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ABSTRACT 

The dynamics of nonholonomic mechanical systems are 
described by the classical Euler-Lagrange equations 
subjected to a set of non-integrable constraints. Non 
holonomic systems are strongly accessible whatever the 
structure of the constraints. They cannot be asymptotically 
stabilized by a smooth pure state feedback. However 
smooth state feedback control laws can be designed which 
guarantee the global marginal stability of the system with 
the convergence to zero of an output function whose 
dimension is the number of degrees of freedom. 

1. INTRODUCl'ION 

A mechanical system, whose configuration is completely 
described by a set of generalized coordinates, can be 
subjected to kinematic constraints (such as the pure 
rolling condition of a wheel on a plane), which are 
expressed by relations between the coordinates and their 
time derivatives. If these constraints are holonomic (that 
is integrable) it is possible to characterize the system 
configuration by a smaller number of coordinates (i.e. to 
use the constraints in order to eliminate the redundant 
coordinates) in such a way that the constraints are 
automatically satisfied in the new coordinates. 
Unfortunately, in case of non holonomic constraints, this 
elimination is not possible and the constraints have to be 
taken into account explicitly in the derivation of the 
dynamical equations. The present paper deals with control 
design of such systems, for which, due to the 
nonholonomic constraints, the standard control laws 
developped for holonomic mechanical systems (for 
instance robotic manipulators) are not applicable . 
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Motion planning and feedback control of non 
holonomic mechanical systems has been discussed in the 
literature through the special case of mobile wheeled 
robots (see e.g. [ll to 141). In these papers however, the 
control is designed on the basis of a kinematic statespace 
made1 derived from the constraints, but not taking the 
internal dynamics of the system into account. The 
purpose of this paper is to derive a full dynamicaI 
description of such nonholonomic mechanical systems, 
including the constraints and the internal dynamics, and 
to show how a suitable change of coordinates allows to 
analyse globally the controllability and the state feedback 
stabilizability of the syslem. The feedback stabilizability of 
mechanical systems with Constraints (holonomic or not) 
is also axamined by Bloch and McClamroch [A. However, 
they use another change of coordinates which is less 
efficient since it provides only local stability results and is 
not convenient for a controllability analysis. 

The paper is organized as follows. The concept of non 
holonomic constraints for mechanical systems is 
introduced in Section 2 within the framework of the 
theory of nonlinear control systems. A general dynamical 
state-space model of non holonomic systems is then 
derived in section 3, using the classical Euler-Lagrange 
formalism. By a suitable change of coordinates,this model 
can be partially linearized in such a way that the 
remaining nonlinearities only depend on the structure of 
the constraints. On this basis it is then shown, in Section 
4, that non holonomic systems are strongly accessible 
whatever the structure of the constraints and, 
furthermore, small-time locally controllable from 
equilibrium configurations. Our main contribution is 
then presented in section 5 where it is shown how:to 
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design smooth state feedback controllers which guarantee 
the global stability of the system and the convergence of 
the output function to zero. 

2. NONHOLONOMIC CONSTRAINTS 

We are concerned, in this paper, with mechanical systems 
whose configuration space is an n-dimensional simply 
connected manifold PZ and whose dynamics are described, 
in local coordinates, by the so-called Euler-Lagrange 
equations of motion. Usually, the local coordinates used 
for the description of these systems are termed 
"generalized coordinates" and denoted q l ,  q2, ..., qn. Each 
configuration of the system is represented by the vector of 
these generalized coordinates and is denoted: 

4 [ 41.92. ... qn] 

The configuration manifold ft, which is the set of all 
possible configurations, is represented in local coordinates 
by an open set R E  IR". The position of each material point 
of the system is a function of the generalized coordinates. 
A motion of the system is represented in the q coordinates 
by a smooth time function q(t) .  The corresponding 
trajectory is a one-dimensional immersed submanifold of 
Jt. The tangent vector at a point of the trajectory is then 
represented by the vector 

T 

T Lj = rq], 92, ... , 9,l 

whose components are termed generalized velocities. 
In many instances, the motion of mechanical systems 

is subjected to various constraints which are permanently 
satisfied during the motion and which take the form of 
algebraic relationships between the positions and the 
velocities of particular material points of the system. Two 
kinds of constraints can be distinguished: geometric 
constraints and kinematic constraints. 

Geometric constraints. These constraints are represented 
by analytical relations between the generalized 
coordinates. When the system is subjected to m 
independent such Constraints, m generalized coordinates 
can be eliminated and n-m generalized coordinates are 
sufficient to provide a full description of the 
configurations of the system. 

Kinematic constraints. These constraints are represented 
by analytical relations between the generalized coordinates 
and velocities. In most applications, these relations are 
linear with respect to the generalized velocities and 
written as: 

where a ] ,  T T  a2, ... p', are smooth n-dimensional covector 

fields on ft. In matrix form, the constraints (1) are written 

AT(4hj = 0 

where A ( q )  is the (n x m) matrix made up of the vector 
functions a,{@ as follows: 

(3) 

The m (cn) constraints are said independent when this 
matrix has full rank for all q .  Unlike geometric 
constraints, the kinematic constraints do not necessarily 
lead to the elimination of generalized coordinates from 
the system description. The elimination is possible only 
when the constraints are holonomic (that is: integrable). 
Our concern in this paper will precisely be to discuss the 
controllability and the feedback stabilization of mechanical 
systems with nonholonomic constraints. 

Hence, without loss of generality, we can consider 
that all the redundant generalized coordinates associated 
to the geometric constraints have been eliminated and 
restrict our attention to mechanical systems subjected to 
m independent  kinematic constraints only. These 
constraints are assumed to have the form (1). 

We assume that the annihilator of the codistribution 

spanned by the covector fields a l , a 2 ,  ... p', , is an ( n - m h  
dimensional smooth nonsingular distribution A on ft. 
This distribution A is spanned by a set of (n-m) smooth 
vector fields SI, s2, ..., which satisfy, in local 
coordinates, the following relations: 

T T  

ar(qbi(q) = O  V ~ E R  j = l,m i = l,n-m (4) 

Consider now the involutive closure of A, denoted A*, 
and defined as the smallest involutive distribution 
containing A. Assume that this distribution is regular 
(that is has constant dimension on PZ). Clearly: n-m I 
djm(A*) I n  . 

Let (n - m*) denote the dimension of A*, with m* I m. 
Then, as shown in [5], depending on the dimension of A*, 
several situations may arise: 

a) If m* = m (that is if A is involutive) the system is said to 
be h o l o n o m i c .  The configuration space can be 
characterized with ( n - m )  coordinates only. The 
configuration space is thus an ( n  -m)-di men si0 na 1 
manifold. 

b) If m* = 0 (that is if dim(A*) = n )  the constraints are 
completely nonintegrable and the system is said to be 
nonholonomic. The characterization of the configuration 
space requires n coordinates. 
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c) If 0 < m* < m it is possible to eliminate m* coordinates. 
The configuration space is a manifold of dimension n - 
m*. 

Without loss of generality, we can thus assume that all the 
geometric and all the integrable kinematic constraints 
have been eliminated from the system description and 
restrict our attention to the situation b) that is to 
nonholonomic mechanical systems evolving in an n- 
dimensional configuration manifold and subjected to m 
independent nonintegrable constraints. 

3. DYNAMICAL MODELLING. 

Using the Lagrange formalism, the dynamics of a 
nonholonomic mechanical system are described by the 
following differential equations: 

with the following notations and definitions: 

a) L(q,lj) = T(q,i) - W(q) is the Lagrangian of the system 
with T(q,lj) the kinetic energy and W ( q )  the potential 
energy. 

b) B ( q h  is the set of generalized forces applied to the 
system with B(q) a (n x p) kinematic matrix and U the p -  
vector of external forces and torques applied to the system 
by the actuators. 

c) A(q)  is the matrix associated with the nonholonomic 
constraints ; A is the m-vector of Lagrange multipliers. 

The kinetic energy T(q,lj) is defined as: 

T(q, q)  = qTM(qhj 

where M ( q )  is the (n x n) definite positive symmetric 
inertia matrix. With these definitions, the model (5) is 
rewritten as follows: 

M(q% + f(q, 9) =A(@ + B(qh (6) 

with : 

This equation (61, together with the constraint (21, provide 
a full description of the dynamics of the nonholonomic 
system. 

Defining the full rank matrix S(q) made up of the 
vector functions si(9) : 

SCq) =[ sl(q)~~(q”...s.-n(q)] 

it results that : 

ST(q)A(q) = 0 vq E R (7) 

Using this expression, we eliminate the Lagrange 
multipliers by premultiplying equation (6)  by ST(q) to 
obtain: 

ST(qXM(q8 +f(q, $1 = ST(q)B(qh (8) 

A fundamental assumption which relies on the 
constructive structure of the nonholonomic mechanical 
system is as follows. 

Assumption. The square (n-m)r(n-m) matrix STfq)B(q) has 
full rank for all q. + 
This assumption is not restrictive since it just mean that 
the actuators have been set in such a way that the system 
is really (physically) controllable whith these actuators. 

Moreover, the constraints (2) imply the existence of a 
vector time function V(q, l j )  smooth in q and linear in l j  
which satisfies the following equality along the 
trajectories of the system: 

q = S(q)tl(q, 9)  (9) 

By differentiating (9) and from the model (8), it can the be 
shown after some algebraic manipulations (see 151) that the 
dynamical model of a nonholonomic system is written in 
state space form as: 

G(q) = ST(q)B(q, (1 1 .c) 

As a first step towards the analysis of the controllability 
and the design of a stabilizing controller for this system, 
we have the following property. 



Lemma 1. The dynamical statespace model (10) is partially 
feedback linearizable with a control law u(q, q)  chosen 
such that: 

(12) 

where v denotes an (n-m)  - dimensional external input. 
Indeed, with such a control law, the closed loop is written: 

9 = S(q)tl (13.a) 

h = 0  (13.b) 

Thus it appears that the static state feedback (12) allows to 
reduce the system (10) to the simple form (13) whose 
structure only depends on the nonholonomic constraints. 

Our concern is now to discuss the controllability 
properties of this model and the design of a second 
stabilizing state feedback loop dq,q). For this purpose, we 
first introduce some notations and properties of the 
model (13) that will be used in the next sections. 

The model (13) can be written in compact form as follows : 
n m  

i =I 
x =f(x, + x givi (14) 

with : 

and gl, g2, ..., gn-m as the columns of the matrix 

For this model, the following properties can be readily 
established: 

where [. , .IN denotes the Lie bracket operation in the n- 
dimensional configuration manifold rt 

4. CONTROLLABILITY. 

It is well known that holonomic mechanical systems with 
n degrees of freedom and n actuators are completely 
controllable. This property is extended to nonholonomic 
systems as follows, whatever the structure of S(q): 

Theorem 1. A nonholonomic system evolving in an n- 
dimensional configuration manifold and subjected to m 
constraints is completely strongly accessible from any 
configuration q : the strong accessibility rank is (2n-m) for 
all q. 

Proof. The strong accessibility algebra of the model (14) 
contains the vector fields 81.82, ... ,g,-, and the involutive 
closure of the distribution spanned by the n-m vector 
fields (see P1) : 

[j, gil =?:) i = 1, ... ,n-m 

It results clearly from the nonholonomic nature of the 
constraints (see Section 2), that the dimension of this 
involutive closure is equal to dim(A*) = n. The theorem 
follows immediately. 

From the model (13) and in accordance with the physical 
reality, it follows that the system may be at rest at any 
configuration q and hence that any point with coordinates 
(q, 0) in the state space may be an equilibrium point of the 
system. 

Theorem 2. A nonholonomic system is small time locally 
controllable (STLC) from any equilibrium point (4.0). 

Proof. In [9], it is shown that a dynamical system of the 
form (14) is STLC if the following conditions are satisfied. 

C1. The system is strongly accessible. 

C2. The vector field f is zero at the equilibrium. 

C3 For each gi separately, all the repeated Lie brackets off 
and gi, with an odd number of occurences of f and an 
even number of occurences of gi, called bad Lie brackets 
hereafter, evaluated at the equilibrium point, can be 
expressed as a linear combination of brackets of lower 
order. 

Conditions C1 and C2 are obviously satisfied here. 
Condition C3 is also trivially satisfied because it can be 
checked, using properties P2, P3, P4, that the bad brackets 
either are identically zero when the number of occurences 
o f f  is less than the number of occurences of gi, or are zero 
at the equilibrium in the opposite case. + 
This theorem is an extension of the result presented by 
Bloch and Mc Clamroch([71). 

5. STATE FEEDBACK CONTROL. 

In this section, we are concerned with the design of 
smooth state feedback stabilizing controls for the 
dynamical state space model (13). More precisely, we 
would like to stabilize the system at a particular configura- 
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tion which may be taken, without loss of generality, as the 
origin of the generalized coordinates (i.e. q = 0). When a 
smooth state feedback control law dq, q), such that v(0, 0) 
= 0, is applied to the system (131, the closed loop dynamics : 

q = S(q& (16.a) 

fJ = v(q, q)  (16.b) 

have the origin (q, q) = (0,O) as an equilibrium point. 
It is a well known fact that holonomic systems are 

full state feedback linearizable and, therefore, that any 
equilibrium point can be made asymptotically stable by a 
smooth static state feedback. However, this property of 
holonomic systems does not extend to the nonholonomic 
case. 

Theorem 3. The equilibrium point (q, q) = (0, 0) of the 
closed loop (16) cannot be made asymptotically stable by a 
smooth static state feedback dq, q). 

Proof. See reference [5].+ 

Our purpose is then to investigate in which way the 
feedback stabilisability property of holonomic systems can 
be extended to the nonholonomic case. The key point of 
our argumentation is the following one. The feedback 
stabilizability property of holonomic systems can be 
rephrased as : For an holonomic system with n degrees of 
freedom and n actuators, there exist an output vector 
function y = h(q) = q and a static feedback control d q ,  q )  
such that the closed loop is stable (bounded state) and the 
output y = q asymptotically converges to zero. 

In this section, we show that exactly the same property 
holds for nonholonomic systems with (n-m) degrees of 
freedom and (n-m) actuators (obviously, n is the 
dimension of the configuration space and m is the 
number of nonholonomic constraints). W e  first try to 
achieve this objective by feedback linearization. 

Theorem 4. The largest feedback linearizable subsystem of 
the system (16) has dimension 2 ( n - m )  with each 
controllability index equal to 2. 

Proof. This result is readily established by a 
straightforward application of the algorithm of Marino 
[81. + 
An important consequence of this theorem is that there 
exists an output vector function : 

(17) 

which depends on the configuration state variable q only, 
but not on the state q, such that the largest liiearizable 
subsystem is obtained by twice differentiating this output 
function as follows: 

(18.a) 

It follows from Theorem 4 that the matrix 

is nonsingular (i.e invertible) for all q, so that the system 
(18) is clearly input/output feedback linearizable. This 
means that the system (16) (17) can be transformed by state 
feedback and diffeomorphism into a controllable linear 
subsystem of dimension 2 ( n - m )  and a nonlinear 
subsystem of dimension m which does not affect the beha- 
viour of the output y = h(q). The required change of 
coordinates, which is easily checked to be a 
diffeomorphism, may be defined as follows : 

where k(q) is selected such that the transformation : 

is a diffeomorphism on m" . 

system are rewritten as : 
h the new coordinates (191, the dynamics of the 

i, =zZ i2 = b(z) + a ( z h  z3 = Q(zpz3h2 (20) 

with z = (21, zz, z3) and appropriate definitions of a(z), b(z) 
and Q(z1, Z J ) .  It appears clearly that the equilibrium points 
of the system (20) are critical (that is some of the poles of 
the linearization of the system have zero real parts). This 
implies that a feedback linearizing control law is not 
guaranteed in general to give (even locally) a stable closed 
loop. One way to circumvent this difficulty would be to 
assume that the norm of the matrix Q ( z ~ ,  z3) satisfy some 
appropriate growth condition (see a related discussion in 
[lo]). Instead, in the next theorem, we show that there is 
another family of output functions y = h(q) for which 
there exists a nonliiear feedback control law that does not 
linearize the input/output behaviour but ensures the state 
boundedness of the closed loop and forces the 
convergence of the output to zero. 

Theorem 5. For any diffeomorphic change of generalised 
coordinates *q) (with HO)= 0), there exists a smooth static 
feedback control law d9, q) such that : 
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a) the state q(t), q(t)of the closed loop (16) is bounded 
for all t. 

b) the (n-mhdimensional output function : 

(21) 

converges to zero. 

Proof. The control design is a Lyapunov design based on 
the following candidate Lyapunov function: 

where A is an arbitrary Hurwitz matrix, the derivative of 
the Lyapunov function (22) reduces to : 

Comment. A variant of the Lyapunov design as presented 
in Theorem 5 can be obtained by introducing the matrix 
J(q) in the Lyapunov function (22) as follows : 

1 1 
V(q, 17) = 76T(9)4(q) + ?(Tj + hcq,,Tlcq,cq + h(qN 

and exploiting the fact that the term g(q, q)  in the model 
(10) can also be written under the form : 

where the matrix D(q, q)  is such that the matrix : 

i(q, - 2D(q, d 

has the property of being skew symmetric (see e.g. [ill). 

6. CONCLUSIONS. 

Our main contribution in this paper has been to show that 
non holonomic systems: (i) are strongly accessible 
whatever the structure of the constraints; (ii) are small- 
time locally controllable from any equilibrium 
configuration; (iii) can be globally stabilized by a smooth 
state feedback with convergence to zero of an output 
function whose dimension is the number of degrees of 
freedom and which depends only on the configuration 
state q. An application of the foregoing theory to the 
control of mobile wheeled robots can be found in 
reference [61. 
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