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Abstract— This paper addresses the issue of the exponential
stability of hybrid hyperbolic systems with switching boundary
conditions. Our contribution is to show, through the specific
example of SMB chromatography, how exponential stability (in
L2-norm) can be established when the switching mechanism is
precisely defined. The obtained stability conditions are direct
generalizations of the corresponding results for the unswitched
case.

I. INTRODUCTION

The exponential stability of systems of conservation laws
over a bounded domain in one spatial dimension is a research
topic which has given rise to a significant amount of activity
in the recent years (see [3] [4], [5] [6] [7] [13] [17] among
many other relevant references).

In certain practical applications, it is of interest to ad-
dress situations where the system exhibits periodic time
switching between various sets of boundary conditions. From
the viewpoint of exponential stability analysis, a system of
conservation laws with switching boundary conditions can be
viewed as a hybrid system on an infinite dimensional state
space. While hybrid systems based on ordinary differential
equations are extensively considered in the literature (e.g.
[8], [14], [15]), hybrid systems based on partial differential
equations are relatively unexplored.

As emphasized in [9], two fundamental stability issues are
of interest for switching systems:

• Issue A: Find conditions for which the switched system
is asymptotically stable for any switching signal.
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Mons, 7000 Mons, Belgium and the Max-Planck-Institut fur
Dynamik Komplexer Technisher Systeme, 39106 Magdeburg,
Germanypaul.suvarov@umons.ac.be

A. Vande Wouwer are with Service dAutomatique, Université de Mons,
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• Issue B: Show that the switched system is asymptoti-
cally stable for a given switching strategy or a class of
switching strategies.

Using the method of characteristics, a recent paper by Amin
et al. [1] deals with Issue A for switched hyperbolic systems
and gives sufficient boundary conditions for the exponential
stability (in H∞-norm) under arbitrary switching signals. As
said by the authors of that paper, this kind of analysis is
“relevant when the switching mechanism is either unknown
or too complicated for a more careful stability analysis”. In
this paper our purpose is to address the Issue B through the
specific example of SMB chromatography [16] and to show
how exponential stability (in L2-norm) can be established
when the switching mechanism is precisely defined. The
obtained stability conditions are direct generalizations of the
corresponding results for the unswitched case.
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Fig. 1. SMB chromatography.

II. MODELLING

Simulated moving bed (SMB) chromatography is a
technology where several interconnected chromatographic
columns are switched periodically against the fluid flow. This
allows for a continuous separation with a better performance
than the discontinuous single-column chromatography. A
standard SMB chromatography process is represented in
Fig.1. The input flows (feed mixture and solvent) and output
flows (extract and raffinate) divide the system in four zones
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each containing one chromatographic column. The four
(mobile) columns are labeled 1, 2, 3, 4. The four operating
zones are labeled I, II, III, IV. Pumps connected at each
port determine the liquid phase flow rates in all the zones.
The feed mixture composed of species A and B is injected
between zone II and zone III. The adsorbent is chosen in
such a way that the two components are adsorbed at different
rates, allowing them to travel with different velocities. The
less adsorbed component (A) is collected at the raffinate
port and the more adsorbed one (B) at the extract port.
The separation of the two components is performed in
zones II and III, whereas zones I and IV are dedicated to
adsorbent regeneration and solvent recycling. A liquid-solid
counter-current movement is obtained by a periodic circular
switching of the columns in the opposite direction to the
liquid phase flow as shown in Fig.1.

We introduce the following notations :

• The switching time period is T and the column length
is L.

• Cℓ
i (t, x) ⩾ 0, 0 ⩽ x ⩽ L, t ⩾ 0, is the concentration of

species ℓ ∈ {A,B} in the column i ∈ {1, 2, 3, 4},
• VI is the fluid velocity in the columns located in zones

I and III, VII is the fluid velocity in the columns located
in zones II and IV with VI > VII > 0,

• hA > 0 and hB > 0 are the Henry coefficients,
• F is the phase ratio, i.e. F = (1−ϵ)/ϵ where ϵ ∈ (0, 1)

is the bed porosity.

In this paper, we limit ourselves to the case of linear adsorp-
tion isotherms which is, for instance, a plausible model for
the separation of Fructo-OligoSaccharides [12]. We first state
the dynamical model during the first time period, assuming
that column 1 is in zone III, column 2 in zone IV, column
3 in zone I and column 4 in zone II, as shown in Fig.1.
The process dynamics are represented by the following set
of conservation laws:

For 0 ⩽ t < T,

(1 + FhA)∂tC
A
1 + VI∂xC

A
1 = 0,

(1 + FhA)∂tC
A
2 + VII∂xC

A
2 = 0,

(1 + FhA)∂tC
A
3 + VI∂xC

A
3 = 0,

(1 + FhA)∂tC
A
4 + VII∂xC

A
4 = 0,

(1 + FhB)∂tC
B
1 + VI∂xC

B
1 = 0,

(1 + FhB)∂tC
B
2 + VII∂xC

B
2 = 0,

(1 + FhB)∂tC
B
3 + VI∂xC

B
3 = 0,

(1 + FhB)∂tC
B
4 + VII∂xC

B
4 = 0.

The boundary conditionsare the expression of the conser-
vation of flows the equality of concentrations at the junctions

of the columns:
VIC

A
1 (t, 0) = VIIC

A
4 (t, L) + VFC

A
F ,

CA
2 (t, 0) = CA

1 (t, L),

VIC
A
3 (t, 0) = VIIC

A
2 (t, L),

CA
4 (t, 0) = CA

3 (t, L).

VIC
B
1 (t, 0) = VIIC

B
4 (t, L) + VFC

B
F ,

CB
2 (t, 0) = CB

1 (t, L),

VIC
B
3 (t, 0) = VIIC

B
2 (t, L),

CB
4 (t, 0) = CB

3 (t, L).

In these equations, VF > 0 is the constant fluid velocity
while CA

F > 0, CB
F > 0 are the constant species concentra-

tions in the input flow.
We introduce the following vector and matrix notations:

Cℓ(t, x) ≜ (Cℓ
1(t, x), C

ℓ
2(t, x), C

ℓ
3(t, x), C

ℓ
4(t, x))

T ,

U ℓ ≜ ((VF /VI)C
ℓ
F , 0, 0, 0)

T , ℓ ∈ { A,B},

C(t, x) =

(
CA(t, x)

CB(t, x)

)
,

Υ ≜ diag{VI, VII, VI, VII},

K ≜


0 0 0 VII/VI

1 0 0 0

0 VII/VI 0 0

0 0 1 0

 .

With these notations, the model equations are written in
compact form as follows:

0 ⩽ t < T, ℓ ∈ {A,B},

(1 + Fhℓ)∂tC
ℓ +Υ∂xC

ℓ = 0,

Cℓ(t, 0) = KCℓ(t, L) + U ℓ.

We now consider the second time period when the columns
have been shifted by one position such that column 1 is
now located in zone II, column 2 in zone III, etc ... To take
the shifting process into account in a systematic way, we
introduce the following permutation matrix:

P =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 .

Then, it can be checked that the model equations during the
second period become

T ⩽ t < 2T, ℓ ∈ {A,B},

(1 + Fhℓ)∂tC
ℓ + PΥPT∂xC

ℓ = 0,

Cℓ(t, 0) = PKPTCℓ(t, L) + PU ℓ.
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It is then clear that, by iteration, we have the following
general form for the hyperbolic system of conservation laws
describing the periodic SMB chromatography process:

mT ⩽ t < (m+ 1)T, m = 0, 1, 2, 3, 4, 5, . . . , ℓ ∈ {A,B},

(1 + Fhℓ)∂tC
ℓ + (Pm)Υ(Pm)T∂xC

ℓ = 0, (1)

Cℓ(t, 0) = (Pm)K(Pm)TCℓ(t, L) + (Pm)U ℓ.

In this paper, we consider the case where, under the
periodic operation described above, the system (1) has a
single steady-state periodic solution C∗ ≜ (C∗A,C∗B)
such that C∗(t, x) = C∗(t + 4T, x), x ∈ [0, L], t ⩾ 0.
Our concern is to analyze the exponential stability of this
steady-state.

III. EXPONENTIAL STABILITY

In order to put the system in characteristic form, we define
the Riemann coordinates:

RA
i = (1 + FhA)(C

A
i − C∗A

i ),

RB
i = (1 + FhB)(C

B
i − C∗B

i ),
i = 1, 2, 3, 4.

In these Riemann coordinates, the periodic linear system is
written

mT ⩽ t < (m+ 1)T, m = 0, 1, 2, 3, 4, 5, . . . , ℓ ∈ {A,B},

∂tR
ℓ + Λℓ

m∂xR
ℓ = 0, (2)

Rℓ(t, 0) = KmRℓ(t, L).

with the following notations:

Λℓ ≜ diag{λℓ
1, λ

ℓ
2, λ

ℓ
1, λ

ℓ
2}

with λℓ
1 ≜ VI

1 + Fhℓ
, λℓ

2 ≜ VII

1 + Fhℓ
,

Λℓ
m ≜ (Pm)Λℓ(Pm)T , Km = (Pm)K(Pm)T .

We have the following stability property.

Theorem 1. The periodic solution C∗(t, x) of the system
(1) is exponentially stable if

T >
L

λℓ
2

− L

λℓ
1

, ℓ ∈ {A,B}.

Proof: As advocated in [2] for the analysis of hybrid
systems, we follow a so-called “multiple Lyapunov func-
tion” approach with the two following candidate quadratic
Lyapunov functions:

V1 ≜∑
ℓ∈{A,B}

∫ L

0

{
p1
λℓ
1

([
Rℓ

1(t, x)
]2

+
[
Rℓ

3(t, x)
]2)

exp

(
−µx

λℓ
1

)

+
p2
λℓ
2

([
Rℓ

2(t, x)
]2

+
[
Rℓ

4(t, x)
]2)

exp

(
−µx

λℓ
2

)}
dx,

V2 ≜∑
ℓ∈{A,B}

∫ L

0

{
p2
λℓ
2

([
Rℓ

1(t, x)
]2

+
[
Rℓ

3(t, x)
]2)

exp

(
−µx

λℓ
2

)

+
p1
λℓ
1

([
Rℓ

2(t, x)
]2

+
[
Rℓ

4(t, x)
]2)

exp

(
−µx

λℓ
1

)}
dx,

with positive constant coefficients p1, p2 and µ. The time
derivatives of V1 and V2 along the trajectories of the system
(2) are

m = 0, 2, 4, . . .

For mT ⩽ t < (m+ 1)T,

dV1

dt
=− µV1

−
∑

ℓ∈{A,B}

{(
p1 exp

(
−µL

λℓ
1

)
− p2

)
([

Rℓ
1(t, L)

]2
+
[
Rℓ

3(t, L)
]2)}

−
∑

ℓ∈{A,B}

{(
p2 exp

(
−µL

λℓ
2

)
−
(
λℓ
2

λℓ
1

)2

p1

)
([

Rℓ
2(t, L)

]2
+
[
Rℓ

4(t, L)
]2)}

For (m+ 1)T ⩽ t < (m+ 2)T,

dV2

dt
=− µV2

−
∑

ℓ∈{A,B}

{(
p1 exp

(
−µL

λℓ
1

)
− p2

)
([

Rℓ
2(t, L)

]2
+
[
Rℓ

4(t, L)
]2)}

−
∑

ℓ∈{A,B}

{(
p2 exp

(
−µL

λℓ
2

)
−
(
λℓ
2

λℓ
1

)2

p1

)
([

Rℓ
1(t, L)

]2
+
[
Rℓ

3(t, L)
]2)}

.

If the parameters p1 and p2 are selected such that

1 <
p1
p2

<

(
λℓ
1

λℓ
2

)2

=

(
VI

VII

)2

,

then µ > 0 can be selected such that

p1
p2

exp

(
−µL

λℓ
1

)
> 1,

p2
p1

(
λℓ
1

λℓ
2

)2

exp

(
−µL

λℓ
2

)
> 1,

(3)
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which imply

mT ⩽ t < (m+ 1)T,

dV1

dt
⩽ −µV1 ⇒ V1((m+ 1)T ) ⩽ V1(mT )e−µT , (4)

(m+ 1)T ⩽ t < (m+ 2)T,

dV2

dt
⩽ −µV2 ⇒ V2((m+ 2)T ) ⩽ V2((m+ 1)T )e−µT .

(5)

Let us select p1/p2 as follows:

p1
p2

=
VI

VII

> 1. (6)

Let us define a parameter α > 0 selected such that

1

T

(
L

λℓ
2

− L

λℓ
1

)
<

lnα

µT
< 1. (7)

Using inequalities (6) and (7), we then have

α ⩾
exp

(
−µL

λℓ
1

)
exp

(
−µL

λℓ
2

) ⩾

p1
λℓ
1

exp

(
−µx

λℓ
1

)
p2
λℓ
2

exp

(
−µx

λℓ
2

) > 1.

By combining this inequality with the definitions of V1 and
V2, it can be checked that

1

α
V2 ⩽ V1 ⩽ αV2, ∀t, ∀x. (8)

From (4), (5) and (8), we then have:

V1((m+ 2)T ) ⩽ αV2((m+ 2)T ) ⩽ αe−µTV2((m+ 1)T )

⩽ α2e−µTV1((m+ 1)T ) ⩽
(
αe−µT

)2
V1(mT ).

Mutatis mutandis, obviously we also have

V2((m+ 3)T ) ⩽
(
αe−µT

)2
V2((m+ 1)T ).

Now, from (7) we have:

αe−µT < 1.

Therefore, V1(t) and V2(t) exponentially converge to zero
and the periodic time solution C∗ is exponentially stable.

IV. SIMULATION EXPERIMENT

In this section we present a simulation experiment of a
SMB process implemented under the operating conditions
reported in [11] for the separation of fructo-oligosaccharides.

The parameter values are:

L = 0.248 m, T = 114.95 s,
VI = 0.036 m/s, VII = 0.022 m/s,
hA = 0.3954, hB = 0.0251,

CA
F = 64 mg/ml, CB

F = 85 mg/ml,

ϵ = 0.378 F =
1− ϵ

ϵ
= 1.6427.

From these values, we verify that the stability condition of
Theorem 1 is satisfied since

T >
L

λA
2

− L

λA
1

≈ 67 s,

T >
L

λB
2

− L

λB
1

≈ 42 s.

We simulate the start-up of the process from zero initial
conditions (i.e. zero initial concentrations in the columns).
The simulation results are shown in Fig.2 and Fig.3. We
see in Fig.2 that the steady-state periodic regime is reached
within about 10 column shifts (i.e. 2.5 rounds).

It may also be observed in Fig.3 that the separation
between species A and B is effective but not perfect. This is
an inherent limitation of SMB processes implemented with
four columns as considered in this paper for simplicity. In
order to reach a total purity of the separation, industrial SMB
processes are generally implemented with eight (e.g. [16]) or
even twelve columns (e.g. [10]).

V. CONCLUSIONS

In this communication, we have been concerned with
the exponential stability of hybrid hyperbolic systems with
switching boundary conditions. Our contribution has been
to show how the exponential stability (in L2-norm) can be
established in the special case of SMB chromatography. The
approach which has been followed is a direct generalisation
of the method for the unswitched case. It is based on the fact
that the two underlying subsystems are exponentially stable
with different quadratic Lyapunov functions. The conver-
gence of the hybrid system is then established by switching
between these two Lyapunov functions in synchronization
with the process physical switching.
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