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Abstract: A boundary control law with integral actions is proposed for a generic
class of two-by-two homogeneous systems of linear conservation laws. Sufficient
conditions on the tuning parameters are stated that guarantee the asymptotic
stability of the closed-loop system. The closed-loop stability is analysed with an
appropriate Lyapunov function. The control design method is validated with an
experimental application to the regulation of water depth and flow rate in a pilot
open-channel described by Saint-Venant equations. This hydraulic application
shows that the control can be robustly implemented on nonhomogeneous systems
of nonlinear conservation laws. Copyright c©2007 IFAC
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1. INTRODUCTION

In this paper, we are concerned with two-by-two
systems of conservation laws that are described
by hyperbolic partial differential equations, with
one independent time variable t ∈ [0,∞) and
one independent space variable on a finite interval
x ∈ [0, L]. Such systems are used to model many
physical situations and engineering problems. A
famous example is that of Saint-Venant (or shal-
low water) equations which describe the flow of

water in irrigation channels and waterways. This
example will be presented in Section 4. Other
typical examples include gas and fluid transporta-
tion networks, packed bed and plug-flow reactors,
drawing processes in glass and polymer industries,
road traffic etc. For such systems, the boundary
control problem that we address is the problem of
designing feedback control actions at the bound-
aries (i.e. at x = 0 and x = L) in order to ensure
that the smooth solution of the Cauchy problem
converges to a desired steady-state.
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The present paper is in the direct continuation of
our previous paper (Coron et al. (2007) ) where
a static feedback control law was presented and
the closed-loop stability analysed with an appro-
priate Lyapunov function. But obviously, a static
control law may be subject to steady-state reg-
ulation errors in case of constant disturbances or
model inaccuracies. In the present paper, we show
how additional integral actions can be introduced
in the control law in order to cancel the static
errors and how the Lyapunov function can be
modified in order to prove the asymptotic stability
of the closed-loop system. The statement of the
control law and the Lyapunov stability analysis
are developed in Sections 2 and 3 for a generic
homogeneous system of two linear conservation
laws. In Section 4, we present an experimental
validation on a laboratory pilot plant. This hy-
draulic application clearly shows that the control
can be robustly implemented on nonhomogeneous
systems of nonlinear conservation laws.

2. STATEMENT OF THE CONTROL LAW

We consider the class of two-by-two systems of
linear conservation laws of the general form:

∂th(t, x) + ∂xq(t, x) = 0 (1)

∂tq(t, x)+αβ∂xh(t, x)+(α−β)∂xq(t, x) = 0 (2)
where

• t and x are the two independent variables :
a time variable t ∈ [0,+∞) and a space
variable x ∈ [0, L] on a finite interval;

• (h, q) : [0,+∞)× [0, L] → R2 is the vector of
the two dependent variables (i.e. h(t, x) and
q(t, x) are the two states of the system);

• α and β are two real positive constants:

α > β > 0.

The first equation (1) can be interpreted as a mass
conservation law with h the density and q the
flux. The second equation can then be interpreted
as a momentum conservation law. As usual in
control design, the model (1)-(2) must be viewed
as a linear approximation of the system dynamics
around a steady-state. This will be illustrated
with the application of Section 4.

We are concerned with the solutions of the Cauchy
problem for system (1)-(2) over [0,+∞) × [0, L]
under an initial condition

h(0, x), q(0, x) x ∈ [0, L].

Furthermore, it is assumed that the system is sub-
ject to physical boundary conditions that can be
assigned by an external operator and are written
in the following general abstract form:

g0(h(t, 0), q(t, 0), u0(t)) = 0 t ∈ [0,+∞) (3a)
gL(q(t, L), h(t, L), uL(t)) = 0 t ∈ [0,+∞) (3b)

with g0, gL : R3 → R. The functions u0, uL:
[0,+∞) → R represent the boundary control ac-
tions that can be manipulated by the operator. A
concrete illustration of such boundary conditions
will be given in Section 4.

In order to define the feedback control laws, it is
convenient to introduce the Riemann coordinates
(see e.g. Lax (1973)) defined by the following
change of coordinates:

a(t, x) = q(t, x) + βh(t, x) (4a)
b(t, x) = q(t, x)− αh(t, x). (4b)

With these coordinates, the system (1)-(2) is
rewritten under the following diagonal form:

∂ta(t, x) + α∂xa(t, x) = 0 (5a)
∂tb(t, x)− β∂xb(t, x) = 0. (5b)

The change of coordinates (4) is inverted as fol-
lows:

h(t, x) =
a(t, x)− b(t, x)

α+ β
(6a)

q(t, x) =
αa(t, x) + βb(t, x)

α+ β
. (6b)

In the Riemann coordinates, the control problem
can be restated as the problem of designing the
control laws in such a way that the solutions
a(t, x) and b(t, x) converge to zero. We shall show
that this problem can be solved by selecting the
boundary control laws u0(t) and uL(t) such that
the Riemann coordinates satisfy linear boundary
conditions of the following form:

a(t, 0) + k0b(t, 0) +m0y0(t) = 0 (7a)
b(t, L) + kLa(t, L) +mLyL(t) = 0 (7b)

where k0, kL,m0,mL are constant tuning parame-
ters while y0 and yL are integrals of the flow q(t, 0)
and the density h(t, L) respectively:

y0(t) =
∫ t

0

q(s, 0)ds =
∫ t

0

αa(s, 0) + βb(s, 0)
α+ β

ds

(8a)

yL(t) =
∫ t

0

h(s, L)ds =
∫ t

0

a(s, L)− b(s, L)
α+ β

ds.

(8b)

Remarks

1) Conditions (7) give only an implicit definition
of the control laws. The derivation of explicit ex-
pressions obviously requires an explicit knowledge
of the functions g0 and gL in (3). In the special
case where the boundary conditions (3) are lin-
ear, u0 and uL reduce to standard Proportional-
Integral (PI) control laws. This point will be fur-
ther illustrated in Section 4.

2) In our previous paper (Coron et al. (2007)), we
have dealt with the special case without integral
actions, i.e. m0=mL=0 in (7). We have shown
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with an appropriate Lyapunov function that in-
equality |k0kL| < 1 is a sufficient condition to
guarantee the closed-loop stability and the expo-
nential convergence of a(t, x) and b(t, x) to zero.
Our contribution in the present paper is to extend
this Lyapunov stability analysis to the case where
integral terms are introduced in the control law
and to validate the methodology with experimen-
tal results.

3. LYAPUNOV STABILITY ANALYSIS

Let us define the following candidate Lyapunov
function:

U(t) =
A

α

∫ L

0

a2(t, x)e−(µ/α)xdx

+
B

β

∫ L

0

b2(t, x)e+(µ/β)xdx

+
α+ β

2
[
N0y

2
0(t) +NLy

2
L(t)

]
(9)

and the following norm:

ψ(t) =
∫ L

0

[
a2(t, x) + b2(t, x)

]
dx

+ |y0(t)|2 + |yL(t)|2.

We have the following stability result.

Theorem. If the four constant tuning parameters
k0, kL, m0, mL satisfy the following inequalities:

|k0| < 1 |kL| <
α

β
|k0kL| < 1

m0 > 0 mL < 0,

there exist six positive constants A, B, µ, N0, NL,
C such that

U̇ 6 −µU and ψ(t) 6 Cψ(0)e−µt

for every solution a(t, x), b(t, x), t > 0, x ∈ [0, L]
of (5)-(7).

Proof : The time derivative of the function U(t)
along the solutions of the system (5)-(7) is

U̇ = −µU + U̇0 + U̇L

with

U̇0 =
[
Ak2

0 −B
]
b20

+ [2Ak0m0 +N0(β − αk0)] b0y0

+
[
Am2

0 + µN0
α+ β

2
−N0m0α

]
y2
0 (10)

and

U̇L =
[
B̃k2

L − Ã
]
a2

L

+
[
2B̃kLmL +NL(1 + kL)

]
aLyL

+
[
B̃m2

L +NLmL + µ
α+ β

2
NL

]
y2

L (11)

with Ã = Ae−µL/α, B̃ = BeµL/β .

We first consider the special case where µ = 0 and
(10)-(11) reduce to:[

Ak2
0 −B

]
b20 + [2Ak0m0 +N0(β − αk0)] b0y0

+
[
Am2

0 −N0m0α
]
y2
0 , (12)[

Bk2
L −A

]
a2

L + [2BkLmL +NL(1 + kL)] aLyL

+
[
Bm2

L +NLmL

]
y2

L. (13)

We are going to prove that there exist A > 0,
B > 0, N0 > 0, NL > 0 such that (12)-(13) are
negative definite quadratic (NDQ) forms in b0, y0
and aL, yL respectively. We set B = 1. Then (12)
is a NDQ form if (and only if)

A <
1
k2
0

(14)

and

P0 = 4Am2
0+4N0(Ak0β−α)m0+N2

0 (β−αk0)2 < 0.

P0 is a polynomial of degree 2 in N0 with discrim-
inant

∆0 = 16(α2 −Aβ2)(1−Ak2
0)m

2
0.

In view of (14), ∆0 > 0 if

A <
β2

α2
. (15)

Then, if inequalities (14)-(15) hold, P0 has two
real roots and we will have N0 > 0 and P0 < 0 if
the greatest root is positive, that is if (and only
if) the following inequality holds:

(Ak0β − α)m0 <
√

(α2 −Aβ2)(1−Ak2
0)m

2
0.

Under conditions (14)-(15), it can be shown that
this inequality holds for any m0 > 0. Let us
summarize : there exist A > 0 and N0 > 0 such
that P0 is an NDQ form if A can be selected such
that

0 < A <
1
k2
0

0 < A <
β2

α2
. (16)

Similarly (13) is a NDQ form if (and only if)

A > k2
L

and

PL = 4Am2
L +4NL(kL +A)mL +N2

L(1+kL)2 < 0.

With a similar line of reasoning, we can show that
there exist A > 0 and NL > 0 such that PL is an
NDQ form if A can be selected such that

k2
L < A 1 < A. (17)

Hence, using conditions (16)-(17) together, a suf-
ficient condition to have A > 0, B > 0, N0 > 0,
NL > 0 such that (12)-(13) are NDQ forms is

max
{
k2

L, 1
}
< min

{
1
k2
0

,
α2

β2

}
which is equivalent to

|k0| < 1 |kL| <
α

β
|k0kL| < 1.

By continuity with respect to µ, under the same
conditions, there exist µ > 0, A > 0, B > 0,
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N0 > 0, NL > 0 such that (10) and (11) are
quadratic negative definite forms. This implies
that U is a Lyapunov function for the system (5)-
(7) such that U̇ 6 −µU along the system solutions
with U̇ = 0 if and only if U = 0. The inequality
ψ(t) 6 Cψ(0)e−µt follows readily. QED.

4. EXPERIMENTAL VALIDATION

4.1 Saint-Venant equations

The Saint-Venant equations are among the most
frequent application examples of two-by-two hy-
perbolic systems of conservation laws in engi-
neering. They are used for a long time for sim-
ulation and design of model-based controllers in
open-channels (see e.g. the recent publications by
de Halleux et al. (2003), Litrico et al. (2005) and
Litrico and Fromion (2006) and the references
therein).

For a pool of a prismatic open channel with a
constant slope, the flow dynamics are described
as follows by the Saint-Venant equations:

∂tA+ ∂xQ = 0 (18a)

∂tQ+ ∂x

(
Q2

A

)
+ gA∂xH(A) = gA [S − J(A,Q)]

(18b)

with L the pool length, A(t, x) the wet area at
time t and abscissa x ∈ [0, L], Q(t, x) the flow
rate at time t and abscissa x ∈ [0, L], g the gravity
constant and H(A) the water depth. Furthermore
S is the bottom slope and

J(A,Q) =
Q2n2

A2 [R(A)]4/3

is the friction slope with n the Manning friction
coefficient and R(A) the hydraulic radius.

A steady-state regime (Ae, Qe) is a constant solu-
tion of equations (18), i.e. A(t, x) = Ae, Q(t, x) =
Qe ∀t and ∀x ∈ [0, L], which satisfies the relation

J(Ae, Qe) = S. (19)

A linearized model is used to describe the varia-
tions about this equilibrium. The following nota-
tions are introduced:

h(t, x) = A(t, x)−Ae q(t, x) = Q(t, x)−Qe.

The linearized model is then written as

∂th(t, x) + ∂xq(t, x) = 0
∂tq(t, x) + αβ∂xh(t, x) + (α− β)∂xq(t, x)

= −γh(t, x)− δq(t, x)

with

Fig. 1. The ESISAR pilot channel.

α =

√
gAe

∂H

∂A
(Ae) +

Qe

Ae

β =

√
gAe

∂H

∂A
(Ae)−

Qe

Ae

γ = gAe
∂J

∂A
(Ae, Qe)

δ = gAe
∂J

∂Q
(Ae, Qe).

In the special case where the channel is horizontal
(S = 0) and the friction slope is negligible (n ≈
0), we observe that γ = δ = 0 and that this
linearized system is exactly in the form of the
linear hyperbolic system we have considered in
Sections 2 and 3. Moreover, the flow in the channel
is fluvial (as opposed to torrential) when α > β >
0. It is therefore legitimate to apply the control
with integral actions that we have analysed above
to open channels having small bottom and friction
slopes under fluvial flow conditions. In the next
section, we shall illustrate the efficiency of the
control with experimental results on a real life
laboratory plant.

4.2 Experimental setup

An experimental validation has been performed
with the Valence micro-channel (see Fig. 1). This
pilot channel is located at ESISAR/INPG engi-
neering school in Valence (France). It is operated
under the responsability of the LCIS laboratory.
The channel (overall length = 8 meters) has an
adjustable slope and a rectangular cross-section.
The water depth in the channel is denoted H(t, x)
such that:

A(t, x) = wH(t, x) (w = channel width).

The channel is furnished with three underflow
control gates. Ultrasound sensors provide water
level measurements at different locations of the
channel. For the experiments reported hereafter
the configuration is a single pool (length L =
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7 meters, width w=0.1 meter, slope S= 0.0016)
bounded by two underflow gates. The flow rates at
the gates are supposed to be related to the water
depths by the gate characteristics expressed as

Q(t, 0) = c0U0(t)
√
g(Hup −H(t, 0)) (21a)

Q(t, L) = cLUL(t)
√
g(H(t, L)−Hdo) (21b)

where c0 and cL are constant coefficients while U0

and UL denote the control signals at the upstream
and downstream gates respectively. Hup is the
water depth at the upstream of the upstream gate,
Hdo is the water depth at the downstream of the
downstream gate.

4.3 PI control laws

In order to explicit the control laws, the gate char-
acteristics (21) are linearised about the steady-
state (Ae = wHe, Qe):

q(t, 0) = − gQe

2K2
0

h(t, 0) + c0K0u0(t) (22a)

q(t, L) =
gQe

2K2
L

h(t, L) + cLKLuL(t) (22b)

with

K0 =
√
g(Hup −He) KL =

√
g(He −Hdo)

and: u0 = U0 −
Qe

c0K0
uL = UL −

Qe

cLKL
.

Moreover, using the definition of the Riemann
coordinates (4), the boundary conditions (7) are
rewritten as

q(t, 0) + λ0h(t, 0) + µ0

∫ t

0

q(s, 0)ds = 0 (23a)

q(t, L) + λLh(t, L) + µL

∫ t

0

h(s, L)ds = 0 (23b)

with:

λ0 =
β − k0α

1 + k0
λL =

kLβ − α

1 + kL

µ0 =
m0

1 + k0
µL =

mL

1 + kL
.

Then, by eliminating h(t, 0) between (22a) and
(23a), we get the following PI control law for u0:

u0(t) = Kpoq(t, 0)−Kio

∫ t

0

q(s, 0)ds

with

Kpo =
1

c0K0

[
1− gQe

2λ0K2
0

]
Kio =

gQeµ0

2λ0c0K3
0

.

Similarly, by eliminating q(t, L) between (22b)
and (23b), we get the following PI control law for
uL:

uL(t) = −KpLh(t, L)−KiL

∫ t

0

h(s, L)ds

Fig. 2. Experimental results

with

KpL =
1

cLKL

[
λL +

gQe

2K2
L

]
KiL =

µL

cLKL
.

Hence the control law u0 is a PI dynamic feedback
of the flow rate q(t, 0) = Q(t, 0) − Qe and the
control law uL is a PI dynamic feedback of the
water depth h(t, L) = w(H(t, L) − He). These
control laws are implemented with direct on-
line measurements of the water levels Hup, Hdo,
H(t, 0), H(t, L)). The flow rates at the gates are
not directly measured but are computed on-line
with the gate characteristics (21).

4.4 Experimental results

The experimental results are shown in Fig.2.
Three experiments are presented with increasing
values of the integral gains m0 and mL indicated
in the figure captions while the parameters k0 and
kL are set to

k0 = −0.213, kL = −1.157, k0kL = 0.246.

In each experiment, the system is initially in open
loop at a steady state

Q(0, x) ≈ 2.35 lit/sec, H(0, L) ≈ 0.125 m.

The loop is closed at time t = 50sec with a new
set point given by:

Qe = 2 lit/sec, He(L) = 0.143 m.

In the first experiment without integral actions
(m0=mL=0), there is clearly an offset of about
4 cm on the level H(t, L). In the second exper-
iment with m0 = 0.002 and mL = −0.001 the
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static error is efficiently cancelled by the integral
actions. Finally a third experiment illustrates the
sensitivity of the transient behaviour with respect
to the choice of the gain values. For largest gain
values (m0 = 0.005, mL = −0.001), the closed
loop system starts to oscillate and becomes even
unstable if the gains are further increased.

5. CONCLUSION

In this paper, we have been concerned with the
boundary control of two-by-two systems of conser-
vation laws that are described by hyperbolic par-
tial differential equations, with one independent
time variable and one independent space variable.
A boundary control law with integral actions has
been proposed for a generic class of homogeneous
systems of two linear conservation laws. Sufficient
conditions on the tuning parameters have been
stated in order to guarantee the asymptotic sta-
bility of the closed-loop system which has been
proved with an appropriate Lyapunov stability
analysis. The control design method has been
validated with an experimental application to the
regulation of water depth and flow in a pilot open-
channel described by Saint-Venant equations.
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J-M. Coron, B. d’Andréa-Novel, and G. Bastin.
A strict Lyapunov function for boundary con-
trol of hyperbolic systems of conservation laws.
IEEE Transactions on Automatic Control, 52
(1):2–11, January 2007.

J. de Halleux, C. Prieur, J-M. Coron, B. d’Andréa
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