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Modelling and Control of Non Holonomic Wheeled Mobile Robots
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Abstract: Using Lagrange formalism and differen-
tial geometry, a general dynamical model is derived
for 3-wheels mobile robots with non holonomic cons-
traints. It is shown that a static state feedback al-
lows to reduce the dynamics of the system to a form
for which stabilizing input-output linearizing control
1s possible.

1 Introduction

In this introduction, we give a brief account of the the-
ory of mechanical systems with non holonomic cons-
traints, which was developed by many authors at the
end of the last century (see e.g. [2,5]). A more com-
prehensive treatment can be found in [1].

A mechanical system whose configuration is com-
pletely described by a n-vector

)

q=1(q1," " ¢n

of generalized coordinates, can be subjected to i kine-
matic independent constraints (m < n) of the form :

af (¢)§ =0 (1)

where a;, - -+, a,, are smooth linearly independent vec-

tor fields on R™ and ¢ denotes the time derivative of ¢

as usual. We introduce a (m x n) matrix A(g) made
up of the vector fields a;(q) as follows :

, T .

Alg) = (ailq), - am(q)) (2)

The independence of the constraints implies that this
matrix A(q) has full rank m for all ¢ in R”. The num-

ber of degrees of freedom (d.o.f) is defined as the dif-

ference between the number of generalized coordinates
and the number of independent constraints :

dof.=n-m

(3)
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We define a smooth distribution A, associated with
the constraints (1) :

Afg) = Ker(A(g)) (4)
The constraints are holonomic or completely inte-
grable iff A is integrable, that is by Frobenius theorem,
iff A is involutive. Our concern in this paper is to deal
with mechanical systems which are non holonomic and
whose associated distribution A is not involutive. We
consider its involutive closure denoted A.
Let (n —m*) denote the dimension of A, with m* <
m. Since A is involutive, it is completely integrable.
Hence, the set of independent constraints can be par-
titioned in two parts : m* holonomic constraints and
(n —m*) non holonomic constraints. This implies that
m* generalized coordinates can be eliminated from the
dynamical description of the system as we shall see in
the next sections.

2 Description of a mobile robot

Mobile robots constitute a typical example of non holo-
nomic systems (see e.g. [3,6,4]). We consider here a
robot moving on an horizontal plane, constituted by
a rigid trolley equipped with non deformable wheels.
During the motion, the plane of each wheel remains
vertical and the wheels rotate around their (horizon-
tal) axis whose orientation with respect to the trol-
ley can be fixed or varying. The contact between the
wheels and the ground satisfies the conditions of pure
rolling and non slipping. The motion of the robot
is achieved by actuators which provide torques acting
on the rotation and/or the orientation of the axis of
some of the wheels.

We now introduce the definition of the generalized co-
ordinates and some additional notations which will al-
low us to describe the configuration and the dynamics
of the robot.



2.1 Robot position

Consider an inertial reference frame {0,/y, I} in the
plane of motion. Define a reference point @ on the
trolley, and a basis {2, x2} attached to the trolley
(see I'ig.1). The position of the trolley in the plane is
completely specified by the following 3 variables :

e 2,y : the coordinates of the reference point @ in
the inertial frame,

e 0 : the orientation of the basis {z; , 25} with res-
pect to the inertial basis.

We define the vector € as :

E=(xy o)

Figure 1: Position of the robot in the plane

2.2 Characterization of a wheel

We now characterize the position of a particular wheel
(see Iig. 2). Consider the mobile frame {@,z1, 22}
attached to the trolley. The center B of the wheel is
connected to the trolley by a rigid rod AB (of constant
length d), which can rotate around a fixed vertical axis
al A. The position of this point A4 with respect to
the trolley is specified by 2 constants : the length [
and the angle o. The rotation angle of the rod AB
with respect to QA is denoted 8. The orientation of
the plane of the wheel with respect to AB is given
by the constant angle v. The rotation angle of the
wheel around its (horizontal) axis is denoted ¢. The
radius of each wheel is R. The position of the wheel
is therefore characterized by a set of five constants :
{RR.1.d, o« 5}, and its motion by 2 varying angles
(1) (orientation of the rod AB) and ¢(t) (the rotation
angle). Obviously if the rod AB is fixed the angle 3
becomes a constant.

With this description it becomes easy to compute the
velocity of the point of the wheel in contact with the
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Figure 2: Characterization of a wheel

ground. The component of this velocity in the plane
of the wheel is :

[—sin(e+B+7); cos(a+B+7);
deosy + lcos(B + 'y)]R(@)f + dcos'y/? + R¢}

and the component orthogonal to the wheel :

(6)

[cos(a+ B +7); sin(a+B+7);
dsiny + lsin(3 + 7)]R(€)§' + dsin'yﬁ

where R(f) is a (3 x 3) orthogonal rotation matrix :

(")

cosf  sind 0
R(O) =1 —sinf cosd 0 (8)
0 0 1

These expressions will be used in the next sections to
explicit the pure rolling and non slipping conditions.

2.3 Generalized coordinates

We use a lower index notation to identify the quantities
relative to each wheel. Throughout the paper, we shall
examine in more details the particular case of 3-wheels
robots represented in Fig. 3 : the 2 front wheels (index
2 and 3) have a fixed orientation while the orientation
of wheel 1 is varying. The theory is easily extended
to robots with an arbitrary number of wheels (see [4]).
According to our previous description, the geometry
of the wheels is completely described by the following
set

{Ri L di ai, v, B, i i=1, -, 3}

The reference point @ is the center of the segment
By By (see Fig. 3). The basis vector @) is aligned with
B4 B3. The geometric characteristics are



e Wheel 1 : R = R, |y =L, d) =d, o

»

by

br=pmn=z.

e Wheel2: Ry =R, s =L,dy =0,a,=0,8: =0,
72 = 0.

o Wheel 3 : RSIR,l:s:L,d;;:O,as
63:0173:(1

:ﬂ"

el 1
3

R

Figure 3: 3-wheels example

The robot motion is then completely described by
the following vector of 7 generalized coordinates :

gty=(2y 0 B ¢1 ¢2 63)" (9)

2.4 Kinematical constraints

The pure rolling conditions, i.e. the fact that the
component of the velocity of the contact point of the
wheel with the ground in the plane of the wheel is zero,
are deduced from (6) :

JUB)ROIE + Jop =0 (10)
with :
—-sinf cosp ~—Lsing
J1(B) = 0 1 L
0 -1 L

Ja(iyi)=R,i=1,-,3

The non slipping conditions, i.e. the fact that the
component of the velocity of the contact point, or-
thogonal to the plane of the wheel is zero, are deduced
from (7) :

Ci(B)R(O)E + C2f =0 (11)
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where C; and Cz are partitioned in two blocks :

oo ()

with :
sinf d+ Leosf )

{ Cio(B8) = ( cosp
1 0 0)

Cyp=d, Cu:(_l 0 0
We note that these constraints (10)-(11) are in the
general form of kinematical constraints (1).

Cro(PB)

e =

2.5 Degrees of freedom

To obtain the number of degrees of freedom (3), we
compute the rank of the following 6x7-matrix asso-
clated with the constraints (10) and (11) :

JiB)RO) 0 Jp
A(B,9) = (12)

Cro(B)R(B) Cao 0

CLR(E) 0 0
Due to the block triangular structure of A(Z,6), it
is easy to check that A(fS,0)) has rank 5. Conse-
quently, the robot has 2 degrees of freedom. More-
over, rank(C1;) being equal to 1, we deduce that the
two last constraints are equivalent. Without loss of
generality, we select the constraint corresponding to
the second wheel. Defining the following row vector,
Ct, = (1,0, 0), the corresponding constraint is writ-
ten : )

CHLR(E)E=0 (13)
For any ¢ satisfying (13), there exist only one value
of 8 and one value of ¢ which satisfy the other cons-
traints. These values are expressed as :

B=—Cx'Cro(B)RO)E E DIBROE  (14)
0 = ~JT B)R)E K Do(B)R(O)E  (15)
2.6 Determination of the non holo-

nomic constraints

We select a basis {p1, po} of the 2-dimensional space
Ker(Ct,) as follows :
pr=010" 5 pp=0n7 (16)

Then, using (13)-(15), the 2-dimensional distribution
A assoclated to the constraints is defined by :

R (0)p: R (0)pe
Span DiuBpr | | Di(B)p: (17)
Da(B)ps Da(B)pa



After a few computations we can check that :

dimA =6 (18)
This means that the constraints are not completely
holonomic but that there exists one (i.e. n —m* = 1)
function of ¢, constant along the trajectories satisfying
the constraints. This function can be exhibited by
summing the constraints of pure rolling of wheels 2
and 3. This sum is written :

L8 + R(¢1+ ¢2) = 0 (19)

which implies that LO(t)+ R(¢1(t) + ¢2(t)) is constant
along all the trajectories satisfying the constraints.

3 Dynamical equations
In the case of mobile robots the Lagrangian is reduced

to the kinetic energy 7(¢,¢). Using the Lagrangian
formalisin, the dynamical equations have the following

{orin ;

d (or\ or T
E(a?)"a? = RTO)T(B+

Lo or ch(Bp+Crv)

d fory or , (20)
dt(aﬁ) o5 = Cowdt P

d (o or . ,
7(5;)—)—% = Jz/\"’BT_’U?

A = (A1, A2, Ag), p, v being the 5 Lagrange multi-
pliers associated with the 5 independent kinematical
constraints, Bu is the set of generalized forces applied
to the system with u the 2-vector of external forces
and torques applied to the system by the actuators.
These 7 equations (20) together with the 5 indepen-
dent kinematical constraints describe the dynamics of
the mobile robot.

We now specify the implementation of the actuators.
We consider 2 possible cases :

e Case 1: The 2 motors provide the torques for the
rotation of wheels 2 and 3. In this case B; does
ot exist and B is given by :

00
Bo=1{1 0 (21)
0 1

e Case 2 : The 2 motors are implemented on wheel
1, the first one for its orientation, the second one
for its rotation, which gives :

By =(1) and By = (22)

(10 0)F
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3.1 Kinetic energy

The kinetic energy of the system is expressed as the
following symmetric quadratic form :

T =
1, [ EOMARO) ETOVE) 0
;i VI B)R0) Iy 0 ]
0 0 Iy
(23)

where M () is a (3 x 3) symmetric matrix defined by :

3
Mu(B) = Man(B) =M +Z m; , M2 =0
Mia(B) = M(ei+ed) T Io
3

+ Z mi(d} + If + 2d;l;cos ;)

i=1

3
Mi3(B) = —-Mes—~ Z midisin(a; + 5;)

i=1

3
- Z mylisina;
1=1
3
A/Igg(ﬁ) = —-M@l — Z 177,id,'COS(C\’Z‘ -+ ,[31)

i=1

3
— E mgl;cosoy
i=1

(24)
V(B) is a 3-vector defined as :
—mydysin(a; + By)
V(ﬂ) = ’mldlcos(al + ,31) (25)
7TL1df + 777,1(11[1C08(ﬂ1) + Ipl
I and I, have the following form :
Iﬁ = 77lld% —+ Ipl
Ig(i,iy =14 , 1=1,---,3 (26)

I(i,) =0 if i#]

In definitions (24)-(26), we have introduced various no-
tations relying on the mass distribution of the robot :

o M : mass of the trolley,

. mass of wheel ¢, ¢ =1, -, 3,

m;

ey, coordinates of the center of mass of

the trolley in the frame attached to the trolley
{Qv ‘lll [2})

Iy : inertia moment of the trolley around the ver-
tical axes passing through its center of mass,

€9 !

I; © inertia moment of wheel ¢, around the verti-
cal axis passing through B;,



e J,; : inertia moment of wheel ¢, around its axis of
rotation.

With this expression of the kinetic energy, the La-
grange equations (20) is rewritten as :

M(B)R(O)E + £1(0,6,8,8) = J{(B)A+
. . . Clo(/@)lH"Cu v
VI(B)R(O)E + £2(6,6,8,8) = Chp+ Biu

(27)
where fi and fo are respectively a 3-vector and a 1-
vector of functions of 6, 8, 3, 3.

3.2 Elimination of variables

Consider the full rank (3 x 2) matrix P made up of
the vectors p1 and pz making a basis of NerCT| (see
eq. (16)), that is :

ChiP=0 (28)
We now eliminate the 5 Lagrange multipliers between
the 7 equations (27). Premultiplying the first equality
of (27) by PT, this elimination leads to the following
matrix equation :

PT(M(B) + DT (B)VT (B)R(6)E
+PT(V(B) + DT (8)1)5

+PT DL (B0 + PT 11(6,6,6,4) (29)
+PTDT(8)£2(6.0.8.8)) = PYG(B)u with
G(B)=( DY (B)B, DI(p)By ) (30)

The constraint (13) implies that there exists a 2-vector
n(t) = (m(t) ne(t))T such that :

R(0)E = Py(t) ie.

m = fabsi710 + ycosl (31)

na =10

The constraints (14) and (15) can then be rewritten
8= Dy(8)Py

as follows :
{ 6 = Dy(pB) Py

Differentiating (31) and (32) with respect to time, re-
placing &, 3, ¢ in (29) and noticing that :

(32)

R(0) = R(O)R=1(6)Py = 0E Py with

0

1 0 .
E={ -1 00 (33)
0 0 0
equation (29) is rewritten as follows :
PTM*(3)Pi+ PTp(6,60,8.8,n) = PTG(B)u (34)
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where :
M*(B) = M(B) + DT (B)VT(8) + V(8)D1(B)
+DT(8)Is D1(B) + DI (8)15D:(85)
(35)
and
p(8,0,5,6,1) = (V(8) + DF(8)1, ) (ﬁ)
~6(M(8) + DT (B)V(8))E 36)

0D, .
+D2T(ﬂ)1¢7ﬁ—(ﬂ)ﬁ
+£1(6,8,8,5) + DT (B)f2(6,0, 5, 8)

From (31) and (32) we can express g, 3 and conse-
quently p(6,8, 8, 3,7n) as a function f* depending only
on 0, n, 8 which gives the following equivalent dyna-
mical state space model of the mobile robot :

PTM~(3)Pi + PT f(8,8,1) = PTG(B)u

T = —nsind

y = nycosb 9
Q: N2 (3‘)
B = Di(B)Pn

¢ = D2(B) Py

4 Control design

4.1 System reduction

System (37) has a triangular structure : the variables
(€,7m) appear only in the first 5 equations. Since our
purpose is to control the trajectory of the robot in the
plane, i.e. only the variables £, we can restrict the ana-
lysis to these first 5 equations. No problem of internal
stability can occur from this reduction, # and ¢ being
uniformly bounded provided 7 is bounded.

Moreover, it is easy to check that the input matrix
PTG(B) has full rank for the two considered configu-
rations, see eq. (21), (22), (30). Consequently, for
any (vy,vs) there exists one and only one static state
feedback u(8,4, 5’) such that the system of equations
(37) in the variables (£,7) reduces to :

m=v o, = g = Vs
z = —msmé’ y = ncosl (38)
g =

4.2 Input-ouput feedback linearization

Consider for instance a point @1, whose coordinates in
the frame attached to the robot are (0, - h) (see Fig.
3). Define as outputs the position of @ in the plane
Le. :
L _( z+ hsing
~/_< >_(y4h6089>

T

7 (39)



1t follows that :

._
!

= —7)19c089 — hé%sinf — v18inf + vohcost

: - 4
—110sinb + h8%cosd + vy cosb + vohsinh (40)

R 54

2

Input-output linearization is therefore possible be-
cause the matrix of the coefficients of v; and vy has
full rank, for any 6, provided h is not zero.

In order to analyse the internal stability we introduce
the following change of coordinates ¢ = ®(&,7) :

(¢ denoting now the vector (& g 0)7)

G=2,{=2,3=y,0=y,(=10

(41)

m order to constitute a diffeomorphism, whose iverse
is given by :

51:(1,,52:43&3:(5777:P1wlR1(C5)<Z)

e 8) om0 )
(42)

In the new coordinates ¢, the system (38) can be
rewritten as follows :

sinf
costl

cosl
—sinf

=G, G=a()+ S v
G3="Ca, G4 =aa(()+ 50 (43)
G=(0 1) tme (&)

where < b1(()

S2(¢)
matrix. Equation (43) shows that provided (» and
¢y (ieo & and §) are bounded, (s (ie. @) remains
bounded. This implies the boundedness successively
of &, n and therefore of 3 and ¢.

) = RT(¢5) Py is a non singular (2 x 2)

4.3 Trajectory tracking

Two different cases are considered.

a) Assume that the control purpose is to track a
smooth reference trajectory (Z4(t), 74(t)) in the plane.
We choose (v, vg) such that :

—v,5in8 + vohcosd = Ty + k11 (Zq — T)
+hyo(Zq — T) + mbcosf + ho?sind
vycosl + vahsind = §g + ko (Fa — Q)
+koo(ga — §) + mbsind — hb%cosh

(44)

Provided a suitable choice of the constant gains k;j,
the control law (44) ensures the exponential stability
of the errors & =z — &4 and g = § — ga as well as the
interual stability.

b) Assume now that the control purpose is to track a
sinooth trajectory (Z4(1),9a4(t), 04(t)) specified in the
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(z,9, 0) space, compatible with the constraints. Af
ter a simple computation of the tangent linearization
of the dynamics of 6=0— 64, we can check that the
control law (44) ensures stable trajectory tracking pro-
vided that the component along z, of the velocity of
Q1, N14 1s negative, with :

Mq = —i:dsiné’d + zijOSQd — 2h9idsin6dcos€d (45)
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