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ABSTRACT. Adaptive linearizing control algorithms for
fermentation processes are proposed. They are valid in
continuous as well as in discrete time.The design is based on
non linear state space models which are linearly
parameterized. The convergence of the proposed algorithms
is analysed in the discrete time case. Two practical examples
(anaerobic digestion and ethanolic fermentation) are used to
illustrate the approach.

0. INTRODUCTION

A commonly used approach for the adaptive control of non
linear systems is to consider them as time varying linear
systems and to use black-box linear approximate models to
implement the control law. But, since the underlying
process is non linear, improved control is to be expected
from exploiting the non linear structure for designing the
control law. The aim of this paper is precisely to present ®
non linear adaptive controllers™ for non linear fermentation
processes. The processes are described by non linear state
space models obtained from usual mass balance equations
(section 3). The specific reaction rates are assumed to be
completely unknown time varying parameters. These models
are state feedback linearizable (e.g. [1L[2]) and linearly
parameterised. Two different situations are considered: in
the first one (section 4), the control input is the dilution
rate and a specific process structure allows for a simplified
design of the adaptive control algorithm; the second one
(section 5) involves more general process models and the
control input is the influent substrate concentration. In both
cases, the parameters are estimated in real time by an un-
normalized recursive least square algorithm which is
combined with feedback linearization to design linearizing
adaptive controllers whose asymptotic convergence is
theoretically analyzed.. Two practical examples of fermen-
tation processes (anaerobic digestion and ethanolic

fermentation) are used as a matter of illustration. They are
briefly presented in the next section.

L EXAMPLES

In this section we present two mathematical models of
fermentation processes dynamics which will be used
throughout the paper in order to illustrate the theory.
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The anaerobic digestion of solubilized organic substrates is
commonly considered as a two-phase process : acidifcation
and methanization (e.g. [3].[4]). In the acidification phase
the organic substrate is fermented into volatil acids and
carbon dioxyde by a group of acidogenic bacteria. In the
methanization phase, the volatil acids are converted into
methane (GH4) and carbon dioxyde (CO2) by a group of
methanigenic bacteria. The dynamics of this process in a
continuous stirred tank reactor is as follows :

X, =1y X - DXq (1a)

8§y =~ kqpsXy - DS; + DSy, (1b)
X, = ppXp - DXy (1.0)
$, = KatioXp - DSp+ gy Xy ad
Q, = Ky Xq + keioXo (1.e)

Qz = ksp.zXa (1 .f)

with : X4 the acidogenic biomass concentration, X2 the
methanigenic biomass concentration, St the organic
substrate concentration, S2 the volatil acids concentration,
Q1 the CO2 gas flow rate, Q2 the CH4 gas flow rate, uq and
uo the specific growth rates, k{1 to kg the yield coefficients,
D the dilution rate, Sin the influent substrate concentration.

E le 2 : The efl lic § tat
A plausible and commonly used model of the growth of yeasts
(e.g. saccharomyces cerevisiae) on glucose with ethanol
production in a fed-batch stirred tank reactor is as foliows
(e.g. I5]) :

X = uX - DX

(2.a)
P=vX-DP 2b)
§ =~ kquX- kyvX~ DS+ DSy (2.0)
Q= kauX+ kgvX (2.d)
with X the yeasts concentration, P the ethano!

concentration, S the glucose concentration, Q the CO2 gas
flow rate, p the specific growth rate, v the specific

production rate, ki to k4 the yield coefficients, D the
dilution rate, Sin the influent substrate concentration.
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The dissolved oxygen dynamics, which is not useful for our
subsequent derivations, is not explicitly formulated in this
model though it is obviously critical for the process
efficiency. Therefore it must be clear that the specific rates
p and v are assumed to depend on the dissolved oxygen
concentration in a suitable (though implicit and unknown)
way.

1. A GENERAL MODEL FORMULATION

Most often, the dynamics of biotechnological processes in
stirred tank bioreactors operating in batch, fed-batch or
continuous mode, can be represented by a general state space
model of the following form :

8 =-DE+Ap+ U,
Q=Bp

where £ ¢ RN is the state which may include concentrations
of biomass, substrates and products in fiquid phase ; Q € RY
is the vector of gazeous products flow rates ; D is the
{scalar) dilution rate; p(t) € RP is the vector of reaction
rates (involving both growth and production rates) ; Uin €
R" is a vector of raw material feed rates ; A and B are
respectively nxp and qxp matrices of (possibly
stoecheometric) yield coefficients.

(3)
4

In equation (3) the meaning of the operator "5" may be
either the continuous time derivative or a first order Euler
approximation of the derivative with a unit sampling
period, i.e..

&%= % or 5 = E(t+1) - &)
In the latter case, all the variables in this paper must
implicitely be considered at the discrate instant “t".

For the simplicity, we restrict ourselves to processes fed
with a single substrate where the input vector Uin can be
written :

Uin = HDS,q

with Sip, the (scalar) influent substrate concentration and H
a suitable unit column vector.

&)

We illustrate this general model formulation with the
examples of section |.

§= X1 Q= 01 p= p,X, H=]0
S, X2 1
X 0
S, 0
A=ft 0 B={ky Kg
K4 4] 0 kg
0 1
ka -kj
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§= X p= ux H = o A = 1 O Bz[ka k4
P vX 0 o 1
s 1 -kq —kj

Our objective is to control a single output variable which is
a measured linear combination of the state variables :

Y=Clt ®

under the following conditions :

C1. One of the process inputs D or Si is the control
input ; the other one is known on line either by
measurement or by a prior choice of the user.

C2. The gazeous flow rates Q are aiso measured on line
and available for the design of the control law.

C3. The yield coefficients k;j (which appear in the
matrices A and B) are constant, strictly positive and
unknown.

C4. The specific reaction rates p{t) are time varying and
unknown.

Wae shall present solutions to this control problem which
are adaptive (fo handle with parameter uncertainty) and
able to track a linear reference model arbitrarily closely.

We shall investigate two different situations, characterized
as follows :

Ei  situati
1. p = q and the matrix B is full rank
A2 The dilution rate D s the control input

A3.CTH=0

Second situation

Bl.p<

B2. The influent substrate concentration Sip is the controi

input
B3.CTH=0

The first situation will be illustrated with example 1
(anaerobic digestion) and the second one with example 2
(ethanolic fermentation).

IV, FIRST SITUATION
From equations (3), (4), (5). (8) and under condition A1,
wehavemebnowmgdynammbrtheconn'oﬂedvanableY

5Y = - DY + Q"0 +CTHDS;, (9
with 9'- CTAB-! a (1xq) vector of unknown parameters 8
(i=1,...,q) which are non linear combinations of the yield
coefficients k;.
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it must be emphasized that this equation (9), which will be
the basis for the derivation of the control algorithm, is
completely independent of the reaction rates p.

We are concerned with the control of the anaerobic digestion
process when it is used for waste treatment purpose. The
control objective is to regulate the output pollution
concentration (denoted Y) at a prescribed level Y*, despite
the input poliution (namely Sip) fluctuations by acting on

the dilution rate D. Clearly, the output pollution
concentration is

Y=8+8; (10)
ie. Y=C'& with CT=(0101) an

Now, from (6) and condition C3, the matrix B is full rank
and, according to (6) and (8), the dynamics of Y is written :

8Y =-DY + 9101 +9202+DS|n (12)
since C'TH= 1 and with:
ks-k (kq - kgks—k
0y = —? fp= 22 (13)
Ky kg

T
We adopt the following first order reference model for the
control error g =Y*-Y :
+ie=0 (14)

where A is obviously chosen such that (14) is strictly
stable.

It is readily shown that the following control law achieves
this linear reference mode! exactly :

_MY*-Y)+8Y* - Qe
CTDHS;,

We shall now demonstrate that, in case of parameter
uncertainty, an adaptive certainty equivalence form of (15)
can be designed which asymptotically tracks the reference
model (14). We first present the parameter estimation
algorithm.

D (15)

Parameter estimation
Operating on both sides of (9) by the stable low pass filter
(8 + )1, we obtain the “filtered model

Y=¥To+W (16)
with: W= 8:mt(m-o>+cTHDsn1 (17.2)
v=—*+_aq (17b)
S+

@ is a scalar arbitrary design parameter.

For the filtered model (16), which is linearly para-
meterized, we consider the following unnormalized least
squares estimation algorithm (see [6], chapter 7):

8§=7R‘Pe (18.a)
e=Y-¥H-W (18.b)
SR = —yR¥¥'R (18.¢)
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The following theorem establishes the needed properties of
this algorithm (in discrete time) :

Theorem 1: For the parameter estimation algorithm (18)
applied to the model (8) :

() $6isbounded
G mle|=o0

t—yon
Proof:
(i) Define the parameter error :
5=0-% (19)
Consider the Lyapunov function:
v=%R"% (20)
Then, using (18.a) and (18.b), it can be shown that :

3V = - ye? 21

Also, from (18.c), 8R < O thus R is decreasing and R-1 is
increasing. Hence:

FOR O 2 TORTWED 2T WROED (22
~ ~

which implies: 8@ | < (O] (23
it then follows that 8 is bounded.

(ii) On the other hand, we have from (21):

1D %0 = Y (-BV(D) S V(O) (24)

=0 1=0
and thus lim le®|{=0 (25)
oo

In the case where the parameter 8 is not known but is

estimated as above, we propose the following version of the
control law (15):

oo MY - Y)+8Y -Q-[01 - 0)¥ + Q'8
CTHS, - Y

(26)

Clearly, this controller coincides exactly with the
controller (15) in the ideal situation where 8=0-=
constant.

We have the following convergence result (in the discrete
time case).

Theorem 2 : For the control law (26), combined with the
parameter estimator (18), applied to the model (9):

imljetd | =0

too
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Proof:
From (16),(17,{18) we have:

(5+ w)e=(5+ w)¥'o-¥8l @n

= 8Y - Q"6 -[(1 - ©)¥ + QIS - DIC'HS,, - Y)

Substituting the value of D given by (26) into (27), we
obtain:
_d+e

€= 3+ 4

(28)

and theorem 2 holds as aconsequence of theorem 1.
Comment,

The convergence property of theorem 2 is a local result
which is valid only outside the singularity occuring in (26)
when:

Y =CTHS,, (29)
Moreover, it is obvious that, for practical implementation,
the control action D must be saturated:

O<D < Dy (30

This saturation automatically prevents the closed loop from
the singularity {29) but the stability analysis is much

more involved and not investigated here. However this issue
is discussed in [7] (chapter 4) for a similar application.

¥, SECOND SITUATION

From (3), (4), (8) and under conditions B1 and B3, the
dynamics of the controfled variable is written :

§Y=-DY +CTAp 31
From this equation we see that the second situation is more
complex than the first ane for two main reasons :

a) The equation (31) depends on the ime varying unknown
quantity p which cannot be efiminated simply by inverting B
as in the first situation.

b) The control input Sin does not appear explicitely in (31)
because CTH = 0 by assumption B3 : the simple finearizing
design of section [V is therefore not possible here.

In this section we shall show how 10 take advantage of the
special structure of the process mode! (3), (4) and of the
assumptions Bt to B3, to avoid these difficulties and to
design a linearizing adaptive controller similar to that of
section V.

To simplify and lmit the mathematical technicalities within
the space allowed to this communication, we shall restrict
ourselves to the special case of the ethanolic fermentation
(example 2). A-more comprehensive treatment can be found
in [8].

The objective is to control the ethanol concentration P
which is measured on line, by using the glucose
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concentration Sin as control input. Assumptions B1 to B3
are fulfilted as follows:

g=1tandp = 2such thatg<p
Y=Clg=P with CT=(010) = C™H=0

We shall proceed in two steps. We first derive. an al-
temmative state space model for the process which allows to
avoid the difficuities mentioned above. We will then show
that there exists, for this alternative model, a linearizing
control law which can be made adaptive by using a suitable
parameter estimator.

An altemative slate space mode|
In order to put the model (2.a-d) in a form which is
convenient for deriving the control law, we wrile the

specific production rate v(t) as follows :
v() = a(t) SO (32)
with a(t) a bounded positive unknown time varying
parameter. There is no loss of generality.in writing (32) :
this expression, purely technical, just formalizes the
evidence that v(t) = 0 when S(1) = 0, i.e. that there is no
ethanol production without giucose.

We introduce the following auxifiary state variables :
21 = k1X + k2P+ S
Zy= kaX + k4P

It is then easily shown that the model (2.2-d) is equivalent
from an input-output viewpoint 1o :

(33)
(34)

82, = - DZ, +D§, (35)
82, =~ DZ,+Q (36)
5Y =-DY + 9'(Z;,2,Y) 0 @n

with ¢1(Z,,2,Y) = (2,Y, 2,Y, 2,2, 2.Y)
o' = (8, 0z, 0, 6, 65)

ky kikg 1
0= - Qo = t+-=—1i-k
! aks % q{ k3 (+"3) 2
k ke { kKik
@ 1 4 [ Kiky
= e— Q= — QO = = e | c— K
63 ks 7 aka 65 aka( Xa 2)

The important point is that this equivaient state-space
model (35)-(37) has the following properties :

i) The state variables are either measurable (Y) or
calcutable in line (Z1,Z2) independently of the unknown
parameters

fi) The model is linear with respect to the parameters &.
Adaptive Cofnirol.

The state space model (35)-(37) can be shown fo be slate
feedback linearizable, in such a way that the closed loop
matches the following reterence model exactly:

e+ M +Ae=0 (38)
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where e=Y" - Y is the control error, Y" is the set point
and A1 A2 are design parameters.

The linearizing control law is as follows:

Sh(0) ={ [DZ(8,Y + 85Zp) — (Q— DZp)(8,Y + 832 + 20,Z,)
- (842 + 0,25+ 25Y)(9'0 - DY)+ 82Y*

+ 36+ A(Y* = YIH(O,Y + 62D} (39)
where Z¢ and Zp are computed on line, in parallel on the
process, by integrating equations (35)(36) which are
independent of 6.

Inthe case where the parameter 0 is not known, it can be
estimated on line with the parameter estimator (18,a-b)
provided ¥ and W are defined as follows:

- 40
8+mv (40.2)

W=—" (0-D)Y (40.b)
S+

Finally, an adaptive version of the control law (38) is
implemented as follows:

A -
SAB) = S5(8) —{ [(1 - 0)F + 91 88HB, Y+8,2D) " (41)
In the ideal situation where the parameter 6 is constant, the
convergence of this adaptive control scheme is established
by the following theorem.

Theorem 3:If 6 = constant,
{35).(36),(39),(40),(18):

for the control law

lim le®]=0 42)
t{—os

This theorem can be demonstrated in the same way as
theorems 1 and 2 of section IV.

YL CONCLUSIONS,

In this paper, it has been schown how to design adaptive
linearizing controliers for fermentation processes which
are valid in continuous as well as in discrete time. The
design is based on non linear state space models which are
linearly parameterized. The parameters are time varying
combinations of the specific reaction rates and of the yield
coefficients. The convergence of the proposed adaptive
control algorithms has also been analysed in the discrete
time case. The continuous time analysis is slightly more
involved but would follow the same lines (according to [6]).
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