t)) will stay on the
boundary of Γ until the target λf = 1 is reached.

It is worthwhile noting that, even in the absence of
the monotonicity condition (3.10), both the feedback
rule (3.7) and the adaptation rule (3.8) guarantee a
monotonic evolution of λ(t). This is because λ̇ = 0 is a
feasible solution of (3.8) at any point of Γ.

The feedback rule (3.7) is no longer valid in the case
of an implicit gain-scheduling J = 0. The control law

enforcing the invariance condition K(λ)x = 0 is given
by

u =
1

K(λ)B

(
−K(λ)Ax−

∂K

∂λ
xλ̇

)
(3.11)

Because of the additional term ∂K
∂λ
xλ̇ in (3.11), the con-

straints are no longer guaranteed to be satisfied when
(x, λ) ∈ Γ.

To ensure closed-loop invariance of Γ and satisfaction of
the constraints, the adaptation rule λ̇ must now be de-
termined as the solution of the pointwise maximization

max λ̇ s.t.
d
dt
(V (x, λ) − V̄ (λ)) ≤ 0 if V (x, λ) = V̄ (λ)

Lx+ M
K(λ)B

(
−K(λ)Ax − ∂K

∂λ
xλ̇
)
≤ N

λ̇ ≤ λ̇max

(3.12)

It must again be emphasized that the solution λ̇ = 0 is
feasible at any point of Γ, which ensures that the solu-
tion of (3.12) is non negative. The bound λ̇max(> 0) is
arbitrary, but prevents jumps in the evolution of λ(t)
and guarantees that the control (3.11) is well-defined.

Under normal circumstances, the gain schedulings will
allow the parameter λ to converge in finite time to the
target λf = 1, eventually leading to closed-loop con-
vergence of the solution x(t) with the fixed controller
Ju +K(1)x = 0. Alternatively, it may happen that λ
never reaches 1, but converges to some λ̄ ≤ 1. The next
theorem guarantees closed-loop convergence of x(t) to
the origin in all cases.

Theorem 1 Consider a family of Lyapunov functions

V (x, λ) = xTP (λ)x λ ∈ (0, 1] P (λ) > 0

whose time derivative, with λ fixed, along the solutions
of the linear system ẋ = Ax + Bu is rendered nega-
tive definite by the explicit control law u = −K(λ)x or
through the invariance condition K(λ)x = 0. Then, the
feedback rule (3.7) with

u = −K(λ)x (3.13)

guarantees finite-time convergence of λ(t) to 1 and con-
vergence of x(t) to the origin for any solution with ini-
tial condition (x0, λ0) satisfying V (x0, λ0) ≤ V̄ (λ0).
Likewise, the adaptation rule (3.12) with

u =
1

K(λ)B

(
−K(λ)Ax−

∂K

∂λ
xλ̇

)
(3.14)



guarantees convergence to the origin of x(t) for any ini-
tial condition (x0, λ0) satisfying V (x0, λ0) ≤ V̄ (λ0) and
K(λ0)x0 = 0.

Proof See [2]

4 Input magnitude constraint

The construction of a one-parameter family of Lya-
punov functions is classical for linear systems ẋ =
Ax+Bu subject to the input constraint

|u| ≤ umax

Assuming null controllability of the pair (A,B), several
authors have proposed the quadratic family V (x, λ) =
xTP (λ)x generated from the Riccati equation

P (λ)A+ATP (λ)−P (λ)BBTP (λ) = −Q(λ),(4.15)

with λ ∈ (0,∞), Q(λ) > 0 and dQ
dλ
> 0 (see for instance

[4, 8]).

The choice u = −BTP (λ)x corresponds to an explicit
specification of the control law (J = 1) and leads to the
gain-scheduling algorithm proposed by Megretski in [5].
The solution obtained in [5] is

V̄ (λ) =
u2max

BTP (λ)B

and

λ(x) = max{η ∈ (0, 1] : V (x, η) ≤ V̄ (η)}

which indeed corresponds to the solution of (3.9) thanks

to the monotonicity condition ∂P∂λ > 0 and ∂V̄∂λ < 0

The implicit specification of the control law through the
invariance condition BTP (λ)x = 0 (J = 0) leads to the
gain-scheduling proposed in our earlier work [1]. The
maximal admissible level set for a given λ > 0 is shown
to be

V̄ (λ) =
u2max(B

TPB)3

(BTPAP−1ATPB)(BTPB)− (BTPAB)2

For initial conditions that cannot satisfy BTP (λ)x0 = 0
for some λ, a reaching phase is first implemented by the
control

u = −sign(BTP (λ0)x)

with λ0 small and fixed, which forces the convergence of
the solution in finite time to a region of the state space

where the constraints BTP (λ0)x = 0 and V (x, λ0) ≤
V̄ (λ0) are satisfied.

Then the control u and the adaptation rule are di-
rectly obtained from the pointwise optimization prob-
lem (3.12).

Comparisons of the two gain-scheduled algorithms on
the double and triple integrators suggest that the im-
plicit gain-scheduling usually results in faster conver-
gence of the closed-loop solutions [1].

5 Input magnitude and rate constraints

Adding the rate constraint

|u̇| ≤ u̇max

to the input constraint considered in the previous sec-
tion, we need to construct a one-parameter family of
Lyapunov functions for the extended state-space model

{
ẋ = Ax+Bu
u̇ = v

A simple choice, that relies on the construction in
the previous section, for the Lyapunov function is the
“backstepping” augmentation [6]

V ((x, u), λ) = xTP (λ)x + (u +BTP (λ)x)2

A family of controllers

Jv = −K(λ)

(
x
u

)

must be constructed such that the time derivative

V̇ = xTPAx+ xTATPx+ 2xTPBu
+2
(
u+ BTPx

) (
v +BTPAx+BTPBu

)
= −xTQx− xTPBBTPx

+2
(
u+ BTPx

) (
v +BTPAx+BTPBu+BTPx

)
is rendered negative. This is accomplished with the
explicit controller (J = 1)

v = −K(λ)

(
x
u

)
= −(BTPAx+BTPBu+BTPx (5.16)

+k(u+BTPx))

with k > 0 or through the implicit specification (J = 0)

u+BTP (λ)x = 0 (5.17)



which corresponds to K(λ)

(
x
u

)
= 0 for the limit

case k = +∞. For the explicit gain-scheduling based
on (5.16), one obtains

λ(x(t)) = max{η ∈ (0, 1] : V (x, η) ≤ V̄ (η)}

where

V̄ (λ) = min
(
V̄1(λ), V̄2(λ)

)

with V̄1 corresponding to the minimal level set inside
which the magnitude constraint is satisfied, and V̄2 cor-
responding to the minimal level set inside which the
rate constraint is satisfied:

V̄1(λ) = min
x
V ((x, umax), λ)

V̄2(λ) = min
(x,u)
V ((x, u), λ)

s.t. K(λ)

(
x
u

)
= u̇max

The implicit gain-scheduling (5.17) requires no “reach-
ing phase” if one assumes that the initial control vari-
able u can be freely initialized at the value −BTP (λ)x.

For λ > 0 fixed, invariance of the manifold u =
−BTP (λ)x then imposes

v = −BTP (λ)Ax −BTP (λ)Bu
= −BTP (λ)(A −BBTP (λ))x = GT (λ)x

so that V̄1 and V̄2 are now replaced by

V̄1(λ) = min
(x,u)
xTP (λ)x + (u+BTP (λ)x)2

s.t.

{
u+BTP (λ)x = 0
u = umax

which reduces to

V̄1(λ) = min
x
xTP (λ)x

s.t. BTP (λ)x = umax

and, similarly

V̄2(λ) = min
x
xTP (λ)x

s.t. GT (λ)x = u̇max

whose solutions are V̄1(λ) =
u2max

BTP (λ)B and V̄2(λ) =

v2max
GT (λ)P−1(λ)G(λ) .

The control v and the adaptation rule λ̇ are then ob-
tained from the pointwise optimization (3.12).

The application of these adaptation schemes are now
illustrated on a simple example.

Example On Figure 2, we compare the efficiency of
different algorithms for the control of the double inte-
grator with control rate and amplitude constraints:{

ẋ1 = x2
ẋ2 = u |u| ≤ 1, |u̇| ≤ 1

with the extension u̇ = v. Solving the Riccati equation
(4.15) with:

Q(λ) =

(
λ4 0
0 λ2

)

results in the Lyapunov matrix:

P (λ) =

( √
3λ3 λ2

λ2
√
3λ

)

and the family of low-gain controls is then:

u = −BTP (λ)x = −λ2x1 −
√
3λx2 λ > 0

which is a typical low-gain control for second order sys-
tems. We arbitrarily consider that the target behavior
of the closed-loop system is for λ = 1.

In this case, the explicit controller (5.16) (with J = 1
and k = 1) is

v = −λ2(x2 + 2x1)−
√
3λ(u + 2x2)− u

and the implicit controller specification (J = 0 and k =
+∞) yields

u+ λ2x1 +
√
3λx2 = 0

V̄ (λ) is calculated and drawn on Figure 1 both for the
explicit and the implicit case. We see that, for all λ
between 0 and 1, V̄ is larger for the implicit scheduling.
This explains why we expect faster convergence with
the implicit gain-scheduling.

This expectation is confirmed by the the simulations;
three controllers are compared on Figure 2:

(i) a fixed low-gain explicit controller (dotted line
curves);

(ii) a gain scheduling based on the explicit controller
(dash-dotted line curves);
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Figure 1: Evolution of V̄ (λ) for the explicit (dash-dotted
line) and the implicit schedulings (solid line)

(iii) a gain-scheduling based on the implicit controller
(solid line curves).

For the initial condition x0 = (−10, 0), we choose
u0 = −BTP (λ0)x0 = 0.57 (with λ0, the initial value
of λ for the implicit algorithm) which ensures that
the implicit scheduling is initialized on the manifold
u+BTP (λ)x = 0. As expected, we see that the initial
λ is larger for the implicit gain-scheduling, and that it
increases faster. During the whole simulation, V̄ = V̄2
in the explicit scheduling, which means that the rate
constraint is the limiting value. In the implicit schedul-
ing, V̄ = V̄1 until λ = 0.81, and V̄ = V̄2 afterwards,
that is umax is first the limiting value, and then u̇max;
this transition is especially visible in the change of slope
at λ = 0.81 on Figure 1 and in the first discontinuity
in the v graph in Figure 2. The second discontinuity is
due to the interruption of the adaptation which elimi-
nates the BT ∂P

∂λ
xλ̇ term in the expression of v. Figure

2 shows that the implicit scheduling allows for a higher
peak for x2, which accelerates the convergence of x1 to
the origin.

6 Conclusion

In this paper, we have presented a scheduling method
that allows for the satisfaction of both stability and
performance specifications for the control of linear sys-
tems subject to affine constraints. The Lyapunov-based
scheduling provides online interpolation between an ini-
tial controller chosen from stability specifications and
a target controller, chosen for local performance. For
a given family of Lyapunov functions, two schedul-
ings have been compared: an explicit gain-scheduling
based on the control law u = −K(λ)x and an im-
plicit gain scheduling based on the invariance condition
K(λ)x = 0. The algorithms have been illustrated in
the case of input magnitude and rate constraints.
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Figure 2: Solution of the controlled double integrator
with amplitude and rate constraint on the con-
trol variable (umax = 1 and vmax = 1). The
application of a low-gain control law without
gain-scheduling (dotted line) is compared to a
control law with explicit (dash-dotted line) and
implicit gain-scheduling (solid line)
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