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Abstract. The aim of this paper is to present an approach to analyse time-varying metabolic fluxes. The traditional
tool to perform such analysis is called Metabolic Flux Analysis (MFA) and provides a flux distribution which is a
constant vector, solution of a linear system constructed from the stoichiometric matrix. A basic limitation is that
MFA is usually stated for a given and fixed configuration of the metabolic network that does not account for the
cell adaptation to its environment and particularly to the substrate availability.
Our concern in this paper is to consider the situation where the cells adapt their metabolism in such a manner that
the metabolic network structure is changing during the cell life.
This is achieved by decomposing the cell life in a succession of phases during each of which the metabolism is
described by a metabolic network. Then for each phase, the flux distribution is described as a combination of
Elementary Flux Modes. Finally, the complete flux distribution is obtained by smoothly switching from phase to
phase. The approach is illustrated with batch cultures of Chinese Hamster Ovary (CHO) cells.

1. Introduction

Metabolic Flux Analysis is a popular tool for the modelling of metabolic networks. A metabolic network generally
represents a part of the cell metabolism. The nodes of such a network represent the internal metabolites, the
inputs and outputs of the network are respectively the substrates and the products and the metabolic reactions are
represented by the edges of the network.
The basic idea of Metabolic Flux Analysis is that with the help of a metabolic network and with some flux measure-
ments, it is possible to find the values of the rates at which each reaction operates. A flux distribution is a vector
which entries are these rate values and that gives some insight on the mechanism of the cells (see e.g [1]). For
example, it can help to detect which of several pathways is preferred by the cells to consume a particular substrate.
A basic limitation is that MFA is usually stated for a given and fixed configuration of the metabolic network that
does not account for the cell adaptation to its environment and particularly to the substrate availability.
Our concern in this paper is to consider the situation where the cells adapt their metabolism in such a manner that
the metabolic network structure is changing during the cell life. Therefore, several different metabolic network
structures are necessary to capture the mechanism of the cells during their life time.
In our example of Chinese Hamster Ovary cells cultivated in batch mode, the measured extracellular species are
Glucose, Glutamine, Lactate, Ammonia and Alanine. The experimental data collected during three experiments
are shown in Figure 1. We shall use three successive metabolic networks corresponding to the three phases of the
cell life: the growth phase, the transition phase and the death phase. These three phases are illustrated in Figure 1
:the growth phase marked by + , the transition phase marked by o and the death phase marked by x.
A complete MFA will then be obtained by using the three separate flux distribution models in their respective time
interval, smoothly switching from network to network on the basis of the availability of the substrates.

2. Classical Metabolic Flux Analysis

Metabolic Flux Analysis derives from the pseudo-steady state assumption which states that the intracellular metabo-
lites do not accumulate in the cell, or equivalently that around each metabolite, the net balance between the con-
sumption and production fluxes is equilibrated. This is represented by the algebraic equation:

Nv = 0. (1)
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Figure 1: Biomass production and measured extracellular species for three CHO-320 batch cultures. Growth,
transition and death phases data are respectively represented by +, o and x marks.

Figure 2: Metabolic network for the growth of CHO-320 cells. Bold arrows stand for double arrows.
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Metabolites v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24

Glucose 6-P 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
Dihydroxy-acetone P 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Glyceraldehyde 3-P 0 0 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Pyruvate 0 0 0 0 1 -1 -1 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Acetyl-coenzyme A 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Citrate 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
α-ketoglutarate 0 0 0 0 0 0 1 0 0 1 -1 0 0 1 1 0 0 0 0 0 0 0 0 0
Malate 0 0 0 0 0 0 0 0 0 0 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0
Glutamate 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 -1 1 1 2 0 0 0 0 0 0
Oxaloacetate 0 0 0 0 0 0 0 0 -1 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0
Aspartate 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 -1 0 0 0 0 0 0
Ribose 5-P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 0 0 0
Ribulose 5-P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 1 0 0 -1 0
Erythrose-4-P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0
Xylulose-5-P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 0
Fructose-6-P 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
CO2 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 -1 1 0 0 0 0 -1

Table 1: The stoichiometric matrix for the growth phase.

where N = [nij ] is the m × n stoichiometric matrix and v is the flux distribution vector which entries are the
reaction rates, also called fluxes, of the reactions of the network.
The stoichiometric matrix translates the structure of the network in the following manner:

• in each row the non-zero entries represent production and consumption fluxes of a particular metabolite,

• in each column the non-zero entries indicate the metabolites that are involved in a particular reaction.

More precisely, the flux vj denotes the rate of reaction j and a non-zero entry nij is the stoichiometric coefficient
of metabolite i in reaction j.
As a matter of illustration, the metabolic network chosen to describe the growth phase of the CHO cells is depicted
in Figure 2 and the corresponding stoichiometric matrix network appears in Table 1 (see [6,7,8]).
Some metabolite measurements are available and describe in some sense the cells under study. Here we will work
with the hypothesis that only measurements of some substrates and products are available. The specific uptake
and excretion rates of these measured substrates and products are denoted vs and vp. By definition they are linear
combinations of some of the metabolic fluxes. This is expressed by defining two appropriate matrices N s×n

s and
Np×n

p such that:

vs = Nsv vp = Npv.

The purpose of MFA is to compute the unknown flux distribution v from the measurements of vs and vp. The goal
is thus to find a non-negative solution to the linear system:




N
Ns

Np



 v =




0
vs

vp



 with v ≥ 0 (2)

In the case of CHO cells, during the growth phase, Glucose and Glutamine are the measured substrates and Lactate,
Alanine and Ammonia are the measured products (see Fig. 1). As a consequence, matrices Ns and Np are written
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as follows:

v1 v16 v17 v18 v24

Ns =
(

1 . . . 0 0 0 . . . 0
0 . . . 1 1 2 . . . 0

)
Glucose
Glutamine

v1 v6 v7 v15 v16 v24

Np =




0 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 0 0 . . . 0
0 . . . 0 0 . . . 1 1 . . . 0




Lactate
Alanine
NH4

System (2) is typically underdetermined because there are fewer metabolites than reactions in a metabolic network
and the number of measurements is usually too small to make the system a completely determined one. This means
that, except if additional constraints are added, the solution v of the MFA problem (2) is not unique but constitutes
a set of solutions that we denote S. One of our goals is to give a geometrical characterization of the set S with a
sensible biological interpretation.

3. Elementary Flux Modes

Obviously the nonnegative solution vector v lies in the kernel of N . Convex Analysis provides for a further
characterization of the solutions. In fact, any solution of (2) can be written as a nonnegative combination of vectors
ei that constitute the so-called convex basis of the solution space:

v =
∑

i

eiwi with wi ≥ 0 ∀i

or equivalently:
v = Ew with w ≥ 0

where En×k is a matrix which columns are the convex basis vectors and k ≥ null(N) = n−m. The convex basis
is by definition constituted of nonnegative vectors:

ej
i ≥ 0 for j = 1..n ∀i.

In biochemical terminology a convex basis vector is an Elementary Flux Mode (EFM) (see [3,4,5]). The EFMs for
the growth phase of CHO cells are displayed in Table 2. From a geometric viewpoint, the convex basis defines a
pointed convex polyhedral cone P which involves all the nonnegative solutions v of Nv = 0. But it is evident that
the solution set S is only a strict subset of P . We shall see hereafter that the set of S can also be geometrically
described as a pointed polyhedral cone in the k-dimensional nonnegative orthant.
The Elementary Flux Modes allow for a different formulation of system (2) as follows:




N
Ns

Np



 Ew =




0
vs

vp



 with w ≥ 0 (3)

Since NE = 0 the problem is reduced to find w such that:
(

NsE
NpE

)

︸ ︷︷ ︸
M(s+p)×k

w =
(

vs

vp

)
with w ≥ 0 (4)

Usually, k is larger than the total number of measurements s + p. System (4) is therefore underdetermined and the
solution set S can be obtained from the solution set of (4) by a linear operation encoded in E. System (4) can also
be written in the following form:

(
NsE −vs

NpE −vp

) (
w
1

)
=

(
0
0

)
with w ≥ 0 (5)
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which in turn can be analyzed in the framework of convex analysis.
For each nonnegative solution w of the nonhomogeneous system (4), there obviously exists a unique nonnegative

solution
(

w
1

)
of the homogeneous system (5). This means that the solution set S is isomorphic to the polyhedral

cone generated by the convex basis of the solution space of system (5). As a matter of illustration, system (5) for
the growth phase of CHO cells is written as follows:





1 1 3 3 0 0 0 1 1 1 1 −0.187
0 0 0 0 1 1 1 2 1 1 1 −0.050
2 0 5 0 1 0 0 0 0 0 1 −0.344
0 0 0 0 0 1 0 0 1 0 0 −0.008
0 0 0 0 2 1 2 0 0 1 1 −0.045





(
w
1

)
=

(
0
)

(6)

In this equation, average values of the substrate uptake rates vs and the production rates vp have been computed
from the experimental data given in Figure 1.
The vectors of the convex basis of (6) are given in Table 3. They are normalised to have a unit last entry. Let us
consider the submatrix F obtained by removing the last row. The dimension of the matrix F is k × l where k is
the number of elementary flux modes and l is the size of the convex basis. Each line of the matrix corresponds
to an EFM. An important and critical observation is that in each column of F , there are exactly (s + p) nonzero
entries and k − (s + p) zero entries. From a biological viewpoint, each column of F can then be interpreted as a
particular solution w of (4) that uses a minimal number of (s + p) EFMs. The nonzero entries of a vector f of F
can be interpreted as the weights of the respective contributions of the different EFMs in the computation of the
corresponding solutions w.
Finally, since each flux distribution v satisfying (2) is defined as v = Ew, it follows that the columns of the
matrix product EF , presented in Table 4, can be interpreted as a convex basis of the solution set S of the MFA
problem (2).
Some additional knowledge could be used to discard some of these convex basis vectors as acceptable flux dis-
tributions. Let us illustrate this with the growth phase of CHO cells. In our example, measures of Purine and
Pyrimidine nucleotides are not available but these nucleotides are necessary simultaneously for the production of
biomass. Since the measures of Purine and Pyrimidine nucleotides are not involved in the calculations of the con-
vex basis F , this is a constraint that has to be taken into account a posteriori when choosing the columns of EF to
represent an acceptable flux distribution. The fluxes related to Purines and Pyrimidines respectively are noted v17

and v18 in the metabolic network (see Figure 2). Hence, the vectors of EF that possess a zero at one of these two
entries (see Table 4) are discarded because they are not compatible with the growth metabolism of the CHO cells.
However, they should not be excluded from the convex basis. Indeed, their combination with the other convex
basis vectors, the biomass-producing flux distributions, are valid flux distributions.

4. Time-Varying Metabolic Flux Analysis

The results of previous section show how we can obtain a nonnegative flux distribution which in addition is inter-
pretable in terms of Elementary Flux Modes.
Now that a flux distribution is available for the growth, a different metabolic network is depicted in Figure 3 for
the transition phase which occurs in the time period just after Glucose is exhausted (from about 80 to 120h). As we
can see in Figure 1, during this period the cell keeps growing while Lactate and Alanine start to be consumed. Our
assumption is then to consider Lactate and Alanine as new substrates, in addition to Glutamine whose consumption
is slowed down. Therefore, some of the reactions of the previous network are inverted in order to be in agreement
with this assumption and, in particular, to still have a production of the nucleotide precursors. During the death
phase, it is assumed that the nucleotides are no longer produced. The metabolic network (Figure 4) has then been
modified to satisfy that assumption.

With these metabolic networks, the same calculations can be performed for the transition and the death phases.

First, the Elementary Flux Modes and afterwards the convex basis H of system (4) are computed . An acceptable
flux distribution is obtained for each phase by picking one or a convex combination of the vectors of EF , provided
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e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

v1 1 3 1 3 0 0 0 1 1 1 1
v2 1 0 1 0 0 0 0 0 0 0 0
v3 1 2 1 2 0 0 0 0 0 0 0
v4 1 2 1 2 0 0 0 0 0 0 0
v5 2 5 2 5 0 0 0 0 0 0 0
v6 2 5 0 0 1 0 0 0 0 0 1
v7 0 0 0 0 0 1 0 0 1 0 0
v8 0 0 2 5 0 0 1 0 0 1 0
v9 0 0 2 5 0 0 1 0 0 1 0
v10 0 0 2 5 0 0 1 0 0 1 0
v11 0 0 2 5 1 1 2 1 2 3 2
v12 0 0 2 5 0 0 1 1 1 2 1
v13 0 0 0 0 1 1 1 0 1 1 1
v14 0 0 0 0 0 0 0 1 1 1 1
v15 0 0 0 0 1 0 1 0 0 1 1
v16 0 0 0 0 1 1 1 0 0 0 0
v17 0 0 0 0 0 0 0 1 0 0 0
v18 0 0 0 0 0 0 0 0 1 1 1
v19 0 3 0 3 0 0 0 1 1 1 1
v20 0 1 0 1 0 0 0 1 1 1 1
v21 0 2 0 2 0 0 0 0 0 0 0
v22 0 1 0 1 0 0 0 0 0 0 0
v23 0 1 0 1 0 0 0 0 0 0 0
v24 0 3 6 18 2 2 5 2 3 6 3

Table 2: The eleven elementary flux modes for the growth phase

h 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 9 h 10 h 11 h 12 h 13 h 14 h 15 h 16 h 17

e 1 0.16 0.16 0.17 0.16 0.16 0.17 0.16 0.16 0.17 0.17 0.17 0.16 0.17 0.16 0.17 0.10 0.12
e 2 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
e 3 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02
e 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
e 5 0.00 0.01 0.01 0.01 0.02 0.00 0.02 0.02 0.00 0.01 0.00 0.02 0.00 0.02 0.00 0.02 0.02
e 6 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.00
e 7 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.02 0.02 0.00 0.02 0.00 0.02 0.00 0.00
e 8 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
e 9 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01
e 10 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
e 11 0.00 0.03 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
e 12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3: Matrix H containing the convex basis vectors of (4) and F , the matrix obtained by suppressing the last
row of H
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v 1 0.19 0.19 0.19 0.19 0.19 0.19 0.01 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19
v 2 0.16 0.16 0.17 0.16 0.16 0.17 0.01 0.17 0.17 0.17 0.17 0.16 0.18 0.16 0.17 0.10 0.12
v 3 0.17 0.16 0.17 0.16 0.16 0.17 0.01 0.17 0.17 0.17 0.17 0.17 0.18 0.17 0.17 0.15 0.15
v 4 0.17 0.16 0.17 0.16 0.16 0.17 0.01 0.17 0.17 0.17 0.17 0.17 0.18 0.17 0.17 0.15 0.15
v 5 0.34 0.31 0.33 0.31 0.33 0.33 0.01 0.34 0.34 0.34 0.34 0.35 0.35 0.34 0.35 0.33 0.32
v 6 0.34 0.34 0.34 0.34 0.34 0.34 0.01 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34
v 7 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
v 8 0.02 0.00 0.01 0.00 0.01 0.01 0.00 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.02 0.00 0.00
v 9 0.02 0.00 0.01 0.00 0.01 0.01 0.00 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.02 0.00 0.00
v 10 0.02 0.00 0.01 0.00 0.01 0.01 0.00 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.02 0.00 0.00
v 11 0.06 0.07 0.07 0.07 0.07 0.07 0.00 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.04 0.05
v 12 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.01 0.02
v 13 0.03 0.04 0.03 0.04 0.04 0.03 0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
v 14 0.01 0.03 0.02 0.03 0.02 0.02 0.00 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02
v 15 0.02 0.03 0.02 0.03 0.03 0.03 0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
v 16 0.03 0.01 0.02 0.01 0.02 0.02 0.00 0.02 0.03 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.02
v 17 0.00 0.03 0.01 0.03 0.02 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01
v 18 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
v 19 0.03 0.03 0.02 0.03 0.02 0.02 0.00 0.02 0.01 0.02 0.01 0.02 0.01 0.03 0.01 0.09 0.07
v 20 0.02 0.03 0.02 0.03 0.02 0.02 0.00 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.04 0.03
v 21 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.05 0.03
v 22 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02
v 23 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02
v 24 0.15 0.12 0.13 0.12 0.13 0.13 0.01 0.14 0.15 0.14 0.15 0.15 0.15 0.14 0.15 0.15 0.14

Table 4: Matrix EF containing the convex basis vectors of (2). The vectors EF1, EF7, EF9, EF11, EF12, EF13,
EF15 and EF16 are not acceptable flux distributions.
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Figure 3: Metabolic network proposed for the transition phase.

Pyruvate Lactate
Acetyl-coenzyme A

Malate

NH4

!-ketoglutarate Alanine

CitrateOxaloacetate

NH4

Glutamine
Glutamate

V12
V11

V15
V16

V13

V10

V6
V7V8

V9
CO2

CO2

Central Metabolism

Figure 4: Metabolic network for the death phase.
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Figure 5: Time-varying flux distribution for the entire life of CHO cells. In particular, the growth flux distribution
is obtained by using f2.

that it is compatible with the metabolism of the corresponding phase of the cells. Then a time-varying flux distri-
bution for the entire cell life is obtained by switching from each phase flux distribution to the next. In the case of
CHO cells, the following time-varying flux distribution is obtained:

v(t) = Egrowth fgrowth φgrowth(t) + Etransition ftransition φtransition(t) + Edeath fdeath φdeath(t)

where φ(t) are smooth switching functions and the fi are selected columns of matrix F for each phase. For exam-
ple, the second column of F has been used for the growth phase of CHO cells. A similar choice has been made for
the consecutive phases. It yields the resulting time-varying flux distribution presented in Figure 5.

Conclusion

In this paper, we presented an approach to compute time-varying flux distributions. This is achieved by first de-
composing the cell life in a succession of phases during each of which the metabolism is described by a metabolic
network. Then for each phase, the flux distribution is described as a combination of Elementary Flux Modes. The
admissible weights of this combination are given by the entries of a selected convex basis vector which solves a
problem involving the measurements and the Elementary Flux Modes. Finally, the complete flux distribution is
obtained by smoothly switching from phase to phase.
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