
IFAC-PapersOnLine 49-26 (2016) 318–323

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2016.12.146

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Dynamic metabolic flux analysis of
underdetermined and overdetermined

metabolic networks

Sofia Fernandes ∗ Julien Robitaille ∗∗∗ Georges Bastin ∗∗

Mario Jolicoeur ∗∗∗ Alain Vande Wouwer ∗

∗ Automatic Control Laboratory, University of Mons, 31 Boulevard
Dolez, 7000 Mons, Belgium (e-mail: sofia.afonsofernandes and

alain.vandewouwer@umons.ac.be)
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1. INTRODUCTION

Metabolic flux analysis (MFA) is a useful tool to determine
intracellular fluxes from extracellular measurements, such
as cell density, substrates and products concentrations
in, among others, mammalian cell cultures. Determining
in vivo fluxes provides quantitative information on the
degree of engagement of various metabolic pathways in the
overall cellular metabolism. The classical MFA method is
used to study systems at metabolic steady state, mean-
ing that intracellular fluxes do not change in time. This
assumption is supported by the observation that intra-
cellular dynamics are much faster than extracellular dy-
namics (Stephanopoulos et al., 1998). This assumption
is usually applied during the early exponential growth
in batch cultures and in steady-state continuous cultures
(Niklas et al., 2011). However, classical MFA does not
provide information on metabolic transient. To overcome
this weakness, the development of dynamic metabolic flux
analysis (DMFA) techniques has been addressed (Leighty
and Antoniewicz, 2011; Lequeux et al., 2010; Llaneras
et al., 2012; Vercammen et al., 2014; Robitaille et al., 2015;
Fernandes de Sousa et al., 2015).

A particular aspect of MFA is that depending on the
information provided by extracellular measurements and

on the properties of the stoichiometric matrix, the system
can be determined, overdetermined or underdetermined.

In this study, two metabolic networks are considered in
order to understand CHO metabolism as well as to dis-
cuss the importance of the size of the metabolic net-
work. To this end, an underdetermined and an overdeter-
mined metabolic networks are considered. Basically, these
metabolic networks embrace the same major metabolic
pathways: glycolysis, pentose phosphate pathway, TCA
cycle, amino acids metabolism, nucleotides, biomass and
antibody synthesis. The small-size network can be ob-
tained by reduction of the larger, more detailed network.
Of course, there is no exact metabolic network to repre-
sent cellular metabolism: a candidate metabolic network is
based on available metabolic knowledge and built in a way
that allows describing the consumption and production
of the available extracellular metabolites in a satisfactory
manner. Special care has to be exercised to preserve the
stoichiometry while lumping and/or combining reactions.

To obtain the flux distribution in the larger metabolic
network, a dynamic metabolic flux analysis using convex
analysis (Fernandes de Sousa et al., 2015) is applied.
DMFCA is an approach suitable for underdetermined
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systems, and does not require the definition of ad-hoc
objective functions. Mass balance differential equations
for the extracellular concentrations, together with cubic
spline smoothing, are used to assess the time evolution
of the uptake and excretion rates. This information is
then processed by convex analysis assuming that the in-
tracellular species are in pseudo-steady state with respect
to the time evolution of the extracellular concentrations
(slow-fast approximation). This method allows determin-
ing bounded intervals for each intracellular flux, and makes
the most of the available information (metabolic network
and available extracellular measurements) without intro-
ducing additional constraints or objective function.

The flux distribution in the reduced-size network is de-
termined by solving a linear optimization problem using
Linear Programming (LP). The problem is first solved
under positivity constraints, which is the basic assumption
when no additional a priori information is available. Then,
the problem is solved under box constraints inspired by the
bounded intervals obtained by DMFCA.

Both DMFCA and LP methods are applied to experimen-
tal data collected from CHO fed-batch cultures.

This paper is organized as follows. The next section
describes briefly the experimental data. Both metabolic
networks are introduced in section 3. In section 4, the
DMFCA problem is formulated, including extracellular
dynamic mass balance equations, spline smoothing of the
experimental data, and determination of bounded intervals
for the intracellular fluxes using convex analysis. The
linear optimization problem is formulated in section 5.
Section 6 is devoted to the numerical results and section
7 draws some conclusions.

2. EXPERIMENTAL DATA

Our study is based on a set of experimental data from
fed-batch cultures of CHO-DXB11 cell line, producing
a chimeric heavy chain monoclonal antibody (EG2-hFc)
(Robitaille et al., 2015). This set contains the time evolu-
tion of the extracellular concentrations of biomass, recom-
binant mAb, glucose, glutamine, lactate, alanine, ammonia
and 15 amino acids (except leucine, tryptophan and cys-
teine). The fed-batch culture was fed daily with punctual
injections of fresh medium, to avoid nutrients limitation
(see figure 1). Mathematically speaking, this type of fed-
batch, with punctual injections, can be considered as a
succession of batch cultures with different initial condi-
tions.

For more details about the experimental procedure and
analytical methods, the reader is referred to (Robitaille
et al., 2015).

3. METABOLIC NETWORK

Two metabolic networks are considered in this work. The
first one is relatively detailed (see table 2) and contains
72 biochemical reactions, 45 internal metabolites and 21
extracellular metabolites present in the culture medium,
which are either substrates or products. The second one
is described in (Robitaille et al., 2015) and contains 29
reactions, 16 internal metabolites and 21 extracellular
measurements. Both metabolic networks embrace the ma-
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Fig. 1. Feeding strategy over CHO-DXB11 fed-batch cul-
ture.

jor reactions of central metabolism such as glycolysis, Tri-
carboxylic Cycle Acid (TCA), Penthose Phosphate Path-
way (PPP) and amino acids metabolism. Biomass and
antibody synthesis are also incorporated into the model.
The stoichiometric coefficients of the biomass and an-
tibody synthesis were taken from literature (Robitaille
et al., 2015). The small-size network can be obtained
by reduction of the larger network. If Nu and No are
the stoichiometric matrices of the underdetermined and
overdetermined networks, respectively, it is possible to
prove that No ∈ Nu, through the following steps:

• Reactions v3 and v4 are lumped into an overall
reaction.

• Reactions v10 and v11 are lumped into an overall re-
action and the metabolite Succinyl-CoenzymeA (Suc-
CoA) is eliminated.

• Reactions v12 and v13 are lumped into an overall
reaction and the metabolite Fumarate (Fum) is elim-
inated.

• Reactions v30, v31, v32, v33, v34, v35, v36, v37 and
v39 are lumped into an overall reaction (this reaction
is called amino acids transamination in Robitaille’s
work).

• According to Robitaille’s work, the amino acids threo-
nine, phenylalanine, methionine and cysteine are only
used to biomass and mAb synthesis. Therefore, reac-
tions v25, v38, v40 and v41 are not taken into account.

• Reactions v43, v44, v45, v46 and v47 are lumped into
an overall reaction (in Robitaille’s work, this reaction
is called Histidine/arginine transamination).

• Reactions v26, v27, v28, v48, v49 and v50 are not taken
into account in Robitaille’s network.

• The only transport reaction considered in Robitaille’s
work is the one of glutamate (Glu).

Table 2. Metabolic network of CHO cells.

Flux Reactions
Glycolysis

v1 Glcext + ATP ! G6P + ADP
v2 G6P ↔ F6P
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Flux Reactions
v3 F6P + ATP ! DHAP + G3P + ADP
v4 DHAP ↔ G3P
v5 G3P + NAD+ + ADP ↔ 3PG + NADH + ATP
v6 3PG + ADP ! Pyr + ATP

Tricarboxylic Acid Cycle
v7 Pyr + NAD+ + CoASH ! AcCoA + CO2 + NADH
v8 AcCoA + Oxal + H2O ! Cit + CoASH
v9 Cit + NAD(P )+ ! αKG + CO2 + NAD(P )H
v10 αKG + CoASH + NAD+ ! SucCoA + CO2 + NADH
v11 SucCoA + GDP + Pi ↔ Succ + GTP + CoASH
v12 Succ + FAD ↔ Fum + FADH2

v13 Fum ↔ Mal
v14 Mal + NAD+ ↔ Oxal + NADH

Pyruvate Fates
v15 Pyr + NADH ↔ Lacext + NAD+

v16 Pyr + Glu ↔ Ala + αKG
Pentose Phosphate Pathway

v17 G6P + 2NADP+ + H2O ! R5P + 2NADPH + CO2

v18 R5P ↔ X5P
v19 2X5P + R5P ↔ 2F6P + G3P

Anaplerotic Reaction
v20 Pyr + ATP ! Oxa + ADP
v21 Mal + NAD(P )+ ↔ Pyr + CO2 + NAD(P )H

Amino Acid Metabolism
v22 Glu + NAD(P )+ ↔ αKG + NH+

4 + NAD(P )H
v23 Oxal + Glu ↔ Asp + αKG
v24 Gln ! Glu + NH+

4
v25 Thr + NAD+ + CoASH ! Gly + NADH + AcCoA
v26 Ser ↔ Gly
v27 3PG + Glu + NAD+ ! Ser + αKG + NADH
v28 Gly + NAD+ ! CO2 + NH+

4 + NADH
v29 Ser ! Pyr + NH+

4
v30 αKb + CoASH + NAD+ ! PropCoA + NADH + CO2

v31 PropCoA + HCO−
3 + ATP ! SucCoA + ADP + Pi

v32 Lys + 2αKG + 3NAD(P ) + FAD+ ! αKa + 2Glu+
3NAPH + FADH2

v33 αKa + CoASH + 2NAD+ ! AcetoAcCoA + 2NADH + 2CO2

v34 AcetoAcCoA + CoASH ! 2AcCoA
v35 V al + αKG + CoASH + 3NAD+ + FAD+ ! PropCoA + Glu+

2CO2 + 3NADH + FADH2

v36 Ile + αKG + 2CoASH + 2NAD+ + FAD+ ! AcCoA + Glu+
CO2 + 2NADH + FADH2 + PropCoA

v37 AcetoAc + SucCoA ! AcetoAcCoA + Succ
v38 Phe + NADH ! Tyr + NAD+

v39 Tyr + αKG ! Fum + AcetoAc + Glu + CO2

v40 Met + Ser + ATP ! Cys + αKb + NH+
4 + AMP

v41 Cys ! Pyr + NH+
4

v42 Asn ↔ Asp + NH+
4

v43 Arg ! Orn + urea
v44 Orn + αKG ↔ GluγSA + Glu
v45 Pro ! GluγSA
v46 GluγSA + NAD(P )+ ! Glu + NAD(P )H
v47 His ! Glu + NH+

4
v48 Orn + CarbP ! Cln
v49 Cln + Asp + ATP ! ArgSucc + AMP
v50 ArgSucc ! Arg + Fum

Nucleotide Synthesis
v51 0.6R5P + 2Gln + 2Asp + Gly + CO2 + 2ATP ! 2Glu + 2MAL

+AMP + 2ADP
Biomass Synthesis

v52 0.06Ala + 0.04Arg + 0.04Asn + 0.03Asp + 0.02Gln
+0.04Glu + 0.06Gly + 0.02His + 0.09Ile + 0.06Lys

Flux Reactions
+0.01Met + 0.02Phe + 0.03Pro + 0.05Ser + 0.04Thr
+0.02Tyr + 0.04V al + 3.78ATP + 0.03G6P + 0.03R5P
+0.09Cit ! Biomass + 3.78ADP
Antibody Synthesis

v53 0.06Ala + 0.02Arg + 0.05Asn + 0.04Asp + 0.04Gln
+0.05Glu + 0.07Gly + 0.02His + 0.10Ile + 0.06Lys
+0.01Met + 0.04Phe + 0.07Pro + 0.11Ser + 0.11Thr
+0.03Tyr + 0.09V al + 4ATP ! mAb + 3.78ADP
Transport Reactions

v54 Aspext ! Asp
v55 Asnext ! Asn
v56 Gly ! Glyext

v57 Serext ! Ser
v58 Glu ! Gluext

v59 Tyrext ! Tyr
v60 Ala ! Alaext

v61 Argext ! Arg
v62 Glnext ! Gln
v63 Hisext ! His
v64 Ileext ! Ile
v65 Lysext ! Lys
v66 Metext ! Met
v67 Pheext ! Phe
v68 Thrext ! Thr
v69 V alext ! V al
v70 NH+

4 ! NH+
4 ext

v71 Proext ! Pro
v72 CO2 ! CO2ext

4. UNDERDETERMINED NETWORK

To solve the underdetermined system, Dynamic Metabolic
Flux Convex Analysis (Fernandes de Sousa et al., 2015) is
used.

4.1 Dynamic Metabolic Flux Convex Analysis

The goal of DMFCA is to compute a set of admissible flux
distributions continuously over time v(t), using a pseudo-
steady state assumption (no accumulation of internal
metabolites):

(
N45×72

i 0
N21×72

m −v21×1
m (t)

)
×
(
v(t)
1

)
= 0 (1)

where Ni is the stoichiometric matrix deduced from the
metabolic network, Nm is the matrix connecting the fluxes
to the available measurements and vm represents the spe-
cific uptake and excretion rates of the measured extracel-
lular species.

The metabolic network under study is not redundant
(rank(Ni) = m = 45 ), and with the information provided
by 21 extracellular measurements, it is an underdeter-
mined system with a degree of freedom of 6.
Extracellular flux determination Extracellular fluxes of
the twenty-one metabolites can be computed based on
their mass balance differential equations, involving cellular
growth (µ), substrate uptake (υs) and product secretion
(υp), as described by:

dX

dt
= (µ−D)X (2)

dS

dt
= −DS − υsX +DSin (3)

dP

dt
= −DP + υpX +DPin (4)
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Fig. 2. Convex polyedron cones S and F .

where X, S, P, Sin, Pin and D denote biomass, substrate,
product, influent substrate and product and dilution rate,
respectively. The dilution rate is defined as D = Fin

V , where
Fin is the inlet feed rate and V the broth volume.

Firstly, the experimental data is smoothed off using
smoothing splines and then the time derivatives appearing
on the left-hand side of equations 2-4 are evaluated.

Intracellular flux determination The set of solutions to
equation 1 can be computed using convex analysis. This
approach is based on the interpretation of elementary
fluxes modes (simplest metabolic pathways linking sub-
strates to products) and makes the most of the avail-
able information (i.e., metabolic network and extracellular
measurements) without imposing any artificial constraint.

Geometrically speaking, the set of positive solutions to
Niv(t) = 0 generates a convex polyhedron cone S (see
figure 2). Any flux distribution v in the cone S can be
expressed as a non-negative linear combination of a set
of elementary flux vectors ei, which are the edges of the
polyhedral cone S:

v(t) = w1(t)e1(t)+w2(t)e2(t)+· · ·+wp(t)ep(t), wi(t) ≥ 0
(5)

If the system is further constrained with the information
provided by the extracellular measurements (specific up-
take and excretion rates), the solution space reduces to
a convex polytope F in the positive orthant, where each
admissible flux distribution v(t) can be expressed as a
convex combination of a set of non-negative basis vectors fi
which are the edges of this polytope. The set of admissible
flux vectors is defined as:

v(t) =
∑

i

wi(t)fi(t), wi(t) ≥ 0,
∑

i

wi(t) = 1 (6)

The basis vectors fi(t), the so-called elementary flux vec-
tors of the flux space F , can be obtained applying the
software METATOOL (Pfeiffer et al., 1999) or EFMTool
(Terzer and Stelling, 2008) to the matrix:

(
N45×72

i 0
N21×72

m −v21×1
m (t)

)
(7)

and in turn the admissible bounds vmin
j (t) and vmax

j (t) for
each admissible flux vj(t):

vmin
j (t) ≤ vj(t) ≤ vmax

j (t),

with

vmin
j (t) = min

i
f j
i (t), v

max
j (t) = max

i
f j
i (t)

(8)

where f j
i (t) is the j-th component of the i-th basis vector

fi(t). Note that METATOOL calculates 13 7063 elemen-
tary flux modes from the set of positive solutions Niv(t) =
0. However, after the system being constrained with the
information provided by the extracellular measurements,
the number of elementary flux vectors decreases drasti-
cally. For example, at t = 0 only 80 elementary flux vectors
are computed.

The system is said well posed if the solution set is not
empty and if all the metabolic fluxes are bounded. Oth-
erwise, the system is said to be ill posed and additional
extracellular information has to be provided.

5. OVERDETERMINED SYSTEM

The linear system of equations to solve in the least squares
sense is given by:

(
N16×29

ismall

N21×29
msmall

)
× v(t)37×1 =

(
0

v21×1
m (t)

)
(9)

where Nismall and Nmsmall are the stoichiometric matrices
of the reduced-size network, connecting the fluxes to the
internal metabolites and to the available measurements,
respectively.

At first, it is assumed that the fluxes are positive:

v(t) ≥ 0 (10)

which is the only a priori knowledge.

In a further step, the linear optimization problem can be
solved under box constraints:

vmin(t) ≤ v(t) ≤ vmax(t) (11)

where vmin and vmax are lower and upper bounds, which
can be inferred from DMFCA.

The Matlab function lsqlin is used as the optimization tool
to solve problem 9-10 or problem 9-11. The application
of this algorithm allows the definition of a relative error
in the measurement vector (vm). In this study, a relative
error of 5% is assumed (which is obviously an approximate
value, as it takes into account of the experimental errors
but also of the data processing to estimate the uptake and
excretion rates).

6. NUMERICAL RESULTS

Based on the previous metabolic networks, DMFCA and
LP are applied to experimental data from CHO fed-
batch cultures in order to get insight into the flux dis-
tribution and assess the influence of the construction of
the metabolic network. Recombinant mAb, glucose, glu-
tamine, lactate, alanine, ammonia and 15 amino acids
(except leucine, tryptophan and cysteine) are the available
extracellular experimental data.
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6.1 Glycolysis and Pentose phosphate pathways

The PPP is present in the cytosol of all cells and has
two major functions: (1) to synthesize ribose 5-phosphate,
which is required for nucleotide and nucleic acid synthesis;
and (2) reducing power in the form of NADPH. PPP
also provides an alternative pathway for glucose oxidation.
However, in most tissues, 80-90% of glucose oxidation
is via glycolysis and the remaining 10-20% occurs via
PPP (Wamelink et al., 2008). Also, several studies have
demonstrated that the G6P is mostly converted to pyru-
vate by glycolysis and in less quantities by PPP either
in hybridoma or CHO cells (Ahn and Antoniewicz, 2011;
Sengupta et al., 2011). Indeed, in this study, comparing
metabolic fluxes v2 and v17, obtained using LP with posi-
tivity constraints or with box constraints, one can observe
that conversion of G6P to pyruvate by PPP is very low
when compared to glycolysis (figure 3). This observation is
not clear when comparing both fluxes v2 and v17 obtained
by DMFCA. This is explained by the fact that Glycolysis
and PPP are set in parallel, and thus are not distinguish-
able applying DMFCA from extracellular measurements
only. The assimilation of G6P could occur in the Glycolysis
or in the PPP indistinctly, and thus their flux intervals are
in counterbalance.

Fig. 3. Dynamic evolution of Glycolysis (v2) and PPP (v17-
v19) metabolic fluxes along time culture. Turquoise:
DMFCA. Black: LP with positivity constraint. Red:
LP with DMFCA constraints.

6.2 Anaplerotic Reactions

The anaplerotic reactions are known to be important
for the replenishment of TCA cycle intermediates. In
this study, two anaplerotic reactions are considered: the
pyruvate carboxylase (v20) and the malic enzyme (v21).
From figure 4 one can see that the flux of malic enzyme
is higher than the flux of pyruvate carboxylase when
DMFCA constraints are considered. The higher efflux of
malate out of TCA cycle implies a higher rate for its
conversion to pyruvate. In turn, pyruvate can be used to
enter in TCA cycle via Acetyl-CoA, to produce lactate
or to participate in the synthesis of alanine. As shown
in figure 5, in most of the culture, the majority of the
pyruvate is channeled mainly towards lactate (see figure
6). The inefficient use of glucose for ATP production is
a well known characteristic of CHO cells - phenomenon

characterized as Warburg effect (Vazquez et al., 2010),
where most of the available glucose is converted into
lactate obtaining ATP from an aerobic glycolysis process.

Fig. 4. Dynamic evolution of anaplerotic reactions along
time culture. Turquoise: DMFCA. Black: LP with
positivity constraint. Red: LP with DMFCA con-
straints.

Fig. 5. Dynamic evolution of pyruvate fates along time cul-
ture. Turquoise: DMFCA. Black: LP with positivity
constraint. Red: LP with DMFCA constraints.
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Fig. 6. Comparison between pyruvate fates. For a and b.
asterisk: Pyruvate producing lactate (v15); straight
line: Pyruvate entering into TCA cycle (v7); dashed
line: Pyruvate producing alanine (v16). Black: LP
with positivity constraint. Red: LP with DMFCA
constraints.

6.3 Nucleotides and Biomass Synthesis

Not only nucleotides and biomass fluxes present zero as
a feasible solution when DMFCA is applied. Even though
a zero flux is mathematically feasible, it is clear from a
biological viewpoint that it is not a valid possibility during
the cell growth and it would be desirable to have smaller
and more realistic intervals for these fluxes. Applying LP
to the overdetermined system this problem is apparently
resolved. In figure 7, it is observed that both nucleotide
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and biomass fluxes achieve the maximum value allowed
when DMFCA constraints are imposed. Applying LP
with simple positivity constraints, nucleotide flux remains
inside the bounded solution found by DMFCA. However
the biomass flux presents higher values than the ones
computed by DMFCA.

Fig. 7. Dynamic evolution of nucleotides and biomass
synthesis along time culture. Turquoise: DMFCA.
Black: LP with positivity constraint. Red: LP with
DMFCA constraints.

7. CONCLUSIONS

In this study, the dynamic metabolism of fed-batch CHO
cell culture is investigated, considering two metabolic
networks. The first one is a detailed, underdetermined
network, while the second one is a reduced-size network,
which is overdetermined. The reduced network belongs to
the larger ones, thus allowing a direct comparison.

On the one hand, the underdetermined system is solved by
applying dynamic metabolic flux convex analysis, which
allows the determination of bounded intervals for the in-
tracellular metabolic fluxes continuously over the culture
time. On the other hand, a linear optimization prob-
lem is solved to determine the flux distribution in the
overdetermined system. This linear optimization problem
is solved either imposing simple positivity constraints or
box constraints inspired by DMFCA. Considering the un-
derdetermined network as the reference, it is observed in
the first problem setting (positivity constraints) that a
few fluxes are not contained into the bounded solutions
found by DMFCA. This is the case for the flux of pyruvate
entering in the TCA cycle (v7) and biomass synthesis
(v52). Nonetheless, most of the fluxes are confined into
the bounded solutions found by DMFCA. Imposing box
constraints, a feasible solution is found as well by LP. As
apparent from the nucleotide (v51) and biomass synthesis
(v52), LP with box constraints provides more realistic re-
sults than LP with positivity constraints. When the latter
is applied, biomass synthesis achieves higher values (even
higher than the ones calculated with DMFCA), whereas
nucleotides synthesis presents lower values. In contrast,
when the former is applied, biomass and nucleotide syn-
thesis present the same trend, which is more realistic from
a biological point of view.
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