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Berger, BP 234, Saint-Louis, Sénégal.

∗∗Department of Mathematical Engineering,
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Abstract: Explicit boundary dissipative conditions are given for the exponential stability in
L2-norm of one-dimensional linear hyperbolic sytems of balance laws ∂tξ + Λ∂xξ −Mξ = 0
over a finite space interval, when the matrix M is marginally diagonally stable. The result is
illustrated with an application to boundary feedback stabilisation of open channels represented
by linearised Saint-Venant-Exner equations.

Keywords: Hyperbolic systems, Lyapunov function, Saint-Venant equations, Stabilisation.

1. INTRODUCTION

Balance laws are hyperbolic partial differential equations
that are commonly used to express the fundamental dy-
namics of open conservative systems (e.g.Serre [2001]).
Many physical systems having an engineering interest
are described by systems of one-dimensional hyperbolic
balance laws. Typical examples are for instance the tele-
grapher equations for electrical lines, the shallow water
(Saint-Venant) equations for open channels, the isothermal
Euler equations for gas flow in pipelines or the Aw-Rascle
equations for road traffic. In this paper, our concern is
to analyse the stability (in the sense of Lyapunov) of the
steady-states of such systems. The analysis is developped
for a general class of linear systems of one-dimensional
hyperbolic balance laws. As a matter of illustration, an
application to linearised Saint-Venant-Exner equations for
open channels with a moving sediment bed is presented.

We are concerned with n ×n linear hyperbolic systems of
balance laws of the form:

∂tξ + Λ∂xξ −Mξ = 0 t ∈ [0,+∞), x ∈ (0, L) (1)

where ξ : [0,+∞)× [0, L]→ Rn, Λ and M are real n× n
matrices. Without loss of generality, we may assume that
Λ is diagonal with non-zero real diagonal entries such that
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This paper was prepared when the first author was a visiting PhD
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Λ = diag{λ1, λ2, . . . , λn},
λi > 0 ∀i ∈ {1, . . . ,m} ,
λi < 0 ∀i ∈ {m+ 1, . . . , n} .

We introduce the notations{
ξ+ = (ξ1, . . . , ξm)
ξ− = (ξm+1, . . . , ξn) such that ξ = (ξ+T , ξ−T )

and{
Λ+ = diag{λ1, . . . , λm}
Λ− = diag{|λm+1|, . . . , |λn|}

⇒ Λ = diag{Λ+,−Λ−}.

With these notations, the linear hyperbolic system (1) is
writtem

∂t

(
ξ+

ξ−

)
+
(

Λ+ 0
0 −Λ−

)
∂x

(
ξ+

ξ−

)
−Mξ = 0. (2)

Our concern is to analyze the exponential stability of this
system under boundary conditions of the form(

ξ+(t, 0)
ξ−(t, L)

)
=
(
K00 K01

K10 K11

)(
ξ+(t, L)
ξ−(t, 0)

)
(3)

and an initial condition of the form

ξ(0, x) = ξo(x), x ∈ (0, L). (4)

The classical definition of a solution to the Cauchy prob-
lem (2)-(3)-(4) in L2((0, L); Rn) is

Definition 1. Let ξ0 ∈ L2((0, L); Rn). A map ξ :
[0,+∞)×(0, L)→ Rn is a solution of the Cauchy problem
(2)-(3)-(4) if ξ ∈ C0([0,+∞);L2((0, L); Rn)) is such that,
for every ϕ = (ϕT+, ϕ

T
−)T ∈ C1([0,+∞) × [0, L]; Rn) with

compact support and satisfying
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(
ϕ+(t, L)
ϕ−(t, 0)

)
=
(

(Λ+)−1KT
00Λ

+ (Λ+)−1KT
10Λ

−

(Λ−)−1KT
01Λ

+ (Λ−)−1KT
11Λ

−

)(
ϕ+(t, 0)
ϕ−(t, L)

)
we have∫ +∞

0

∫ L

0

(ϕTt +ϕTxΛ+ϕTM)ξdxdt+
∫ L

0

ϕT (0, x)ξ0(x)dx = 0.

With this definition, we have the following classical result
(see e.g. [Coron, 2007, Section 2.1 and Section 2.3] for
methods to get this result).

Proposition 1. For every ξ0 ∈ L2((0, L); Rn), the Cauchy
problem (2)-(3)-(4) has a unique solution. Moreover, for
every T > 0, there exists C(T ) > 0 such that, for every
ξ0 ∈ L2((0, L); Rn), the solution to the Cauchy problem
(2)-(3)-(4) satisfies

‖ξ(t, ·)‖L2((0,L);Rn) 6 C(T )‖ξ0‖L2((0,L);Rn),∀t ∈ [0, T ].

We adopt the following definition for the exponential
stability of the linear hyperbolic system (2)-(3).
Definition 2. The linear hyperbolic system (2)-(3) is
exponentially stable if there exist ν > 0 and C > 0 such
that, for every ξ0 ∈ L2((0, L); Rn), the solution to the
Cauchy problem (2)-(3)-(4) satisfies

‖ξ(t, ·)‖L2((0,L);Rn) 6 Ce−νt‖ξ0‖L2((0,L);Rn),∀t ∈ [0,+∞).

The problem of analysing the asymptotic stability of the
equilibrium ξ ≡ 0 for systems of conservation laws
∂tξ + C(ξ)∂xξ = 0 has been considered in the literature
for more than 25 years. To our knowledge, first results
were published by Slemrod [1983] and by Greenberg and
Li [1984] for the special case of 2 × 2 systems. They
rely on the method of characteristics and establish the
exponential convergence of the solutions in C1(0, L)-norm.
A generalization to n×n systems was given by Li and his
collaborators (see e.g. the textbook Li [1994]).

A different approach that uses a Lyapunov function has
been introduced in Coron et al. [2007, 2008] in order to
prove the exponential convergence of nonlinear systems
of conservation laws in H2(0, L)-norm. The Lyapunov
function is related to a similar function used in Coron
[1999] for the stabilization of the Euler equation of incom-
pressible fluids. It is also similar to the Lyapunov function
used in Xu and Sallet [2002] to analyse the stability of a
class of linear symmetric hyperbolic systems.

In the present paper, our main contribution is to explain
how this Lyapunov stability analysis can be further ex-
tended to the case of linear hyperbolic sytems of balance
laws ∂tξ + Λ∂xξ −Mξ = 0. In Theorem 1 we first give
a general implicit formulation of sufficient stability condi-
tions. Then in Theorem 2, we show that, when the matrix
M is diagonally marginally stable, an explicit boundary
dissipativity condition holds for stability with convergence
in L2(0, L)-norm. Finally, in Section 4, we present an appli-
cation to the boundary feedback control of open channels
represented by linearised Saint-Venant-Exner equations.

2. LYAPUNOV STABILITY : GENERAL
SUFFICIENT CONDITIONS

The system (2)-(3)-(4) is rewritten as

∂tξ + Λ∂xξ −Mξ = 0 t ∈ [0,+∞), x ∈ (0, L), (5a)
K0ξ(t, 0) + K1ξ(t, L) = 0, t ∈ [0,+∞), (5b)
ξ(0, x) = ξo(x), x ∈ (0, L) (5c)

with

K0 :=
(
I −K01

0 −K11

)
, K1 =

(
−K00 0
−K10 I

)
The following candidate Lyapunov function is introduced:

V =
∫ L

0

ξTP(x)ξdx (6)

The weighting matrix P(x) is defined as follows: P(x) ,
diag{pie−σiµx, i = 1, . . . , n}, with µ > 0, pi > 0 positive
real numbers and σi = sign(λi).

The time derivative of V along the solutions of (5) is

V̇ =
∫ L

0

(
∂tξ

TP(x)ξ + ξTP(x)∂tξ
)
dx

=
∫ L

0

(
−∂xξTΛP(x)ξ − ξTP(x)Λ∂xξ

+ξTMTP(x)ξ + ξTP(x)Mξ
)
dx.

Defining the positive diagonal matrix

Q(x) , diag{pi|λi|e−σiµx, i = 1, . . . , n}
and integrating by parts, we obtain:

V̇ = −
∫ L

0

∂x
[
ξTΛP(x)ξ

]
dx

+
∫ L

0

ξT
(
− µQ(x) + MTP(x) + P(x)M

)
ξ dx

=−
[
ξTΛP(x)ξ

]L
0

+
∫ L

0

ξT
(
− µQ(x) + MTP(x) + P(x)M

)
ξ dx

=−
[
ξT (t, L)ΛP(L)ξ(t, L)− ξT (t, 0)ΛP(0)ξ(t, 0)

]
+
∫ L

0

ξT
(
− µQ(x) + MTP(x) + P(x)M

)
ξ dx.

The system (5) is exponentially stable if this function V̇ is
negative definite. We have thus shown the following result.

Theorem 1. The system (5) is exponentially stable if
there exist µ > 0 and pi > 0 i = 1, . . . , n such that

C1. The boundary quadratic form ξT (t, L)ΛP(L)ξ(t, L)−
ξT (t, 0)ΛP(0)ξ(t, 0) is positive definite under the con-
straint of the linear boundary condition K0ξ(t, 0) +
K1ξ(t, L) = 0, ∀t > 0 along the solutions of the
system (2)-(3)-(4);

C2. The matrix −µQ(x) + MTP(x) + P(x)M is negative
definite ∀x ∈ (0, L).

Remark 1. Boundary conditions that satisfy condition
C1 are called Dissipative Boundary Conditions. Condition
C1 is satisfied if and only if the leading principal minors
of order > 2n of the matrix
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 0 K0 K1

−KT
0 ΛP(0) 0

−KT
1 0 −ΛP(L)


are strictly positive (see Väliaho [1982]).

Remark 2. For µ > 0 sufficiently small, condition C2
is satisfied if there exist pi > 0 such that MTP(0) +
P(0)M is a negative semi-definite matrix. A question that
has attracted some attention in the literature concerns
the conditions on a matrix M for which there exist a
diagonal positive matrix P such that MTP + PM is
negative definite (see e.g. Barker et al. [1978] for an early
reference and Shorten et al. [2009] for a recent reference).
When such a matrix P exists, the matrix M is said to
be diagonally stable (because it is stable and the associ-
ated Lyapunov equation is satisfied with a diagonal P).
Here, with condition C2, we are rather concerned with a
diagonally marginally stable matrix M which means that
we require only that MTP+PM be negative semidefinite.

For general systems of the form (1), it is rather clear that
more explicit stability conditions can be derived only on
a case by case basis when the internal structure and the
numerical values of the involved matrices Λ,M,K0,K1 are
at least partially specified. In the next section, we investi-
gate the special case of system (5) when M is diagonally
marginally stable and we show that a fairly simple explicit
dissipative boundary condition can be given in that case.
This is of great practical interest since models with diago-
nally marginally stable M appear in many concrete physi-
cal and engineering applications as we illustrate in Section
4 with the example of Saint-Venant-Exner equations for
open channels with non-uniform bathymetry.

3. DISSIPATIVE BOUNDARY CONDITION WHEN
M IS DIAGONALLY MARGINALLY STABLE

In this section, we will present a variant of Theorem 1
with an explicit characterisation of a sufficient dissipative
boundary condition which guarantees the system exponen-
tial stability in the case where M is diagonally marginally
stable. We consider again the system written in the form
(2)-(3)-(4) and we define the matrix

K :=
(
K00 K01

K10 K11

)
.

Let Dp denote the set of diagonal p× p real matrices with
strictly positive diagonal entries. We define the set P as
follows :
P ,

{
P ∈ Dn such that MTP+PM is negative semidefinite

}
.

With the above notations, the candidate Lyapunov func-
tion (6) is written

V =
∫ L

0

[
(ξ+TP0ξ

+)e−µx + (ξ−TP1ξ
−)eµx

]
dx (7)

with P0 ∈ Dm, P1 ∈ Dn−m and µ > 0. We introduce the
following norm for the matrix K:

ρ(K) , inf
{
‖∆K∆−1‖,∆ ∈ S

}
where ‖ ‖ denotes the usual matrix 2-norm and the set S
is defined as follows:

S :=
{

∆ = diag {D0, D1} , D2
0 = P0Λ+, (8)

D2
1 = P1Λ−,P = diag {P0, P1} ∈ P

}
. (9)

We have the following Theorem.

Theorem 2. If M is diagonally marginally stable, if the
boundary dissipative condition ρ(K) < 1 is satisfied, then
the linear hyperbolic system (2)-(3) is exponentially stable.

Proof. The time derivative of the Lyapunov function V is
V̇ = V̇1 + V̇2 (10)

with
V̇1 , −

[
ξ+TP0Λ+ξ+e−µx

]L
0

+
[
ξ−TP1Λ−ξ−eµx

]L
0

V̇2 ,
∫ L

0

ξT
(
−µP (x)|Λ|+ MTP (x) + P (x)M

)
ξ dx

and P (x) , diag {P0e
−µx, P1e

µx}, |Λ| , diag {Λ+,Λ−}.

In order to prove that the boundary condition (3) is
dissipative we will show that P0, P1 and µ can be selected
such that V̇ is a negative definite function. In order to
prove that V̇1 is a negative definite quadratic form, we
introduce the following notations:

ξ−0 (t) , ξ−(t, 0) ξ+
1 (t) , ξ+(t, L).

Using the boundary condition (3), we have

V̇1 = −
[
ξ+TP0Λ+ξ+e−µx

]L
0

+
[
ξ−TP1Λ−ξ−eµx

]L
0

= −
(
ξ+T
1 P0Λ+ξ+

1 e−µL + ξ−T0 P1Λ−ξ−0
)

+
(
ξ+T
1 KT

00 + ξ−T0 KT
01

)
P0Λ+

(
K00ξ

+
1 +K01ξ

−
0

)
+
(
ξ+T
1 KT

10 + ξ−T0 KT
11

)
P1Λ−

(
K10ξ

+
1 +K11ξ

−
0

)
eµL.

Since M is diagonally marginally stable and ρ(K) < 1 by
assumption, we know that the set P is not empty and we
can select matrices P0 and P1 such that

P = diag {P0, P1} ∈ P, D2
0 = P0Λ+, D2

1 = P1Λ−,
∆ = diag {D0, D1} and ‖∆K∆−1‖ < 1. (11)

We define

z ,

(
D0ξ

+
1

D1ξ
−
0

)
.

Then, using inequality (11), we have(
ξ+T
1 KT

00 + ξ−T0 KT
01

)
P0Λ+

(
K00ξ

+
1 +K01ξ

−
0

)
+
(
ξ+T
1 KT

10 + ξ−T0 KT
11

)
P1Λ−

(
K10ξ

+
1 +K11ξ

−
0

)
= ‖∆K∆−1z‖2

< ‖z‖2 = ξ+T
1 P0Λ+ξ+

1 + ξ−T0 P1Λ−ξ−0 .
It follows readily that µ can be taken sufficiently small
such that V̇1 is a negative definite quadratic form ∀t > 0.

Moreover, since MTP + PM is negative semidefinite (be-
cause P∈ P), µ > 0 can be taken sufficiently small such
that MTP(x)+P(x)M is negative semidefinite for all x in
[0, L] and therefore that −µP(x)|Λ|+ MTP(x) + P(x)M
is negative definite for all x in [0, L]. It follows that for µ
sufficiently small there exist α > 0 such that

V̇2 < −αV =⇒ V̇ = V̇1 + V̇2 < −αV ∀ξ 6= 0.
Consequently the solutions of the system (2)-(3)-(4) expo-
nentially converge to 0 in L2-norm.
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4. APPLICATION TO THE
SAINT-VENANT-EXNER MODEL

In the previous section, we have shown that for sys-
tems with M diagonally marginally stable, the dissipative
boundary condition ρ(K) < 1 is a sufficient exponential
stability condition. This is true in particular for hydraulic
systems described by linearised shallow-water equations as
long as the subcritical flow condition is satisfied as we shall
illustrate in the present section for an open channel with
variable bathymetry.

We consider a pool of a prismatic sloping open channel
with a rectangular cross-section, a unit width and a
moving bathymetry (because of sediment transportation).
The state variables of the model are: the water depth
H(t, x), the water velocity V (t, x) and the bathymetry
B(t, x) which is the depth of the sediment layer above the
channel bottom. The dynamics of the system are described
by the coupling of Saint-Venant and Exner equations:

∂H

∂t
+ V

∂H

∂x
+H

∂V

∂x
= 0,

∂V

∂t
+ V

∂V

∂x
+ g

∂H

∂x
+ g

∂B

∂x
= gSB − Cf

V 2

H
, (12)

∂B

∂t
+ a|V |m−1 ∂V

∂x
= 0.

In these equations, g is the gravity constant, SB is the
bottom slope of the channel, Cf is a friction coefficient and
a is a parameter that encompasses porosity and viscosity
effects on the sediment dynamics.

4.1 Steady-state and Linearisation

A steady-state is a constant state H∗, V ∗, B∗ which
satisfies the relation

gSBH
∗ = CfV

∗2.

In order to linearise the model, we define the deviations
of the state H(t, x), V (t, x), B(t, x) with respect to the
steady-state:

h(x, t) = H(x, t)−H∗,
u(x, t) = V (x, t)− V ∗,
b(x, t) = B(x, t)−B∗.

Then the linearised Saint-Venant-Exner model (12) around
a steady-state is

∂h

∂t
+ V ∗

∂h

∂x
+H∗

∂u

∂x
= 0, (13a)

∂u

∂t
+ V ∗

∂u

∂x
+ g

∂h

∂x
+ g

∂b

∂x
= Cf

V ∗2

H∗2
h− 2Cf

V ∗

H∗
u,

(13b)
∂b

∂t
+ aV ∗2

∂u

∂x
= 0. (13c)

4.2 Characteristic (Riemann) coordinates

In the sequel, we set the parameter m to 3 as in Hudson
and Sweby [2003]. In matrix form, the linearised model
(13) can be written as

∂W

∂t
+ A(W ∗)

∂W

∂x
= B(W ∗)W (14)

where

W =


h

u

b

 , A(W ∗) =


V ∗ H∗ 0

g V ∗ g

0 aV ∗2 0

 ,

B(W ∗) =


0 0 0

Cf
V ∗2

H∗2
−2Cf

V ∗

H∗
0

0 0 0

 .

Exact, but rather complicated expressions of the eigenval-
ues of A(W ∗) can be obtained by using the Cardano-Vieta
method, see Hudson and Sweby [2003]. Once the eigenval-
ues are obtained, the corresponding left eigenvectors can
be computed as

Lk =
1

(λk − λi)(λk − λj)


(V ∗ − λi)(V ∗ − λj) + gH∗

H∗(2V ∗ − λi − λj)

gH∗

 ,

k 6= i 6= j ∈ {1, 2, 3} .
We multiply (14) by LTk in order to rewrite the model in
terms of the characteristic coordinates Ψk (k = 1, 2, 3).
Then we obtain

∂Ψk

∂t
+ λk

∂Ψk

∂x
= LTkBW, k = 1, 2, 3, (15)

where

Ψk =
1

(λk − λi)(λk − λj)
[(

(V ∗ − λi)(V ∗ − λj) + gH∗
)
h

+
(
H∗(2V ∗ − λi − λj)

)
u+ gH∗b

]
. (16)

Conversely, we can express h, u and b in terms the
characteristic coordinates:
h = Ψ1 + Ψ2 + Ψ3, (17a)

u =
1
H∗

[(
λ1 − V ∗

)
Ψ1 +

(
λ2 − V ∗

)
Ψ2 +

(
λ3 − V ∗

)
Ψ3

]
,

(17b)

b =
1

gH∗

[((
λ1 − V ∗

)2 − gH∗)Ψ1

+
((
λ2 − V ∗

)2 − gH∗)Ψ2 +
((
λ3 − V ∗

)2 − gH∗)Ψ3

]
.

(17c)
Using the new variables Ψk, the RHS of (15) writes:

LTkBW = γ1l
k
2h+ γ2l

k
2u

=
3∑
s=1

(
γ1 + γ2

λs − V ∗

H∗

)
lk2Ψs,

(18)

where

γ1 = Cf
V ∗2

H∗2
, γ2 = −2Cf

V ∗

H∗
,

and lk2 is the second component of LTk . Equation (18) can
be rewritten as:

LTkBW = Cf
V ∗

H∗
(2V ∗ − λi − λj)

(λk − λi)(λk − λj)

3∑
s=1

(
3V ∗ − 2λs

)
Ψs,

k 6= i 6= j ∈ {1, 2, 3} . (19)
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For the sake of simplicity, we introduce the following
notation θk:

θk = Cf
V ∗

H∗
(2V ∗ − λi − λj)

(λk − λi)(λk − λj)
.

Then equation (15) writes:

∂ξk
∂t

+ λk
∂ξk
∂x

+
3∑
s=1

(2λs − 3V ∗)θsξs = 0

(k = 1, 2, 3) (20)
where the characteristic coordinates are now defined as

ξk =
1
θk

Ψk.

From (20), the linearised model (15) in characteristic form
may now be written as

∂ξ

∂t
+ Λ

∂ξ

∂x
−Mξ = 0, (21)

where
ξ = (ξ1, ξ2, ξ3)T , Λ = diag(λ1, λ2, λ3)

and

M =


α1 α2 α3

α1 α2 α3

α1 α2 α3

 ,

with
αk =

(
3V ∗ − 2λk

)
θk

From Hudson and Sweby [2003], the three eigenvalues of
the matrix A are such that

λ1 < 0 < λ2 � λ3 (22)
with λ1 and λ2 the characteristic velocities of the water
flow and λ2 the characteristc velocity of the sediment
motion. Obviously the sediment motion is much slower
than the water flow. On the basis of (22), we are now
going to determine the sign of the coefficients αk in M.

For α1, we have:

α1 = Cf
V ∗

H̄

(
3V ∗ − 2λ1

) 2V ∗ − λ3 − λ2

(λ1 − λ2)(λ1 − λ3)
. (23)

Since λ1 < 0, we have 3V ∗ − 2λ1 > 0. The trace of the
matrix A is: tr(A) = 2V ∗. Then

λ1 + λ2 + λ3 = 2V ∗

and, therefore,
2V ∗ − λ2 − λ3 = λ1 < 0.

Using (22), we infer that:
λ1 − λ2 < 0 and λ1 − λ3 < 0.

From the aboves inequalities, we conclude that α1 < 0.

For α2, we have

α2 = Cf
V ∗

H̄

(
3V ∗ − 2λ2

) 2V ∗ − λ1 − λ3

(λ2 − λ1)(λ2 − λ3)
. (24)

Since the sediment motion is much more slower than the
water flow, we may assume that 3V ∗−2λ2 > 0. Moreover,
using the trace of A, we have

2V ∗ − λ1 − λ3 = λ2 > 0.

From (22), we have also
λ2 − λ1 > 0 and λ2 − λ3 < 0.

From these inequalities, we conclude that α2 < 0.

Finally, for α3, we have

α3 = Cf
V ∗

H̄

(
3V ∗ − 2λ3

) 2V ∗ − λ1 − λ2

(λ3 − λ2)(λ3 − λ1)
. (25)

From (22), we have
λ3 − λ1 > 0 and λ3 − λ2 > 0,

and from the trace of A, we have
2V ∗ − λ1 − λ2 = λ3 > 0.

Using again the trace of A, we have also
3V ∗ − 2λ3 = 2λ1 + 2λ2 − V ∗.

Since λ2 is small, 3V ∗−2λ3 has the same sign as 2λ1−V ∗.
Since λ1 < 0 is negative, we obtain: 3V ∗ − 2λ3 < 0 and
consequently α3 < 0.

Hence all the coefficients αk in matrix M are strictly
negative.

4.3 Lyapunov stability under boundary feedback control

We are now going to show how Theorem 2 may be applied
to analyse the stability of an open channel under boundary
feedback control.

We assume that the channel is provided with hydraulic
control devices (pumps, valves, mobile spillways, sluice
gates, ...) which are located at both ends and allow to
assign the values of the flow-rate. On-line measurements
of the water levels at both ends h(t, 0) + b(t, 0) and
h(t, L) + b(t, L) are assumed to be available for feedback
control. Obviously, instead of the flow-rates, we may as
well consider the velocities u(t, 0) and u(t, L) as being
the control actions. Therefore we introduce the following
boundary conditions:

u(t, 0) = −k1h(t, 0), (26a)
u(t, L) = −k2(h(t, L) + b(t, L)), (26b)
b(t, 0) = 0. (26c)

Conditions (26a)-(26b) are linear feedback static control
laws with the tuning parameters k1 and k2. The third
condition is supposed to be a physical constraint. In order
to invoke Theorem 2, we have

1) to find a matrix P = diag{p1, p2, p3} such that
ξT
(
MTP+PM

)
ξ is a negative semi definite quadratic

form,

2) to find the range of admissible values of the tuning
parameters ki such that the boundary conditions are
dissipative.

For the matrix P, a straightforward choice is pi := |αi| (i
= 1,2,3) since then the quadratic form is

ξT
(
MTP + PM

)
ξ = −2

(
3∑
i=1

|αi|ξi

)2

.

In order to check the dissipativity condition ρ(K) < 1,
we have to compute the matrix K and the matrix ∆. It
is easy to verify that, in the Riemann coordinates ξ, the

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

13324



boundary conditions (26) can be written in the form (3)
as follows:(

ξ1(t, L)
ξ2(t, 0)
ξ3(t, 0)

)
=

( 0 χ2(k2) χ3(k2)
π2(k1) 0 0
π3(k1) 0 0

)
︸ ︷︷ ︸

(
ξ1(t, 0)
ξ2(t, L)
ξ3(t, L)

)

K (27)
where πi and χj are homographic transformations of the
tuning parameters k1 and k2 respectively.

Moreover, we have, by definition, that P = diag{|α1|, |α2|, |α3|}
and |Λ| = diag{|λ1|, λ2, λ3}. Consequently:

∆ = diag
{√
|λ1||α1|,

√
λ2|α2|,

√
λ3|α3|

}
and
∆K∆−1 =

0 χ2(k2)

√
|λ1||α1|
λ2|α2|

χ3(k2)

√
|λ1||α1|
λ3|α3|

π2(k1)

√
λ2|α2|
|λ1||α1|

0 0

π3(k1)

√
λ3|α3|
|λ1||α1|

0 0


Then, it is a matter of tedious but fairly straightforward
calculations to show that

‖∆K∆−1‖ < 1
if and only if the tuning parameters k1 and k2 are selected
such that

π2
2(k1)

λ2|α2|
|λ1||α1|

+ π2
3(k1)

λ3|α3|
|λ1||α1|

< 1

and

χ2
2(k2)

|λ1||α1|
λ2|α2|

+ χ2
3(k2)

|λ1||α1|
λ3|α3|

< 1.

5. CONCLUSIONS

We have addressed the issue of stating sufficient boundary
conditions for the exponential stability of linear hyperbolic
systems of balance laws. In Theorem 1 we have first
given a general implicit formulation of sufficient dissipative
boundary conditions. Our analysis relies on the use of an
explicit Lyapunov function. The exponential weight e±µx
is essential to get a strict Lyapunov function.

Then in Theorem 2, we have shown that the explicit
dissipativity condition ρ(K) < 1 gives a convergence in
L2(0, L)-norm for systems of balance laws with a diago-
nally marginally stable matrix M. This theorem has been
applied to give tuning conditions for boundary feedback
stabilisation of an open channel represented by the Saint-
Venant-Exner model.

The same Lyapunov function cannot be directly used
to analyse the local stability of the steady-states in the
nonlinear case. In order to extend the Lyapunov stability
analysis to the nonlinear case, the Lyapunov function has
to be augmented (as shown in detail in Coron et al. [2007,
2008]) or modified (as discussed in Gugat and Herty [2011]
and in Dick et al. [2010] for the special case of gas pipelines
represented by isentropic Euler equations).
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