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Abstract.

This paper proposes two methods of traffic regulation of public underground

transportation systems during transients, for example during the modification of the

intervals between the trains.
linear systems with quadratic criterionm.

Both methods are based on optimal control theory for

In the first approach the system is controlled

with respect to a new nominal time schedule to be generated accordingly to the new situation
while the second method realizes interval control without reference to a nominal schedule.

The properties of both methods are analyzed and simulation results are discussed and compared.
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1. INTRODUCTION

system 1is
unstable

An underground public transportation
known to have an  intrinsically
behaviour. Consider, for instance, a delaycd
train arriving at a station. Because of this
delay the time interval since the last train
departure is increased and more passengers have
to get on the vehicle, with a resulting
increasing delay. In order to restore a disturbed
traffic to the nominal situvation control is
therefore necessary. For man operated systems as
well as for fully automatised systems the control
actions ronsist of instructions (spead during the
stations, waiting time modification) elaborated
by the centralized controller on the basis of the
available information (i.e. the situation of the
other trains). Several constraints must of course

be satisfied, such as speed limits, miminum
waiting times at the stations or the other
security rules.

On the basis of a linear model introduced by

Sasama and Okhawa [1], we have proposed in [2]
and [3] a particularly attractive state-space
formulation making possible the impleme.'“+tion of
an optimal control minimizing a quadratic
performance index. The properties of this policy
as well as simulation results can be found 1in
these papers but only in steady state nominal
situations, i.e. in case of constant nominal time
intervals between trains, in correspondance with
a given nominal time schedule.

on the other hand as the passengers’ flow at the
station varies significantly from one hour to the
other (consider for instance the rush hours of
the morning or the ecvening) the nominal time
interval during the successive  trains, and
therefore the number of trains exploited
simultanecusly on the line, have to be modified
from time to time, in order to be adapted to the

passengers’ affluence at the stations : several
transient periods have therefore to be
considered, corresponding to these frequency
modifications. Without control these transients
lead to a generalized unstable behaviour of the
system. The purpose of the prescnt paper is to
propose two different methods for the traffic

control during these transients. In the first one

a new nominal time schedule is
corresponding to the new freguency,
system is controlled during the transient in
order to converge to the new schedule. This
control policy appears therefore as the extension
to the transient case of the control proposed in
[2] and [3] for the steady-state sitvation. In
the second method no reference at all is made to
a new nominal schedule and the system is
controlled in order to impose to the time
intervals between successive trains to be equal
tn the desired steady state value. This original
control, based on a new state space formulation,
realizes time interval control without. reference
to a nominal schedule.

generated,
and the

In section 2 we describe briefly the linear model
of the d{raffic dynamics. In section 3 and 4 we
detail the two state-space represcentations, as
well as the corresponding control policies, for
the two proposed methods, respectively with or
without reference to a nominal schedule. 1In
section 5 we present a case study of frequency
modification and we  give simulation results
relatively to the proposed methods.

7. THE MATHEMATICAL MODEL FOR TRAFFIC DYNAMICS

summarize {he mathematical model
dynamics proposed by Sasama and

We now briefly
for traffic
Okhawa [1].
Consider I trains (upper index i = 1, ..., I) on
a line with K + 1 stations (lower index k = 0,
., K). The departure time t!,  , of the i-th
train from station (k+1) can be expressed as

(1)

where r!,  is the running time for i-th train
from the k-th station to (k+1)th station
si,, is the staying timc of train i at
station (k+1)

and w!, is a disturbance term affecting train i
between the stations k and (kt1)

The running time rlk can be modelled further as
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r X R, u1‘ (2)

k k

where R, is the nominal running time from k to
k+1, and uT‘k is the portion of the control
action applied to train i, between stalions k and
(k41), in order to increasc [u‘k>0) or decrease
(u k(ﬂ} the running time.

The staying time s!, ., depends on the time
interval between the departure of the preceding
train and the arrival of the present train. This
dependance is modelled linearly by

i i i-1 i
Lk‘1] b nk+1 + u2

i i
St Vet T k

(3)

where D, , 1is the minimal staying time at a
station and nzi is the portion of the control
action applied to the 1i-th train at station k.
Equation (3) constitutes the basic assumption of
this traffic dynamic model : the staying time
increases linearly with the number of passengers
getting on the train, and therefore to the time
elapsed since the departure of the last train.

In these relations, D,, R, and the coefficients
a* ave characteristic parameters of the line to

k 3 =
be ostimated from statistical data (see ref.[1]).

. i .
Defining c]'k b _E_Eﬂ and hlk : n—lTu
1+a " 1+a X
equation (1) can be rewritten as
i i i i _ i1
et SV PR Oy e T Yad)
i i i
+b wat Dpp YW Uy (4)

where u!, = ult + bt u2! represents the global
control action applied to the i-th {rain betwern
its departures from stations k and (k+1).
Equation (4) characterizes the transfer of the
i th train from station k to the station (k+1).

3. TRAFFIC CONTROL WITH REFERENCE TO A NOMINAL
SCHEDULE

31.1. The *time schedule® equation

Accordingly to cquation (4} a nominal time
sechednle, representing the evolution of  the
system without disturbances and control {i.e. ut,

= w, - 0) can be defined by
i i i i i
Toar " TP R Y O Ty ™ Tra!
+ bi D
k+1 “k+1 (5)

Defining xi, as the deviation of the actual
departure time t!, from the nominal value T,

L.,

(6)

we obtain the following basic transfer equation

i i i -1 _ 1 i
(1-¢c k+1) X Kt +c k. =K X + "k +w k(?)

1.2. The "real time model® (RTM)

Several state space representations corresponding
to oq.(7) ran be found in [1]. In the original
representalion referred 1o as the “"Real time
Model" in [2] and [3], 1the state vector, the
control and the disturbance vectors are defined
respectively as

7K K
K K-1

V. W J (8a)

j-K+1
K- 1

This definition of 1Lhe state space veclor is
based on the structure of the basic transfer
cquation (7) : it wvan be observed that the
deviation x*, . depends on control and
perturbation terms, but on two deviations

E"k,1 and x kJ characterized by the same value for
the sum of their upper and lower indices. It is
therefore natural to define as the state vector,
with index j, the set of the K deviations x!,
with i + k = j. The set of the transfer equations
(7) for all the trains and all the stations can
then be rewrilten under vectorial form

X “AX.+BU., +BV, (9)

i+ i j i

where A and B are two (KxK) matrices

- o
Ae R - 0 :
1 c ,

. 2.
e, 1 :
0 . 1 i'K
T, T
1
LA E B
1
0 - - L
Al Cy

on  the other hand, as the set of ti
corresponding to the components of X, are nearly
sim Mtancens, the index j can  be interpreted as
lhe time index for a discrete time differcnce
egiations system.

For a loop line (where the same Lrains are
operated) the definitions of the state and
cantrol vectors, as well as  the  dynamical
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matrices have to be adapted. Consider, for
instance, a loop line with K stations, where I
trains (I<K) are operated. At a given station the
sequence of Lrains 1is periodic, from circuit to
circuit
5 2 v Tl T U B cacey B0 X 1 35

For train number 1, the preceding train has index
I. To take into account this periodicity we
define an augmented state vector (dimension K) xj
as

X, = xI , where the lo-
i ik wer index
1 (K-1) (station index)
X3 1-1 components is defined mo-
: dulo K.
XI
LI (Ab)
I
X
J?I+1 1 components
I
LS

o 10 . 0
0 0 1 0 . 0
ﬁj= 0 0 1 - - - 0
0 - - (1+a;) -a, 0 - =
0 0 1+.t? -a, 0 -
0 s & 3 0 . 5
O Ay ey
“ay - - - 0 0 1+ak
and
B.=10
i 0
. K-1
0
1+a‘ - - -
T a 1
0 - - - Hap

3.3. Traffic Regulation

The proposed control is based on linear quadratic
optimal control theory. The performance criterion
has to take into account the two regulation
objectives regularity with respect to the
nominal schedule and regqularity of the time
interval between successive trains. We select the
following quadratic criterion penalizing the
deviations with respect to the nominal schedule
as well as the interval deviations :

1 i.,2 1 i-1,2 i 32
J,= 3 izk (pk (x k) +qy (x x Yk ) R | k]
(10a)

or, equivalently,

LRI R R X R SO L1t RS B
J

j+1 j+1 j+1 ]

T
s o 10b
*.U] UJ} ( )

where P and Q are two diagonal matrices :

P = diag (py, Pgs . pg) and @ = diag (4, 4,

- qx)

The optimal control for the linecar quadratic
problem defined by (9) and (10) i5 known ta be a
state-feedback control, which takes a
particularly simple form, when the problem is
restricted to a one step optimization problem
{i.e. the sum in (10b) 1is restricted to only one
term)

i i i1
Uy = Gy Xt Tyaq X (1)

The cxpressions of g,,, and f,,, as well as a
discussion of the stability properties of the
closed-loop systems can be found in [2].

4. TRAFFIC EQNTROL WITHOUT REFERENCE TO A NOMINAL
SCHEDULE

4.1. The "interval equation®

tonsider the cquations describing rvespectively
the transfer of the trains (i-1) and L from the
k-th station to the (k+1)th station :

i e i i i-1
L kil * L X | Ry + C kH(t Xt [k+1)
i i
| kak Puty bWy (12a)
i-1 _ i1 i-1 L i-2
treer = E P R b oy (g 7 by
+ b+ w4t (12b)
Nk k k
Defining ﬁtlk = tlk = tl-Tk , d.c. the time
interval between (i-1) and i at station k, (13a)
io_ i i
Bu K S T (13b)
. i-1
and Bw o My W (13c)

we obtain from (12a) and (12b)

i is1 _ . i i
(1o€ypq) Bty + Cppq 8ty = Bty + Buy + Buy(14)

In this formulation we have neglected  the
variation of C,, at a given station between two
successive trains.

It must be noticed that the structure of eq.(14)
is the same as for the basic "time schedule"
transfer equation (7) but it has been derived
without any reference to a nominal time schedule.
This equation describes the evolution of the time
intervals between successive trains and will be
r~forred to as the "interval equation®.

4.2. State Space Representation

Taking benefit from this similarity of structure,
we define, as for the "time schedule" approach a
real-time model

At = .+ B AU, + B AW, 15
i1 A at} ) 3 j (15)
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where the state vector At,, the control and the
disturbance vectors are dﬂ%incd similarly to (8)

A and B have the same structure as the matrices A
and B characterizing the "time schedule" RT
Model, for loop lines as well as for open lines.
Using (13b) the control vector can be related to
AUj by

Uj+1' L Uj + nt (17)

where L is a (IxI) matrix

L=[0 1 0-.--0
0o 0 1 0
0- - 0 1

- 0

Equations (15) and (17) constitute the complete
description of the system, without reference to
a nominal schedule.

4.3. Traffic Regulation

a) As we now consider a time interval model the
only control objective 1is to ensure interval
regularity, i.e. to impose to the time interval
to be as close as possible to the desired time
interval, AT. We define therefore a new siate
vector whose components are the differences
between the intervals 6t!, and AT, i.e.

Y. o= Atj = IKaT where I is the (KxK) unity

] K

matrix
Equation (15) is then rewritten as
yj+1 = (A-IK}Yj + B nuj (18)
For the 1linear system (17)-(18) we introduce a
quadratic performance index, as in (10)

1 T T
Iy = ? [¥500 P Y500 + U5, QU] (19)

b) By restriction to a one step optimization
problem, Lhe optimal an is linear in Yj and Uj

BUy = KyY o+ KU, (20)
For open lines the eigenvalues of the closed-
loop system are inside the unit circle, ensuring
the convergence to the steady state situation
characterized by ¥ = 0 and U = 0.

For loop lines, all the eigenvalues are inside
the unit circle, except one, which is equal to
one. The closed-loop system converges therefore
to a stable situation characterized by steady
state Y* and U*. If AT is chosen egqual to the
natural period of the system (i.e. the period
assuring the periodicity without control action)
this steady state solution corresponds to

Y* = 0 (i.e. all the intervals are equal to At)
and U* = 0 (i.e. the control actions are zero).
The natural period, AT*, of the loop lines with I
trains is characterized by

K K K
IAT* = T R.+ 2D+ [ L c,)AT* (21)
=13 3= y=1d

5. CONTROL OF THE TRANSIENTS - CASE STUDY

In [2] and [3] simulation results relative to
steady-state disturbed sitvations are given and
the efficiency of the proposed control,
corresponding to the “time schedule" approach is
pointed out. In this section we are interested in

the traffic control during transients of the
systems, namely during frequency modifications.

5.1. Statement of the problem

We consider a luop line with 30 stations. The
system parameters are chosen as follows

* the c K are equal and constant (c i B 0.02)
* the minimal staying time in station, D, is
constant and the same for each station (D = 15

sec)
* the standard running times between stations are
assumed to be known (of the order of 60-100
sec).

We impose several constraints :

* the security requirements of a real line are
implemented in the simulation program (traffic
lights)

* the control actions are bounded and the
relative variation of the running times and the
staying times cannot  exceed 10% of their
nominal values.

Assume that the frequency has to be modified : we
consider a first nominal natural steady-statc
schedule with constant time intervals of 300 sec
and we want to increase these intervals up Lo 400
sec. According to the first nominal schedule 9
trains are operated on the 1line. In order to
achieve the new frequency only 7 trains have to
be operated so two trains are suppressed. This
maneuver occurs at a given "taking-off" station.
The choice of the suppressed train is arbitrary
and has of course an influence on the system
performance.

5.2. Traffic regulation with reference to a
nominal schedule

a) The new nominal schedule

A new nominal steady-state schedule corresponding
to the modified time interval (400 sec) has first
to be generated and the selection of the
suppressed trains to be made. Before starting the
operations the conditions of implementation of
this new schedule are defined as follows : the
new schedule 1is in application for a given train
at 1its first stop at the "taking off" station
occuring after the “"taking off" hour and we
consider, in addition, that for the first train
for which the new steady-state schedule is in
application the initial deviation is zero, i.e.
this {rain 1is on schedule. In addition the
standard staying times (D) are modified in such
a way that 400 sec becomes the natural period for
the loop 1line with 7 trains, accordingly to
equation (21).

This rule 1is clearly arbitrary and other new
schedule implementation policies can be applied.
In our simulations the suppressed trains are the
6th one and the 8th one stopping at the "taking
of f" station after the "taking off" hour.

b) Simulation results

The simulation results are summarized, for each
case, in two diagrams giving respectively the
deviations of the trains at the taking off
station, with respect to the new nominal
schedule, and the time intervals between trains
starting from this station (the new nominal value
is 400 sec). In order to show clearly the
evolution from these characteristics from one
circuit to the next one, vertical dotted lines
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separate the different circuits of the 7
remaining trains.

Case 1 : Free system (no control) Fig. 1 and 2
Tonsider the departures of the 7 remaining trains
after the taking off hour. For the first five
trains the deviations are negative with
increasing absolute values (these trains are in
advance with respect to the new schedule) and the
intervals are 300 sec. For the next train,
following the first suppressed trains, the delay
is -200 sec, with an interval of 600 sec, and for
the last train, following the second suppressed
trains, the deviation is =zero, with an interval
of 600 sec. This situation at the first crossina
over the taking off station is the initial
condition for the next circuit, and it can be
seen that wilthout regulation the deviations as
well as the differences of intervals increase
from circuit to circuit.

several regulation policies are implemented,
corresponding to different choices of the
weighting coefficients p and g characterizing the
performance index (10).

Case 2 p=0.1and g = 0.1 (fig. 3 and 4)

Case 3 p=0.0and q=1.0 (fig. 5 and 6)

In these two situations it can be seen that the
Jeviations with respect to the new nominal
schedule decrease from circuit to circuit, and
that the intervals converge to the new nominal
value (400 sec), and at the third crossing over
the taking-off station the new steady-state
cituation is nearly reached. By comparing the
results of case 2 and case 3 it can be seen that
if only interval reqularity is desired (p = 0.0,
i.e. no penalization of the deviations) the
deviations converge to a constant value which is
different from zero.

Case 4

The new nominal schedule is slightly different :
we consider that the first +train crossing over
the taking off station has a delay of 400 sec
(translation of the new nominal schedule). The
weighting coefficients are p = 0.1, q = 0.1. See
fig. 7 and 8. The transient is different for the
deviation evolution but the new steady state
situation is reached after 3 circuits, as for the
first nominal schedule.

5.3, Traffic requlation without reference to a
nominal schedule

As seen in 5.2 the implementation of the new
nominal schedule is arbitrary, and the choice of
a particular policy can influence the transient
behaviour of the system. If we avoid the
reference to the nominal schedule, as it is done
in the interval equation approach, this
difficulty does not more exist.

We give now simulations results corresponding to
the implementation of the control policy (20),
independent of a nominal schedule. The suppressed
trains are the same as in 5.2 : the 6th and the
8th trains crossing over the taking-off station,
after the taking-off hour. The control action is
applied to each train from its crossing over this
station.

Case 5. Time interval approach - p=1.0, g=1.0.

Rs 400 sec is the natural period of the line with
7 trains the system converges to the stable
situation with AT = 400 sec and steady state

control actions equal to zero. Fig. 9 gives the
evolution of the time intervals : in less than
two circuits the new steady state situation 1is
reached. The transient behaviour is much better

than for cases 2 and 4 and comparable to case 3.
In fact for case 3, as p = 0.0, the control tends
to minimize the differences of deviations betwecn
successive trains, i.e.

R ! (T, - 4 Y - fpegr = AT-Bty
The criterion J, with p=0 and g=1.0 is therefore
equivalent to J, with p=1.0 and q=1.0. The
advantage of the time interval approach is that
it does not need the generation of a new steady-
stal» schedule.

X

6. CONCLUSIONS

1) It is shown that the optimal control method
proposed previously for the traffic regulation in
steady-state situations can easily be extended to
the transients, by generation of a new nominal
time schedule. This approach 1is particularly
usefull when the system has to reach a new
specified steady-state behaviour for which a
nominal schedule can be defined.

2) We developed in this paper our new approach
for the modelisation and the traffic regulation
without reference to a nominal time schedule.
This method is particularly wusefull when a
nominal schedule cannot be generated and when
therefore only interval regulation is desired.

3) Both methods have been tested for a particular
transient : the modification of the time interval
between successive trains. Other transients can
be regulated. Assume, for instance, that, due to
a technical reason, a given station cannot be
operated, and that the line has therefore to be
decomposed into two sublines without connection,
to be exploited independently. In this case a
nominal schedule cannot be defined easily and the
interval regulation without reference to a
nominal schedule appears to be the best
regulation policy.
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