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Abstract: This paper describes a method for predicting the presence or absence of
ice on the road. The method is based on a Least Squares Support Vector Machine
applied to data from the road in Wallonia (Belgium). It is shown that including
a prediction of the air temperature given by a meteorological center in the model
helps having better accuracy. In this application, 95% accuracy have been achieved
for a 3 hours prediction horizon, and 92% for 6, 12 and 24 hours horizon.
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1. INTRODUCTION

A few years ago, the roads in Wallonia (southern
part of Belgium) have been equipped with 51 me-
teorological stations that measure meteorological
data such as air temperature, subsurface temper-
ature, road state, wind direction etc.

The data are collected and stored in a database
managed by the MET (Ministre des Equipements
et des Transports). In recent years, some of them
were already used to help the road maintenance
division in its decision taking process w.r.t. the
need of spreading salt on the roads to prevent ice
forming. However, recent advances in ”intelligent
techniques” lead us to study new applications
based on these data.

Among possible applications is the construction of
an expert system which would act as a computer-
aided decision making tool to estimate the need to
spread salt on the roads to prevent the apparition
of ice. Our work aims at studying the feasibility
of such a project.

In the literature, most studies focus on the predic-
tion of the air or surface temperature among oth-
ers (Hertl and Schaffar (1998), Hertl and Schaffar
(1999)) but not on actually predicting ice, or pro-
vide a short-term analysis (Shao (1998), Shao and
Lister (1996)). In this paper, we used a LS-SVM
nonlinear classifier to directly predict the state of
the road (icy or not) up to 24 hours ahead.

This paper is organized as follows: we first present
the data we worked on. We then show the quality
of LS-SVM classifiers when predicting the state
of the road. Finally we present the improvement
obtained when using a prediction of the air tem-
perature provided by a meteorological center.

2. DATA

Data include 51 sets of 21 variables sampled with a
period of 6 minutes, recorded during three winter
periods. Among those variables, we find: the air



Fig. 1. Some of the variables (Berloz station, 2002)

temperature, the temperature of the road, the
hygrometry of the air, etc.

In Figure 1 which presents the road temperature,
the air temperature and the dew temperature of
the Berloz station, from 1-10-2001 to 30-04-2002,
we clearly see a seasonal trend.

2.1 Jalhay Station

One major difficulty in predicting the state of
the road is the small number of data when ice
is present (it is quite a rare event compared to
absence of ice). This could lead us to bad results
in classification.

Moreover, data do not explicitly mention whether
the absence of ice is natural or due to previous
spreading of salt. One solution would be to obtain
information about the moments and the places
where salt were spread on the roads. This infor-
mation is unfortunately not available.

The solution we then found was to use data from
only one station where ice occurs more often and
which is less served by the salting trucks because
of its less accessible location. Indeed, one of the
stations (Jalhay Station) is located at one of the
highest points in Belgium, where icy conditions
occur more frequently, and presents much more
moments of ice than the others.

This is why we will focus on data from this
particular station when building a classifier in
order to predict the state of the road (icy or not).

3. LS-SVM CLASSIFIER TO PREDICT THE
STATE OF THE ROAD

The problem which we will focus on is the predic-
tion of the state of the road (icy or not), which is
one of the variables at our disposal.

A first obvious observation is that there is no ice
on the road if the road temperature is strictly
positive. We can then perform a pre-classification
by computing a prediction of the temperature of
the road (for example with a simple linear model).
If the prediction of the temperature of the road is
above 0oC (or above a threshold corresponding
to the prediction error of the linear model), we
can predict that there won’t be any ice on the
road. If the prediction of the temperature of the
road is lower than the threshold, the problem is
more complex and we suggest to use a classifier.
To build our classifier, we then only used data for
which the temperature of the road was below 0oC.

3.1 LS-SVM Classifier

We use a LS-SVM classifier (Least Squares Sup-
port Vector Machines) (Suykens and Vandewalle
(1999)). LS-SVM is one particular instance of
SVM (Support Vector Machines). In this section
we first define SVM classifiers, and we then ex-
plain the difference of LS-SVM classifiers with
respect to SVM classifiers.

3.1.1. SVM Classifier SVM algorithm tries to
obtain a hyperplane to optimally separate differ-
ent classes. For separable data, the SVM finds
the hyperplane with the maximum Euclidean dis-
tance to the nearest point. For nonseparable data,
the SVM maps the input vectors into a high
dimensional feature space, and then constructs
an optimal separating hyperplane in this higher
dimensional space.

Given a data set of N data pairs {yk, xk}N
k=1 where

xk ∈ <n is the k-th input pattern and yk ∈ {−1, 1}
is the k-th output pattern, a SVM classifier is of
the form:

y(x) = sign[
N∑

k=1

αkykΨ(x, xk) + b] (1)

where y(x) is the prediction of the state of the
road for a new input vector x ∈ <n (1 if ice, -1 if
not), xk are the support vectors (belonging to the
learning set, that is the data set used to build the
classifier), αk are support values, and b is a real
constant (Suykens and Vandewalle (1999)).

The functions Ψ(., .) are Gaussian kernels of the
form:



Ψ(x, xk) = exp−
‖x−xk‖

2
2

σ2 (2)

The SVM associated to such functions is called a
gaussian kernels SVM.

We can also express the SVM classifier as:

y(x) = sign[wT ϕ(x) + b] (3)

where ϕ(.) is a non linear function which maps the
input space into a higher dimensional space and
is such that:

Ψ(xk, xl) = ϕ(xk)T ϕ(xl) (4)

For separable data, one assumes

{
wT ϕ(xk) + b ≥ +1, if yk = +1
wT ϕ(xk) + b ≤ −1, if yk = −1

(5)

which is equivalent to

yk[wT ϕ(xk) + b] ≥ 1, k = 1, ..., N (6)

For nonseparable data, a slack variable ξk is used:

{
yk[wT ϕ(xk) + b] ≥ 1− ξk

ξk ≥ 0, k = 1, ..., N
(7)

SVM classifiers are obtained as the solution to the
following optimization problem:

minw,b,eJLS(w, b, e) =
1
2
wT w + γ

N∑
k=1

ξk (8)

subject to the constraints (7).

3.1.2. LS-SVM Classifier To build a LS-SVM
classifier, the problem is simplified because of the
use of equality constraints instead of inequality. A
set of linear equations has to be solved rather than
a quadratic programming problem; the solution
can be obtained in a finite number of steps.

If ek is defined as:

ek = yk − (
N∑

k=1

αkykΨ(x, xk) + b), (9)

the LS-SVM optimization problem is written as:

minw,b,eJLS(w, b, e) =
1
2
wT w + γ

1
2

N∑
k=1

e2
k (10)

subject to the constraints

yk[wT ϕ(xk) + b] = 1− ek, k = 1, ..., N (11)

The LS-SVM classifier involves two parameters
to be optimized, which are σ (the width of the
gaussian kernels which cover the input space) and
γ (the regularization factor, allowing to avoid
obtaining a too local model). The tests were made
using the LS-SVMlab Toolbox (Pelckmans et al.).

3.2 Selection of input variables

We select some input variables which have been
shown to be highly correlated to the state of
the road: past values of the temperature of the
road (up to 24 hours ago), the past value of the
road temperature 5cm below the surface and of
atmospheric radiance along with hygrometry and
dew temperature.

3.3 Error Criteria

We consider the two following error criteria:

V V =
] good predictions of ice

] occurrences of ice
(12)

NN =
] good predictions of ’no ice’

] occurrences of ’no ice’
(13)

The criterion V V is called the sensitivity, and the
criterion NN is called the specificity.

The difficulty in finding a good classifier is the ne-
cessity to optimize these two criteria at the same
time. It is certainly important to correctly predict
the occurrence of ice for reasons of security, but
it is also important to correctly predict the occur-
rence of ’no ice’ to avoid an excessive spreading of
salt (for ecology and economy reasons).

3.4 ROC curve

One way to express the results of a classifier is the
ROC Curve (Receiver Operating Characteristic
curve). The ROC Curve is a 2D graph represent-
ing along one axis the criterion VV (sensitivity),
and along the other axis the criterion 1-NN (1-
specificity).

One ROC curve corresponds to some fixed values
of the parameters σ and γ. Each point of the curve
corresponds to a different value of the threshold b
(cf. equation (3)). It gives an idea of the trade-off
we can obtain between specificity and sensitivity
(in this case: between a good prediction of ice
and ’no ice’). Any increase in sensitivity will be
accompanied by a decrease in specificity.

The accuracy of the test depends on how well
the test separates the group being tested into two
classes. Accuracy is measured by the area under
the ROC curve. An area of 1 represents a perfect
test; an area of 0.5 represents a worthless test.



3.5 Data treatment

If we denote Te the horizon (in hours), y(t) the
state of the road at time t, and ui(t)(i = 1...n)
the input variables at time t, the data set we use
is composed as shown in Table 1:

Table 1. Data set

u1...n(t− Te) y(t)

u1...n(t− Te + 6min) y(t + 6min)

u1...n(t− Te + 12min) y(t + 12min)
u1...n(t− Te + 18min) y(t + 18min)

Each line of Table 1 corresponds to one moment
(icy or not), and contains information about the
value of the input variables Te hours earlier. As
we have one data every six minutes, we then use
all the available information.

We used data of the Jalhay station. At the Jalhay
station, there were 2810 moments of occurrence
of ice and 91042 moments of occurrence of ’no
ice’ during the winters 2001-2002 and 2002-2003.
Using all of these moments to build a classifier
takes a lot of computation time and does not allow
to validate the classifier on a new data set. We
then randomly select a subset of the moments of
ice of a fixed size (say N), and randomly select
a subset of the moments of ’no ice’ of the same
size N (in order to avoid difficulties due to big
differences in the proportions of the two classes).
This forms the learning set, the data set which
is used to build the classifier. Then, to validate
the classifier, we use the (2810 − N) remaining
moments of ice, and (2810−N) randomly selected
moments of ’no ice’. This is the validation set.

For a fixed number N of moments of ice in the
learning set, randomly selecting different subsets
of data gives similar results, as shown in Figure 2.

Fig. 2. ROC Curves obtained when using different ran-

domly selected subsets of data

We decide to select N = 2000 moments of ice in
the learning set, because it represents a good trade
off between selecting a large number of points
(in order to build a good classifier) and keeping
enough points in validation. Figure 3 compares
the results obtained when using different numbers
of moments of ice in the learning set.

Fig. 3. ROC Curves obtained when using different num-
bers of moments of ice in the learning set

3.6 Maximizing the area under the ROC curve

As we saw above that the more the area between
the ROC Curve is close to 1, the more the classifier
is accurate, we maximize the area under the ROC
curve in order to select optimal values for the two
parameters σ and γ. We first test a large range of
values of (σ, γ), going from very small to very large
values. We then determine the range of values of
(σ, γ) which gives the largest area under the ROC
curve. Finally we refine our search in this range of
values.

While maximizing the area under the ROC curve
according to γ, we can observe that for a small
fixed value of σ, the area decreases for increasing
values of γ. On the other hand, for a larger fixed
value of σ, the area increases for increasing values
of γ (cf. Figure 4).

Fig. 4. Evolution of the area under the ROC curve

according to gamma for fixed values of sigma

This can be easily interpreted. On one hand, the
smaller the σ parameter, the more the model is
likely to be too local (the classifier being able
to class the learning set perfectly, but giving
bad results when classifying new data). On the
other hand, the parameter γ is a parameter of
regularization: a large value of γ will force the
model to be well-fitted to the learning set, a too
large value of γ also leading to a too local model.



All this means that for a small value of σ (which
represents a risk of having a too local model), we
can’t afford a too large value of γ, which would
also lead to a too local model. For the same reason,
for a large value of γ, we may not choose a too
small value of σ.

3.7 Results

Figure 5 presents the ROC curve of the optimal
classifiers for 3, 6, 12 and 24 hours prediction
horizons.

Fig. 5. ROC curves of LS-SVM classifiers for different

prediction horizons)

Choosing a LS-SVM classifier with equal values of
the two criteria NN and VV seems an interesting
choice because a small improvement in one crite-
rion would imply a big loss in the other criterion.
In that case, for a 3 hours prediction horizon,
the classifier is able to correctly predict ice and
’no ice’ 90% of the time. For a 24 hours horizon,
this accuracy drops to 85%, which remains a good
result for such a long horizon.

3.8 LS-SVM classifier: conclusion

When using LS-SVM classifiers to predict the
state of the road, if we choose to predict ice and
’no ice’ with the same performance (which seems
interesting due to the shape of the ROC Curve) we
obtain an accuracy of 90% for a 3 hours horizon,
and 85% for a 24 hours horizon. In the next
section, we shall see that the performance can still
be improved by using air temperature predictions.

4. IMPROVEMENT WITH THE USE OF A
PREDICTION OF THE AIR TEMPERATURE

Up to now models only included past values
of the series. In this section we study how an
accurate prediction of the air temperature can
help improving ice prediction.

4.1 Quality of predictions from other sources

In Belgium, predictions of the air temperature
are provided among other centers by two centers
(IRM, Meteoservices).

In this section we try to estimate the prediction
error made by the two centers when predicting the
air temperature.

The two centers provide everyday three predic-
tions: a prediction of the air temperature of the
day, of the night and of the next day.

Gathering together the meteorological stations
around the places where the two centers compute
predictions and comparing the mean air tempera-
ture of each group with the predictions of the two
centers in Figures 6 and 7 allows us to have an
idea about the accuracy of the predictions.

Fig. 6. Prediction of the air temperature (IRM)

Fig. 7. Prediction of the air temperature (Meteoservices)

The predictions from Meteoservices are a little
better than those from IRM, probably due to the



fact that Meteoservices computes predictions in
more places than IRM. Nevertheless the difference
is not significative. In general the mean of the
prediction error is around 0oC and its standard
deviation is less than 2oC. Tests also showed that
the prediction error of each of the two centers can
be considered as a white noise.

4.2 Improvement of the LS-SVM classifier

Figure 8 shows the improvement of the ice predic-
tion obtained by a classifier using, in addition to
the inputs, a prediction of the air temperature, for
3, 6, 12 and 24 hours horizons. The mean of the
error of the simulations of predictions was fixed to
0oC and its standard deviation to 1oC.

We observe that the use of the prediction of the
air temperature allows to improve the quality of
the prediction of ice.

The accuracy of the classifier improves to 95% for
a 3 hours horizon, and to 91% for 6, 12 and 24
hours horizons. The use of a simulation of the air
temperature allows then to divide by two the error
percentage of the classifier.

5. CONCLUSION

In this paper, in order to predict the state of the
road (icy or not), we tested lS-SVM classifiers. We
obtained significantly better results when using a
simulation of the prediction of the air temperature
as one of the inputs. The accuracy of the classifier
reaches around 95% for a 3 hours prediction
horizon, and around 92% for 6, 12 and 24 hours
prediction horizons.
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