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Abstract

This paper deals with the regulation of irrigation canals.
We consider the distributed and nonlinear nature of a sin-
gle reach delimited by two regulator gates and which can
be described by the Saint-Venant equations. By means of
a Lyapunov approach we propose a class of locally expo-
nentially stabilizing controllers.

1 Introduction

The control of most canals all over the world 1s made un-
der manual operation. This involves an action which 1s
only based on local information about the canal state and
depends on the ability, experience and mobility of the op-
erating personnel. The efficiency of the water distribu-
tion is poor with respect to the potential performance of
the canals [gous]. Although various means exist that may
help in improving the traditional management of canals,
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the introduction of automatic control in the canal opera-
tion has been increasingly promoted in recent years when
the technical and the socio-economic circumstances make
it possible [plus,buya,ruiz]. Two trends can be identified
in the literature: a first trend focuses on the development
of control algorithms while another one is more oriented
towards practical implementation aspects on real canals.
A state of the art can be found in the proceedings of the
international workshop RIC’97 (Regulation of Trrigation
Canals) which was recently held in Marrakesh [ric].

Concerning modeling and control, finite dimensional
models linearized around steady state values are most of-
ten used with classical PID or simple heuristic controllers.
Such controllers have often poor performances in terms of
precision, stability and robustness. This is due to the fact
that canals are large, interconnected, nonlinear, delayed
and strongly perturbed systems.

To deal with these problems, in
cent applications, optimal, predictive and adap-
tive control concepts have been proposed, e.g. in
[georl,geor2 malal mala2 mart,rode sawa]. Recently, in
[boun,xu] for example, the distributed nature of these
systems is considered, but the authors deal with the
linearized PDE system around steady state values,
without giving information for the nonlinear system even
if the state is “close” to the steady state values.

a few re-

In this paper we consider a single reach delimited by two
regulator gates and modeled by Saint-Venant equations.



We take into account the distributed and nonlinear nature
of the system. By means of a Lyapunov approach we
propose stabilizing boundary control laws which give a
natural solution to the well known problem dependence of
the time-delay in open-channel hydraulic systems.

In Section 2 we give the dynamical PDE describing our
system and we state the control problem. In Section 3 we
present our Lyapunov control approach leading to asymp-
totic stabilizing boundary controllers and we state our
main exponential stability result given by Theorem 1. Fi-
nally, some illustrative simulation results are displayed in
Section 4 and we conclude in Section 5.

2 Modeling of the system and
statement of the control prob-
lem

2.1 Modeling

We consider a one-dimensional portion of irrigation canal
delimited by two underflow gates. The reach dynamics
are described by PDE Saint-Venant equations (see e.g.
[chow]). We restrict our attention to the case of an hor-
izontal reach and viscous friction terms, as well as leaks
or withdrawals are neglected, so that the dynamical equa-
tions simplify as follows (see Fig. 1):

Continuity equation:

dy  0(Vy) _
5 + e = 0. (1)
Dynamical equation:
ov Jy ov.
E—i—g@_x—i_vﬁ_x_o’ (2)

where « is the space coordinate belonging to [0, L], L being
the reach’s length, ¢ is time, V(x,t) is the water velocity
at point # and time ¢, y(x,t) is the water level (at point
z and time ) and g is the gravity constant.
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Figure 1: The horizontal reach

The control actions are provided by two underflow gates
located at the left end (x = 0) and the right end (¢ = L) of
the reach (see Fig. 1). A standard discharge relationship
of underflow gates is as follows (see e.g. [garc]):

{ V2(0,4)y*(0,) = ua(ya — y(0,1)), 3)
VZ(L,t)yz(L,t) = ub(y(L,t) - yb)a

where u, and up are the physical control variables. They
denote respectively the left and right gate openings and
Yo and yp the left and right water levels outside the reach.
Equations (3) constitute the boundary conditions at « =
0 and # = L, associated to the PDEs (1) and (2). Of
course for (3) to have meaning, y, and y, must satisfy the
following inequalities

Ya Z y(oat) y Yb S y(Lat) 3 vt Z 0. (4)

2.2 Steady-states

For given constant openings u, and u, there exists a
steady state solution (V,y) of equations (1), (2) which
satisfies, from (3), the following relations:

aaya + abyb
aa + ab (5)
\/ aa(ya - g)

y

<2

2.3 Statement of the control problem

The control objective is to stabilize the water level y and
the water velocity V at a given set point (V,3). The
control actions are the two gate openings u, and up. The
left and right water levels y(0,¢) and y(L,t) are supposed
to be measured on line at each time instant . The external
constant water levels y, and y;, are known.

3 Lyapunov control design

Lyapunov design is a classical approach for the control
of dynamical systems. The principle is first to look for a
Lyapunov function, i.e. a nonnegative radially unbounded
function V' which is nonincreasing for a suitable choice
of the control law and then to use LaSalle’s invariance
principle to conclude to asymptotic closed-loop stability.
For physical systems, a natural candidate for a Lyapunov
function 1s the total energy of the system and the feed-
back control is used to introduce some kind of artificial
viscosity. For our system (1)-(2), it is easily checked that

the energy fOL(yVT2 + g%)dd; does not work for this pur-
pose. But one can use, for the Lyapunov approach, any
function which is conserved along any solution of system
(1)-(2) and which is L-periodic with respect to z. For
hyperbolic systems as (1)-(2), there are other quantities
than the energy which are conserved (at least for C'! so-
lutions), namely the entropies (see e.g. [serr, volume 1,



p. 96]). Entropies are functions (V,y) — E(V,y) such
that, for some function F : (V,y) — F(V,y), called the
entropy flux, we have:
oF

or
%_Vﬁ_y—i_g

OE  OF _ 9E  0E
Ve

av Moy TYay T oy

Indeed, with such functions (%, F'), if we let:

L
R= / BV, y)da, (6)
0
then along the (smooth) solutions of (1)-(2) we have:

and therefore R depends on the values of (Viy)at 2 =0
and z = L.

For our hyperbolic system (1)-(2), as for general 2 x
2 hyperbolic systems, there are infinitely many entropies
(see e.g. [serr, volume 2, sec. 9.3]).
In order to have a Lyapunov function, it is required that:

B(V,y) > E(V,9),

with equality if and only if (V,y) = (V,y). After a few
computations, it can be seen that the “simplest” entropy
is:

V-V)?  (y—y)
mvy) =y W
the corresponding flux being:
V —V)? _ _y?
F(V,y) IyVi( ) +oVyly—9) =gV (9)

2

Therefore, to obtain an asymptotic stabilizing bound-
ary controller we consider the following Lyapunov function
candidate given by (6):

L 7\ 2 2
R:/o [y(V—QV) PN 23/) Jd.

(10)

R is positive and is zero only at the equilibrium point
(V,y). Using (7) we know that the time derivative of R
is given by:

R=F(Vo,y) — F(Vz,u1),

where F' is the flux given by (9), Vo =
V(L,1), yo :.y(o,t) and yr, = y(L,1).

To make R negative we may use Vy and Vi as con-
trol variables, since we know from (3) that V4 and Vg are
related to the physical control inputs u, and up via the
following relations:

(11)
V(0,1), Vi, =

_ V02 i‘/g

Viyi
¢ Ya — Yo .

12
Yr — Yp ( )

and up, =
In fact, we will consider small variations around V so

that, for Lyapunov analysis we introduce the following
control variables:

w=Vo—Vanduy =V — V. (13)

With these notations, the time derivative of R can be
rewritten, using (11):

R =yo(uo+ V)[ud/2+ g(yo — 9)] — Vayi /2
—yr(ur + V)[ui/2+g(yr — 9)] + Vgyi /2.

We can now propose a class of boundary controllers,
making R decrease, as stated in the following proposition.

(14)

Proposition 1 If B
gy > V?, (15)

then the boundary control law u, and uy defined by (12),
(13) with uy and ug given by:

V

up = —(1 = L) (5 +do),
n (16)
up, = —(1— y_L) (5 —A),

makes R decrease, i.e. R <0, in a neighborhood of (V,9),
for gains Ag and Ay, such that:

Ao >0 € [7“1,7“2] with
205 (1= V1= V?/(gg)) = V2
r = = s
2V (17)
205 (14 VT-V2/(99)) -
re = = and
2V
Arp > 0.
Moreover, R = 0 if and only if V(0,t) = V, y(0,1) = 7,

V(L,t) =L and y(L,t) = y.

Proof : When applying the control (16), equation (14)
leads to the following expression:

R=—g)\o(yo—9)> — gAr(yr — 9)?
3 2 3 2

u — U u _ U
24 Vyo?0 —yr = - Vyr-£.

+yo 9 9 9

In fact, uﬁ%/? and u%[? are respectively negligible with
respect to Vu2/2 and Vu? /2. Moreover, since V and yy,
2

.. = u .
are positive we have: —VyL7L < 0. Of course, the gains

Ao and Ar are chosen positive, then, for R remaining neg-
ative in a neighborhood of (V,y) we have to analyze the
sign of the following quantity:

2

_
Vy070 — gxo(yo — 9)*.

Replacing ug by its expression given in (16), R can be

written in a neighborhood of the equilibrium point:
_ B _

(vo — 9)* + 5—(yr — 9)”, (18)

sz
2y 2y,



with, if we consider yy ~ y:

aTE o .
A=V T+/\0V+/\O —2g/\0y

and

_V
B=— (V(; — /\L)2 + Qg/\LyL) .

Since B < 0, for R to be a negative semi-definite func-
tion of (yo — y) and (yr — y), we must have A < 0 or
equivalently:
_ _ V3
A=VAZ+ (V= 2g9)Xo + - <0

This polynomialin Ag is negative if its discriminant A =
493(gy—V?) is positive and if Ag isin [ry, 72], where r; and
r are the roots of A given by (17). In fact, the condition
A positive is ensured by (15) and therefore we conclude
that R < 0 in a neighborhood of the equilibrium point
(V. 9). .

Moreover, using (18), we see that R is zero if and only if
Yo = y and yr, = y, which from (16) implies ug = ur, = 0
and using (13), this leads to Vp = V and V, = V.

This ends the proof.

Now in the following theorem, we show that the so-
lution (V(xz,t),y(x,t)) locally exponentially converges to
the equilibrium point.

Theorem 1 There exist three strictly positive constants
€, M and p such that, for any (V,g) in C1([0, L])? satis-
fying the compatibility conditions:

7 (0) (g (0) + V(0)V'(0))+
gV /24 20) (V(0)F (0) + V'(0)4(0)) = 0

and
7 (L) (99 (L) + (L/)

y(V/2 = A)(V(L)y

(L) +
(L) + V'(L)g(L)) =0,

(! denoting the partial derivative w.r. to x) and such that:
|V =V e,y + 15— loro,on< €

the hyperbolic system (1)-(2), with the boundary condi-
tions (13) and (16) and the initial conditions:

V(z,0) = ‘N/(x), y(z,0) = y(z), Yo € [0, L],

has one and only one solution of class C' on [0,L] x
[0, +00) and this solution satisfies:

| V(1) =V ey + |yt
M|V =V levqo,oy + 15— 9 levqo,oy)e ™, ¥t > 0.

) = lerqo,p<

Proof :
The proof of this theorem is a direct application of [gree,
Theorem 2].

Let us rewrite (1)-(2) using Riemann invariants (see e.g.
[serr]). Let:

{ oz:V—l—Q\/g_—‘:/—Q\/g_gj
B=V-2/9y—V +2/9y.
Then (1)-(2) is equivalent to:

O

I + C4 (e, 5)
op 3ﬁ _
with: 3 )
Cl(aaﬁ) = Za—i— Zﬁ+‘7/+\/.g_7a
1 3 .
Co(a, B) = Fiais Zﬁ"i'V—\/g_@]

The boundary conditions (13) and (16) are, in the («, 5)-
variables:

F1(e(0,t),5(0,8)) =0, Fa(e(L,t),5(L,t)) =0
with:

U+v 167¢ ) _
Fi(u,v) = +(1———— | (V/24 A),
) = 5 (1 ) (7724 0)
Folu,v) = 210 4 (1 - 16¢) (V)2 = AL).
2 (u—v+4/9y)?
One has:
C1(0,0) =V + /gy > 0
C2(0,0) =V — /gy <0 (20)
F1(0,0) = F2(0,0) = 0.
Let us now compute the positive quantity A; A, where:
aF aF
1(0,0 2((0,0
A=l 00 a4, =) 2200
=-2(0,0) =2(0,0)
We obtain: _
- 29y —V — 2X¢ |
P2 g+ V420
and _
29y =V +2Xp
y (15) and (21), one has for all Ay > 0:
Ay 2\/_—1— V
2\/_’—

Hence A;As < 1, which (see (20)) is the last condition
required to apply [gree, Theorem 2], holds if:

2\/_— 1%
2\/_ 2/g5+ V'
But, for Ag > 0, (22) is equivalent to:
4gy —V?
2V
and therefore holds for Ag €]0,r2[. This ends the proof.
&

(22)

Ao <



Remark 1 The compatibility conditions (19) are ob-
tained by time differentiation of the boundary conditons

(16) and using (1)-(2).

4 Simulation results

We have considered a reach of length L = 20 m with out-
side levels:
Yo = 1 m and yp, = 0m.

We have chosen for the state equilibrium:
g=072mand V =0.24m/s,

which of course satisfies condition (15). Initial conditions
are y(z,0) = 0.50 m and V (z,0) = 0m/s for all z in [0, L].

The control gains have been chosen as follows:
Ao = AL = 0.5,

one can easily check that conditions (17) are satisfied.

We have numerically integrated PDEs (1) and (2), us-
ing a semi-implicit Preissmann scheme with a spatial step
Az = 1m and a weighting coefficient § = 0.75.

In Figure 2 the left and right water levels are displayed,
when applying first our feedback control law (12), (13)
with ug and ug given by (16) and then (in dashed lines),
when applying the open-loop constant controls u, and u
given by (12) when considering the values at the equilib-
rium point, i.e. yg =y, =y and Vp =V = V.

In Figure 3 profiles of the reach are displayed at time
t = bs, also with our control law and then when applying
the constant controls #, and @,. One can observe that our
closed-loop control strategy improves the transient behav-
iors, since oscillations are significantly reduced.

5 Conclusion

Our main contribution in this paper has been to propose
a Lyapunov control design strategy for a canal described
by the Saint Venant equations. However, it must be em-
phasized that the proof of Theorem 1 does not rely on the
Lyapunov approach. But it may be expected that with
the Lyapunov approach, a more global result than The-
orem 1 could be achieved. The main difficulty to get a
global result is that, for large initial deviations from the
equilibrium, wave shocks will appear (whatever are the
controls). Therefore, it is needed to deal with entropic so-
lutions, with, for physical reasons, equation (2) replaced
by:
a(g;/) + j—x(sz +gy7/2) = 0.
Note that, for solutions of class C, (1)-(2) is equivalent
to (1)-(23) but not for solutions which are less regular.
On the whole real line, (z € (—o00,4o0)), the existence
of entropic solutions for (1)-(23) and large initial devia-
tions is proved in [lion]. But, for # € [0, L] and with

(23)
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Figure 2: Reach profiles at t=>bs with closed-loop and con-
stant controls

boundary conditions at # = 0 and « = L, as (13)-(16)
with a suitable “trace” meaning, the existence of entropic
solutions for large initial deviations is still open.

Finally, we have illustrated our control strategy by some
numerical simulation results. Future works will consist in
evaluating the robustness of our class of feedback laws
with respect to some perturbations, such as small (but
unknown) slopes or lateral leaks or withdrawals.
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