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ABSTRACT. Adaptive linearizing control algorithms for
fermentation processes are proposed. They are valid in
oontinuous as well as in discrete time.The design is based on
non linear state space models which are linearly
parameterized. The convergence of the proposed algorithms
is analysed in the discrete tme case. Two practical examples
(anaerobic digestion and ethanolic fermentation) are used to
illustrate the approach.

Q. INTRODUCT

A comrnonly used approach for the adaptive control of non
linear systems is to consider them as time varying linear
systems and to use black-box linear approximate models to
implement the control law. But, since the underlying
process is non linear, improved control is to be expected
from exploiting the non linear structure for designing the
control law. The aim of this paper is precisely to present*
non linear adaptive controllerso for non linear fermentation
processes. The processes are descrbed by non linear state
space models obtained from usual mass balance equations
(section 3). The specific reaction rates are assumed to be
completely unknown time varying parameters. These models
are state feedback linearizable (e.g. [1i,[2]) and linearly
parametersed. Two different situations are considered: in
the first one (section 4), the control Input is the dilution
rate and a specific process structure allows for a simplified
design of the adaptive control algorithm; the second one
(section 5) invotves more general process models and the
control input is the influent substrate concentration. In both
cases, the parameters are estimated in real time by an un-
normalized recursive least square algorithm which is
combined with feedback linearization to design linearzing
adaptive controllers whose asymptotic convergence is
theoretically analyzed.. Two practical examples of fermen-
tation processes (anaerobic digestion and ethanolic
fermentation) are used as a matter of iHustration. They are
briefly presented in the next section.

ExALES

In this section we present two mathematical models of
fermentation processes dynamics which will be used
throughout the paper in order to illustrate the theory.

Example I : The anaerobic digesto process
The anaerobic digestion of solubilized organic substrates is
commonly considered as a two-phase process : acidifcation
and methanization (e.g. [3],[4]). In the acidification phase
the organic substrate is fermented into volatil acids and
carbon dioxyde by a group of acidogenic bacteria. In the
methanization phase, the volatil acids are converted into
methane (CH4) and carbon dioxyde (C02) by a group of
methanigenic bactera. The dynamics of this process in a
continuous stirred tank reactor is as follows:

X1 =1±X1 - DX,

Si =- k1j1Xl - DS1 + DS n

X2 = 12X2 - DX2
S2 = - k22X2 - DS2+ k3*1X1
01= k4p1X1 + k/2

( a)

(l.b)

(i.c)

(1 d)

(1 .e)

°2 = kCU2X2 00(1.f)
with : Xi the acidogenic biomass concentration, X2 the
methanigenic biomass concentration, SI the organic
substrate concentration, S2 the volatil acids concentration,
Qi the C02 gas flow rate, 02 the CH4 gas flow rate, jl and
P2 the specific growth rates, ki to k6 the yield coefficients,
D the dilution rate, Sin the influent substrate concentration.

Examo2le 2-: The ethanolic fermn!Dtation process
A plausible and oDmmonly used model of the growth of yeasts
(e.g. saccharomyces cerevisiae) on glucose with ethanol
production in a fed-batch stirred tank reactor is as follows
(e.g. [5])
* =pX DX

P=vX- DP
S=- k1lX- k2vX-DS+Dn
0= k3gX+ k4vX

(2.a)

(2.b)
(2.c)

(2.d)

with : X the yeasts concentration, P the ethanol
concentration, S the glucose concentration, 0 the C02 gas
flow rate, ± the specific growth rate, v the specific
production rate, ki to k4 the yield coefficients, D the
dilution rate, Sin the influent substrate concentration.
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The dissolved oxygen dynamics, which is not useful for our
subsequent derivations, is not explicitly formulated in this
model though it is obviously critical for the process
effiency. Therefore it must be clear that the specfic rates
,l and v are assumed to depend on the dissolved oxygen
concentration in a suitable (though implich and unknown)
way.

{1.AGNMLMO! TZ

Example 2: Ethanolic fermentation (ontinued).

4= x P=fAx H=j8] A= [ ° B=[k3 k43

111O objectITv OF cTE6a6EingotpLvria
Most often, the dynamics of biotechnological processes in
stirred tank bioreactors operating in batch, fed-batch or
continuous mode, can be represented by a general state
model of the folowing form:

84=- DM+Ap+U1n
Q= Bp

(3)

(4)

where 4 e Rn is the state which may incude concentrations
of biomass, substrates and products in lquid phase; 0 6- Rq
is the vector of gazeous products flow rates ; D is the
(scalar) dilution rate; p(t) e RP is the vecor of reaction
rates (involving both growth and production rates); Ulin e
Rn is a vector of raw materia feed rates.; A and B are
respectively nxp and qxp matrices of (possibly
stoecheometric) yield coefficents.

In equation (3) the meaning of the operator *5" may be
either the continuous time derivative or a first order Euler
approximation of the derivative with a unit sampling
period, i.e.:

AXd or g o 40+ 1) - 4t)dt

In the latter case, all the variables in this paper must
impicitely be considered at the dscrete instant r.

For the simplicity, we restrict ourselves to processes fed
with a single substrate where the put vector Uin can be
written:

Our objectfive Ls to oontrol a single outpu variable which is
a rneasured linear combination of the state variables:

y = cTi (8)

under the fiowing conditions:

C1. One of the procss inputs D or Sin is the control
input ; the other one is known on line either by
measurement or by a prior choice of the user.

C2. The gazeous flow rates 0 are also measured on line
and availale for the design of the control law.

C3. The yield coefficents kj (which appear in the
matrices A and B) are constant, stricy posWve and
unknown.

C4. The spedfic reaction rates pQ) are tme varying and
unknown.

We shall present solutions to this control problem which
are adaptive (to handle with parameter uncertainty) and
able to track a linear reference model arbitrarily closely.

We shall investigate two different situations, characterized
as follows:

First suatin
Al. p - q and the matrix B is ful rank
A2. The dilution rate D Is the control input
A3. CTH * 0

(5)

with Sin the (scaar) influent substrate coDncntration and H
a suitable unit column vctr.

We Illustrate this general model formulation with the
examples of secton 1.

Exag-L: aMMDog (MMLa

Bi. p c q
B2. The influent substrate concentration Sin is the control
input
B3. CTH -0

The first situation will be illustrated with example 1
(anaerobic digestion) and th second one wfih example 2
(ethanolic fermentation).

ISI OB- 111

IX21 10

Q 1
_k3 -k2.j

From equation (3), (4), (5), (8) and under conditn Al,
we have the flowing dynamics for the controlled viae Y

Sy= - DY + TO+CTHDr n (9)

with §f. CTAB-I a (lxq) vector of unkrnwn parametersDi
(1ci,...,q) which are non linear combinatns of the yield
coefficients ki.
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It must be emphasized that this equation (9), which will be
the basis for the derivation of the control algorithm, is
completely independent of the reaction rates p.

Example 1 anaerobic digestion (ontirued)
We are concemed with the control of the anaerobic digestion
process when it is used for waste treatment purpose. The
control objective is to regulate the output pollution
concentration (denoted Y) at a prescrbed level Y*, despite
the input pollution (namely Sin) fluctuations by acting on
the dilution rate D. Clearly, the output pollution
concentration is

Y = Sl +S2
i.e. Y wCT With CT( 0 1 01O )

(10)

(11)

Now, from (6) and condition C3, the matrix B is full rank
and, according to (6) and (9), the dynamics of Y is wriften:

(12)SY =- DY + 0101 +02O2+DSn

since CTH= 1 andwith:

The following theorem establishes the needed properties of
this algorithm (in discrete time):

Iheo.remx I For the parameter estimation algorithm (18)
applied to the model (9):

(i) Gis boun ded

(ii) lim Ce(t) = 0

PrgQQf

(i) Define the parameter error:
a'' A8-=0-8 (19)

Consider the Lyapunov function:

v = ZTR-16 (20)

Then, using (18.a) and (18.b), i can be shown that:

=k3- k 'k1- k3)k- k2
810=

k682

Model reference linearizing control
We adopt the following first order reference model for the
control error e Y*-Y:

Se+e= 0 (14)

where X is obviously chosen such that (14) is strictly
stable.

It is readily shown that the following control law achieves
this linear reference model exactly:

Also, from (18.c), SR < 0 thus R is decreasing and R-1 is
increasing. Hence:

(22)

(23)

wh(iRc (imp 0 (t) t) O ( R-((00(t)

wh ich implie s: I'0IVl< av(C:1
It then follows that is bounded.

(ii) On the other hand, we have from (21):

D X(Y - Y) +SY* -
Q

CtDHtin
(15)

We shall now demonstrate that, in case of parameter
uncertainty, an adaptive certainty equivalence form of (15)
can be designed which asymptotically tracks the reference
model (14). We first present the parameter estimation
algorithm.

Parameter estiMation
Operating on both sides of (9) by the stable low pass filter
(B + c)-1, we obtain the 'filtered moder

yV= To+W (16)

with: W= c[C -D)+CTH!DSn) (17.a)

5+ co ai, 1 Q ~~~~~~(17b)

co is a scalar arbitrary design parameter.

For the filtered model (16), which is linearly para-
meterized, we oonsider the following unnormalized least
squares estimation algorithm (see [6], chapter 7):

58 = yRTe

e = Y - TTg W

BR = -yRIPPTR

(1 8a)

(1 8.b)

(1 8.c)

g so

zEyeJ t = X(-sv(0 V(o)

and thus lim Ie(t) = 0

t-oo0

(24)

(25)

AdanptiveCo&trol
In the case where the parameter is not known but is
estimated as above, we propose the following version of the
control law (15):

TA T
(yMY Y) +Sy -Q0 -[(1 - O)W + 0o4

CD= _ Y
(26)

Clearly, this controller coincides exactly with the
controller (15) in the ideal situation where t = 8 =

constant.

We have the following convergence result (in the discrete
time case).

The.reM2 : For the control law (26), combined with the
parameter estimator (18), applied to the model (9):

lim le(t) = o
t-e
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ELQQL:
From (16),(17,(18) we have:

(6+ )e = (3+ WTl'-eyTZi

concentation Sin as control input. Assumptions Bi to B3
are fulfifled as follows:

(27)
T,^ ~A T=Sy -Q o-r[( -o)) + Q1-D(CHSIn- Y)

Substituting the value of D given by (26) into (27), we
obtain:

E = - - e6+ I
(28)

and theorem 2 holds as aonsequerce of terem 1.

The convergence property of theorem 2 is a local result
which is valid only outside the singurity occuring in (26)
when:

q = landp= 2such thatq < p

Y=CTTf=P with T=(010) = CTH=O

We shall proceed in two steps. We first derive an al-
temative state space model for the process which alows to
avoid the difficulties mentioned above. We will then show
that there exists, for this atternative model1 a lnearizing
control law which can be made adaptive by usin a suitable
parameter estimator.

An alternae state spemodel
In order to put the model (2.a-d) in a form which is
convenient for deriving the control law, we write the
specif production rate v(t) as folows:

v(t) = Q(t) S(t (32)
Y = CTHS, (29)

Moreover, It is obvious that, for practica implementation,
the control action D must be saturated:

sD.<Dc m, (30)

This saturation automatically prevents th dosed loop from
the singularity (29) but the stability analysis is much
more involved and not invesgated here. However this issue
is discussed in [7) (chapter 4) for a similar applicaton.

with a (t) a bounded positive unknown time varying
parameter. There Is no loss of generality in writing (32):
this expression, purely technical, just formalizes the
evidence that v(t) - 0 when S(t) = 0, I.e. that there Is no
ethanol production without gcsew

We Introduce the following auxxilary state varibless:

Z = kjX + k2Pj+ S

Z2= k3X + k4P

(33)

(34)

It is then easily shown that the model (2*4 is equivalent
from an input-output viewpoint to:

From (3), (4), (8) and under conditions 61 and 83, th
dynamics of the conbod variable is written:

Sy=-DY + CTAp (31)

From ftis equaon we see tt the secnd suation is more
complex than the first one for two main reaons:

a) The equation (31) depends on th lime varying urteown
quantity p which cannot be emed sim by invertin B
as in the first situation.

b) The control inptd Sin does not appear expicitely In (31)
because CTH -0 by su on 83: the simpl neazing
design of section V is therefre not possble here.

In this secdon we shal show how to take advantage of the
special structure of th prce mode (3), (4) and of th
assumptions B1 to B3, to avoid thes difficufltes and to
design a linearizng adaptive controller simlar to that of
secton V.

To simplfy and lmit the mathematical technialits within
the sp allowed to fthi commnictin, we shall restict
ourselves to the special case of th ehanol frentation
(example 2). A more comprehensive treamet can be found
in 181.

The objective Is to control the ethanol concentration P
which is measured on line, by using the glucose

6Z1 = - DZ1 +DS%r,
SZ2 =- DZ2+O

ay=-DY + (Z1Z2,Y)0
with ,T(Z,Z2vY) = (Z1Y, Z2y, ZZ2.21,Y4 )

e½ (91,b%04,e410)

k4
e= CZk3

(35)

(36)

(37)

0= (1+4
-)- k

[2.k kk

kl ~ 4 (k1k49= 04 = - k 95 =
3(! k2

The important point Is that this equivalent state-space
model (35)-(37) has the following properis:

i) The state variables are either measurable (Y) or

calculable in line (Z1,Z2) independently of the unknown
parameters

The model is linea wih respec to th

The state space model (35)-(37) can be shown to be sae
feedak t ch a way that

mathes refrwence modw -x

(38)
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where E = V* - Y is the control error, Y' is the set point
and Xl X2 are design parameters.

The linearizing control law is as follows:

S(O) =t [ DZ1(OfY + %3Z2) - (0- DZ2)(92Y + 93Z1 + 294Z2)

-(61Z1+ 02Z2 t 2DY)(9Te-DY)] +S2Y t

+ (X;6+ X2)(Y* - Y)}H(61Y + 03Z2)DI- (39)

where Z1 and Z2 are computed on line, in parallel on the
process, by integrating equations (35(36) which are
independent of e.

Inthe case where the parameter B is not known, it can be
estimated on line with the parameter estimator (18,a-b)
provided IF and W are defined as follows:

%f = 1
6 + Xo

W = (c - D)Y
86+X

(40a)

(40.b)
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Finally, an adaptive version of the control law (38) is
implemented as follows:

SAn(O) = Sn(O) -{ [(1 - oT) + (]I }0(O1Y+4,Z2)D}A (41)

in the ideal situation where the parameter B is constant, the
convergence of this adaptive control scheme is established
by the folloing theorem.

I BeIrLm 3:. If B = constant, for
(35),(36),(39),(40),(1 8):
lim ku()I=o

This theorem can be demonstrated in
theorems 1 anJ 2 of secton IV.

the control law

(42)

the same way as

In this paper, it has been schown how to design adaptive
linearizing controllers for fermentation processes which
are valid in continuous as well as in discrete time. The
design is based on non linear state space models which are
linearly parameterized. The parameters are time varying
combinations of the specific reaction rates and of the yield
coefficients. The convergence of the proposed adaptive
control algorithms has also been analysed in the discrete
time case. The confinuous time analysis is slightly more
involved but would follow the same lines (according to 161).
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