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ABSTRACT

In this paper, continuocus-time estimation algorithms for the
microbial growth-rate of a fermentation process are propo-
sed. The microbial specific growth-rate is here considered

as a time-varying

using adaptive estimation

unknown parameter and 1s estimated by

schemes. Different input-output

configurations are considered. Stability and convergence are
analysed for each estimation algorithm.
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1. INTRODUCTION

Continuous microbial growth in a comple-
tely stirred bioreactor is commonly
described by the following state-space
representation :

axi(t) _ _
S = felt) - D(t)] X(t) (1)
ds(t) _ .
T T - K MIEIX(t) - Kk, X(t) (2)

+ DLtI[S () - s(t)]

with: X(t), the biomass concentration
S{t), the limiting substrate
concentration
S (t), the inlet substrate con-
IN
centration
D{t), the dilution rate (i.e. the
flow rate )
ult), the specific growth-rate

ki'kz' the yield coefficients

In this representation, the specific
growth-rate ul(t) is known to be a complex
function of the biomass concentration
Xit), of the substrate concentration
S(t), of the pH, of the temperature, of
inhibitors, etc. Many different analyti-
cal laws have been suggested for modeling
mit), The most popular is certainly the
"Monod law" :

*
m S(t)

ult) = —sreT
m

*
where u 1is the maximum growth rate and
Km the "Michaelis-Menten"” parameter. But

it 1s far from being the only one :
ddrlng a recent investigation 1in the
sclentific literature, we registered more
than thirty different expressions for
wit).

Therefore, the choice of an appropriate
analytical description of uit) is crucial
in using state-space representations like
(11-0(2) and is an object of controversy
in the literature.

In this paper, we suggest to avoid this
choice by considering u(t) as a time-va-
rying parameter estimated in real time.

To solve this estimation problem, exten-
ded Kalman filter ideas could clearly be
applied (Nihtila et al., 1384; Stephano-
poulos and Ka-Yiu-San, 1983) but stabili-
ty and convergence analysis is difficult.
The aim of this paper is to show that
reliable real time estimates of wl(t) can
be obtained by using very simple adaptive
schemes. We describe the adaptive estima-
tion of ult) for several input-output
configurations of the system and, in each
case, we prove the algorithm stability
{in a BIBO sense) by using arguments from
Anderson and Johnstone (1983).

The problem of parameter estimation of
microbial growth processes has been
previously considered by Aborhey and
Williamson (1978} : they assume that uit)
obeys to the Monod law and the estimation

*
of the constant parameters u and Km is

carried out via the use of state variable
observers equations. Here we shall use a
similar approach but, as already said, to
estimate a time-varying parameter ul(t),
independently of any analytical expres-
sion. Moreover, Aborhey and MWilliamson
assume that both the biomass concentra-
tion X(t) and the substrate concentration
S(t) are available for direct measure-
ment. In the following, different estima-
tion algorithms are presented, which
depend on which variables are available
for on-line measurement :

a) in section 3.1., we consider the case
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when the biomass concentration X(t) 1s
accessible for direct measurement

b} in section 3.2, an estimation scheme
is described when both the biomass
concentration X(t) and the substrate
concentration Si{t) are measured on
line ;

c) in section 3.3, estimation results are
presented when biomass concentration
measurements are not avallable. Then
reaction product measurements are
necessary to implement estimation of
wlt). Two different reaction products
(gaseous and liquid) are considered
and described in section 2.

Practical implementations of the estima-
tion algorithm have been carried out on
two different fermentation processes and
real life results are presented 1n sec-
tion &.

2. DESCRIPTION OF THE SYSTEM

As said in the introduction, we consider
fermentation systems described by the
state-space representation (1)-(2). In
order to make this description fairly
general, we shall specify output equa-
tions relating the synthesis product to
the state of the system.

We shall distinguish between two cases.
1) When the reaction product 1s gaseous,
we consider the following equation :

aft) = kanltixlt) (3)
with @(t) : gas flow rate.
ua : yield coefficient.

A typical example is the anaerobic fer-
mentation process, where Q(t) is a me-
thane gas flow rate (Andrews, 1969)

2) In the case of a 1liguid reaction
product, we consider :

dP(t) _
o kanlt}X[t]+k‘Xit1-DttlPtt] (&)
P(t]) : reaction product concentration,
kz. k3 : yield coefficients.

Equation (&) 1s derived from Luedeking
and Piret (1959) and can be considered as
fairly general. Plt) 1is, for instance,
the ethanol concentration produced from a
glucose fermentation process (Dourado and
Calvet, 1983).

Throughout the paper we adopt the follo-
wing (mild) assumptions (for all t > tcl:
1) 0 < Dit)

2) 0 < Syplt) < Synimax)

3) 0 < mlt) < u
4) the experimental conditions are such
that S(t), X(t) > 0 and Qf(t) > 0.

Under these assumptions, it can be shown
(Dochain and Bastin, 1984) that X(t).
S{t) and Q(t) are bounded.

*
The assumption aft) < 4 means that we
assume the existence of an unknown upper

* 3
bound on alt) (g 1s the maximum growth-

-rate). This assumption 1s needed to
ensure the boundedness of X, 5 and Q.

3. ESTIMATION OF THE SPECIFIC MICROBIAL
“GROWTH-RATE mlti: ALGORITHMS.

 F B The biomass concentration X(t) 1s
avallable for direct measurement.

A
Let us denote by X, the estaimate of X and
write the following observer eqguation
~
X
t

a

1

= ~
= uX - DX + CT(tl(X-X] C1it}>ﬂ (5)

[+1

A

The estimate 4 of the microbial growth
rate is updated by using the following
equation :

>

2L = g0 (x-%)

Czltl>ﬂ (6]

[s1
ot

It is worth noting that the estimation of
4 is carried without the wuse of the
reaction product values.

1f we define the errors

L)
e = X=X
X
~
e = u-
i -
the following “"error system” can be
written from (1), (5), (6) :
dax
- I el c‘lt]e>< + Xeu {(7.a)
de
Mo du (7T.b6)
g " Stue, Y 5

The stability and convergence properties
of the estimation algorithm (5) (6) are
analysed under the following assumptions:

A.1. X(t) is strictly positive : X(t)>e>0
A.2. 5% is bounded 1441 < M ¢ =

Then we have the following stability
results

Theorem 3.1.1. : Under assumption A.1 and
A.2, the error vector eT = (e , e ) is
bounded as follows : - H #
tel(t)n< K1'Eu' + K2H 8: D]
with e, ! initial error wvector
K., %

1 K2 constants
Proof 2 can be found 1in Bastin and

Dochain, 1985.

Theorem 3.1.2.: Under assumptions A.1 and

A.2, and 1f C_(t) and C_(t) are chosen as
1 g

follows :

c‘ltl =

Czltl =

>0 (9.a})
> 0 (8.b)
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et a =2
with Cz = C’ 0« a < 1 [9.¢)
M[1+a C1]
Then, lim velt)r = & ¢ —
t e = =2
€ «, CT
where o, «l. “2 are positive constants.
Proof : can be found in Bastin and
Dochain, 1985.
Comments: a) in theorems 3.1.1 and 3.1.2,

we have to assume that du/dt 1is bounded
in order to ensure boundedness of the
errors ex and e“. This assumption 1s a

rather mild one, since almost all the
microbial growth models suggested in the
literature fulfill this requirement.

b} In theorem 3.1.2, & can be made arbi-
trary small by choosing ?‘ sufficiently
large.

3.2. The biomass concentration X(t)
and the substrate concentration S(t)
are avallable for direct measurements.

In the preceeding paragraph, we have
presented an estimation scheme of the
microbial growth rate 4 when the biomass
concentration X(t) i1s measured on-line.

Yet, it 1is generally considered that
growth-rate ult) depends on the substrate
concentration S(t). Therefore, if both

X(t) and S(t) are available for direct
measurement, it would be interesting to
implement an estimation algorithm of the
microbial growth-rate by wusing both
measurements.

In order to do so, we suggest to use the
following "minimal” dependence relation
between the microbial growth-rate and the
substrate concentration :

wlt) = plt) s(t) (10)

and to estimate the parameter p(t) ins-
tead of u(t).

This procedure was first introduced in
Dochain and Bastin (1984) ip order to
solve convergence problems of a methane
gas production control algorithm. The
relation (10) between u and S 1is plainly
Justified by the fact that most of the
growth-rate analytical models are compa-
tible with 1it.

For simplicity, we consider that, in

equation (2), k2 = 0.

But extension to the case when kz # 0 1s
very easy,

If we define po(t) = klpit} and 1f we

introduce the expression (10) in equation
(1) 12), estimation of p and ¢ can be
carried out by using the following equa-
tions

N

dx A 5

at = pSX DX + C1(t](X-XJ

~

d A

e - C, Lt (X-X)

A (11}
i o(s C.(t)(s-5)

ge - PSX + DS, -s) + g 5-

>

d

( S
: C4 t)is-

a
o

Under the followling assumptions :

A.3. Xlt) and S(t) are strictly positive:
X(t)sS(t)> € > D

dp

A.4. gy 1s bounded |g%l <M

We have stability and convergence proper-
ties as in Par. 3.1.

Theorem 3.2.1 : The error vector

eT = [e . e _, e , & ] 1s bounded as
- X -] s 3

follows :

] ]
fer < K1 30 + KZM

with e, initial error vector

Ki' K2 : constants
Proof 3 can be found 1in Bastin and

Dochain, 1985.

Theorem 3.2.2 : 1If we choose ci(t], i=1
to 4, such that

C.l(t) = X(t)sS(t)IC,
1 1

- & —
E = 1
c2 4 c1 0 < a £
— _g—
C‘ ol C3 0 < A <1
Then, lim we(t)r = &
t oo o -
T i 1+a,T,
<% z " z
€ - -
azcl a‘Cz
Proof : similar to theorem 3.1.,2

3.3. The biomass concentration X(t) is
not available for direct measurement.

If biomass concentration measurements are
not available, values of the reaction
product are necessary to implement micro-
bial growth-rate estimation. In this
paragraph, two different cases are consi-
dered, depending on the type of reaction
product, i.e. the gaseous reaction pro-
duct case and the liquid reaction product
case.,

3.3.1. Gaseous reaction product -
aft) = kaﬂttlxtti

Let wus calculate the derivative of the
reaction product from equation (3) :

=}
o

du
= uQ - ol
T 73 Da + kJX T

l

(12)

a

Therefore, i1f we assume that Q is availa-
ble for measurement, the microbial growth
rate u(t) can be estimated via the follo-
wing observer equation of the reaction
product flow rate Q

~
A A
g% = 40 - 00 + C (t)(0-Q)
o . t13)
u = -
gt = C,lt)te-0)

) A "
where Q and 4 are estimates of @ and B,

and Cift] and Cztt} are positive.
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Let us define the error terms :
ea:Q_

e = u-fl
I

The error system is deduced from equa-
tions (12), (13)

e 1= [-C,(t) QYfe.]* [k.X
a Q 1 o 3 au (149
dt |e -c_(t) o e, 1 dat

1’3 2

Let us introduce the following assumption
in order to emphasize stability proper-
ties of the estimation algorithm (13)

A.5. Qlt) is strictly positive :
aft) > € > 0.

Theorem 3.3.1 Under assumptions A.2 and

T y
A.5 the error vector e = [au. enl is
bounded as follows

el ¢ K e 1 + K_M

= 1 —0 2
with eo : initial error vector
K K : constants

Proof : similar to theorem 3.1.1.

Remark 3.3.1

Similarly as in paragraph 3.2, an estima-
tion algorithm of p(t) can be implemented
by using measurements of Q and S. And the
same stability property can be deduced.

3.3.2. Liquid reaction product
P = kanx + k, X - DP

The estimation procedure is somewhat
different from what has been done above.
The estimate of the microbial growth-rate
4 is deduced from two independent estima-
tion algorithms of the biomass concentra-
tion X and of the "biomass activity" uX.

We assume that :

a) The substrate concentration S and the
product concentration P are available
for direct measurement.

b) The value of yield parameters k‘. kz,

ka, k‘ are known. (They may have de-

termined from a batch experiment, for
instance).

a. Estimation of X

We define

P +« S (15)

We calculate the derivative of 2, by
using eqguations (1) (2) (&)

k kK
dZ 1 1 &
3T ° Dsin - DZ + (E k3 - kzjx 116)
. 2 § %
By noting that X = —— (2 - = — P - S5},
y 2 kg

equation (16) becomes

(17)

=
=
=

4 2 110
e = 2 25)(8 - 5 —
] K 2 K,

P

Therefore, we can write the followilng
estimation equation for 2 :

P K K.1 A
dz _ ) e 2
St = 0s;, - (o [ﬁ_ 2 i_]lz
3 1
(18)
k k k
4 2 1 2
# Rt mn @ SSilE e )
k3 k1 2 k3

And the estimate of X follows

Kk
ol A~
X = %_ [z = % e -5 (19)
1 3
Lemma 3.3.1. : If DIit) is such that :
k k

Dit) > Ei -2 EE for all t
3 1

A
Then X converges exponentially to X.

Proof } can be found in Bastin and
Dochain, 1985.

Remark 3.3.2: it is worth noting that the
speed of convergence of the estimation
algorithm (18) (19) only depends on the
value of D(t), i.e., there is no parameter
which could be calibrated as in previous
sections. Therefore, the speed of conver-
gence strongly depends on the experimen-
tal conditions.

b. Estimation of k1px + kX

Let us define
e = k1nx + sz (20)
The estimate of ¢ 1s computed wvia an
observer equation of the substrate con-
centration § :

.
A ol

2= -8 . c i) ots, - S

~ (21)
de _ -
dEF Czls 5)
Let us define the error terms e5 and ap )
e = s5-%

2 A
e, = o9 (22)

We introduce the following assumption

de

e
A.B ar S bounded : |a¥ <M

Lemma 3.3.2 Under assumption A.6 and if
C1 and Cz are chosen as

o
CZ =T C , 0 ¢ a <

then, lam te(t)r = & <«
t o € a, C

1th =
wil e [es.ep]

Proof : can be found 1in Bastin and
Dochain, 1985.
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Remark 3.3.3 Since X(t) 1s bounded, the
boundedness of de/dt derives from the
boundedness of du/dt.

c. Estimation of u

The estimate of u can be calculated from
a. and b.

~ ~ ”» ~
u = (e - kleflk1XJ (23)

A
provided that X 1s different from zero.

The convergence properties of the estima-
tion of the microbial specific growth-ra-
te u result from those of the estimation
algorithms of X and p.

Remark 3.3.4 : when k‘ = 0, equation (&)
becomes

dP/dt = kqu -- DP

Consider now the case when not only the
product concentration P but also its
derivative dP/dt are available for measu-
rement .

Then, if we define :
Q@ = dP/dt + DP

equation l4) 1s egquivalent to equation
(3), and the estimation algorithm (13)
can be applied to the liquid reaction
product case.

4., ESTIMATION OF THE SPECIFIC MICROBIAL
GROWTH RATE um(t) : PRACTICAL RESULTS.

In this section, real-life estimation
results are shown, which 1llustrate two
different estimation algorithms presented
above.

4.1. Estimation of ult) from biomass con-
centration measurements.

The process 1is a H,-producing fermenta-
tion process by Rhodopseudomonas capsula-
tas micro-organisms. The biomass concen-
tration 1s measured online wvia optical
sensors, and data are available every
hour (C. Vialas, 1984 ; C. Vialas and A.
Cheruy, 1985).

A discretized wversion(Euler discretiza-
tion scheme) of the algorithm (5) (6) has
been 1implemented on a sequence of 35
hours experiment :

X i Z c X, -X
X . TX, - D_TX X 5
Gag o g BT, = DLTK e L T AN A )
7 2 ToT(X, -%.)
Figrqy & g " s hapShy
where T 1s the sampling period (T = 1

hour) and t 1s the time index.

The process has been started with the
following operating conditions
D = 0.055 n ' S. = 5 mM
in
Fig. 1 shows the results of the estima-
tion of glt). The parameters E1 and 32

were set to the following values :

T = . c. = .24
Cl 0.98 Cz 0.2

~
The initial value of xt was set to 0.5,

while two different initial conditions
for the spe:iiic growth rate estimate has
been tested tno = 0.055, u_ = 0.11).
Notice that the influence of the initial
conditions has disappeared after 15
estimation steps.

o
[=T
o
o
+
D
b
g 4 hours
2 . T . " . Y y
0.00 10.00 20.00 30.00
0
= /N
1 .\ .
Sl
~ f X ~ ﬂ\q
53 ] f \ f"\
~ / -
& 1 VA
N p(e)
(=]
o hours
& - T . . . —
0.00 10.00 20.00 30.00

fig. 1. On-line estimation of u(t)
of a H,-producing fermentation pro-
cess. Dotted lines represent the
estlmates.

h.2. Estimation of u(t) from gaseous re-
action product measurements.

Here, the estimation algorithm (13) has
been implemented on an anaerobic diges-
tion process, where methane gas is produ-
ced by methanogenic bacteria (Dochain D.
and G. Bastin, 1984).

Methane gas production rate is measured
on-line and measurements are available
every hour.

Estimation has been carried out over a
period of 14 days . The operating condi-
tions were the following ones : the

dilution rate D was set to 0.1 day-1,

while an inlet substrate concentration
step (from 10 gbCO/1.day to 20
gDCO0/1.day) was applied to the process on
the third day.

The discretized equations of the estima-
tion algorithm (13) can be written as
follows

»~ A A - a
Qu,, = O, + &, T@ - D,TQ + C,TO,(Q -0 )
-~ ~ — ~

Bypq = Be + Co7Q,00,-0,)
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Fig. ZA showsathe evolution of both esti-
mates Q@ and x. The sampling period T = 1
hour. And thes following parameter and
initial wvariables values were used %

C1 = 10 Cz = 10 no = 0.1 i X 0.8
o
N
—~ -
apad
D
%A
= hours
e } ANV R L e Earasar |
i =5.00 152.00 288.00
w .
| 11
: ‘hj - J(t)
~ | I|I !
o | ‘N\M¥ ﬁ Ik ﬁ
g | UH\!" w""ﬂ'{"‘l!"h ly‘m;
1 W a | ] n
_"‘J‘i}' N ' '{ ’
o
b hours

& T T T 3 T S
0.00 96.00 192.00 288.00

fig. 2. On-line estimation of u(t)
of an anaerobic digesticn process.

5. CONCLUSIONS.

This paper has dealt with the problem of
designing estimation schemes for the
specific growth-rate of fermentation
processes, when it is considered as a
time varying unknown parameter.

Continuous-time estimation algorithms of
the specific growth-rate wul(t) have been
proposed, depending on which wvariables
are available from measurement. If the
biomass concentration X(t) is available
for direct measurement, estimation sche-
mes have been implemented, which are
independent of the type of reaction
product. If the biomass concentration
X(t) cannot be measured on-line, diffe-
rent estimation algorithms have been
proposed, depending on the 1nput-output
configuration.

Stability and convergence properties of
the estimation algorithms have been
analyzed. It  has been shown that, for
each estimation scheme the error vector
is bounded, and that the bound is propor-
tional to the bound of dul(t)/dt. Moreo-
ver, for three of the algorithms, we have
shown that the estimation error is asymp-
totically smaller to a bound that can be
made arbitrarily small by a proper choice
of the design parameters.

It 15 also worth noting that the proposed
algorithms can be coupled, if such an
information is desired, with on-line
adaptive observers of the state variable

{like X or S) or with adaptive control-
lers (Dochain and Bastin, 1984 and 19895).
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