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Abstract: In this paper we present a simple cumulative sum algorithm for detection of leaks
in open water channels. The algorithm compares the observed changes in water levels against
the known in- and out-flows and raises an alarm if they are not in agreement. The algorithm
is tested on data from an irrigation channel with very good results. Leaks are quickly detected
and the algorithm is robust against uncertainty in the model parameters.
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1. INTRODUCTION

Water is becoming an increasingly scarce resource in many
parts of the world, and agriculture is one of the biggest
consumers of water (Mareels et. al. 2005). Water for
agricultural purposes is often conveyed via a network of
open channels. Management of such channels must take
into account the required level of service that has to be
provided to the farmers and the need to conserve water
and minimise potential water losses. Implementation of
automatic control systems for regulation of the flows and
water levels (Cantoni et. al. 2007, Dulhoste et. al. 2004,
Gomez et al. 2002, de Halleux et. al. 2003, Litrico et. al.
2005, Ooi and Weyer 2007, Schuurmans et. al. 1999, Weyer
2007) can give significant improvement in operational effi-
ciency, ensuring that enough water is available to farmers
while minimising losses due to oversupply which can cause
spillage along the channel and outflows at the end of the
channel system.

In addition to losses caused by oversupply of water, there
are also losses due to faults (Bedjaoui et. al. 2006) and
leaks in the channels. Leaks can e.g. occur in the form of
unscheduled offtakes of water or be due to break downs and
failures in the (often old) civil engineering infrastructure.
A typical example is a gate to an escape channel not
sealing properly and letting water through even when it is
fully closed. It is of course important to detect leaks early
such that corrective action to reduce the water losses can
be taken.

In this paper we present a simple algorithm for leak detec-
tion together with experimental results from the Coleam-
bally Channel Number 6 which is a fully operational
irrigation channel. The algorithm is a cumulative sum
(CUSUM) algorithm which compares the observed changes
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Fig. 1. The Coleambally Channel Number 6

in water level against the measured and known in- and
out-flows and raises an alarm if they are not in agreement.

The paper is organised as follows. In the next section we
give a description of the Colembally Channel no. 6 and
present the models used. The leak detection algorithm is
derived in Section 3 followed by experimental results in
Section 4. Conclusions are given in Section 5.

2. CHANNEL DESCRIPTION

The experiments were carried out at the Coleambally
Channel Number 6 (Fig. 1) which is a secondary channel
to the Coleambally Main Channel in New South Wales,
Australia. Fig. 2 shows a schematic top view of the
channel.

We refer to a stretch between two gates as a pool. The
pools are named according to the upstream gate, e.g. the
pools in Fig. 2 are Pools 1 to 5. The channel is automated
with overshot gates as shown in Fig. 3 where yi and
yi+1 are the upstream water levels of Gates i and i + 1
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Fig. 2. Topview of the Coleambally Channel no. 6 with
Gates 1 to 6 (not to scale).
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Fig. 3. Stretch of an open-water channel with over-shot
gates

Fig. 4. Photo of Gate 5

respectively, pi and pi+1 are the positions of Gates i and
i + 1, and hi and hi+1 are the heads over gates which are
the heights of water above the gates.

There are two gates at each site as shown in Fig. 4.
Both gates operate in parallel, i.e. they always have the
same position. The water levels and gate positions are
the measured variables, and the heads are computed from
these measurements. Water levels are measured using
submersible level pressure sensors and gate positions are
measured based on the length of the steel cable between
the gates and the motors that move the gates. As the
channels are located in rural areas, electric power is
supplied by solar panels and data communication takes
place via a radio network, see Fig. 4. At each gate there
is a micro-processor which processes local information and
information communicated over the radio network. In this

work we will focus on Pool 4 and 5 and we will treat the
measured offtakes to farms as unknown leaks. Data such
as length, width etc. are given in Table 1.

Table 1. Data for Pool 4 and 5

Pool 4 5

Length, 943m 1275m

Bottom width 5.72m 5.18m

Side slope 2 2

Bottom slope ×10−4 3.4483 2.6667

Upstream gate width 1.91m 1.91m

Downstream gate width 1.91m 1.91m

ci,in 0.0341 0.0200

ci+1,out -0.0341 -0.0200

τi 4min 6min

2.1 Models for leak detection

For detection purposes a simple volume balance (Weyer
(2001)) describes the relevant dynamics well. The volume
balance is given by

dV

dt
= Qin(t) − Qout(t)

where V is the volume of the pool and Qin and Qout are the
inflow and outflow respectively. The flow over an overshot
gate in free flow can be approximated by (Bos (1978))
Q(t) = ch3/2(t) where h is the head over gate and c a
proportionality constant.

Assuming that the volume of water in a pool is pro-
portional to the downstream water level, we obtain the
following model for Pool i

ẏi+1(t) = ci,inh
3/2

i (t−τi)+ci+1,outh
3/2

i+1(t)−di(t)−li(t) (1)

where di(t) represents known offtakes to farms and side
channels in Pool i, and li(t) represents the effects of leaks
and unknown offtakes 1 . A time delay τi has also been
introduced to take into account the time between water
passes the upstream Gate i and the effects reaches the
downstream Gate i + 1 where yi+1 is measured. As most
offtakes are at the downstream end of a pool, there is no
time delay in the di(t) term. The li(t) term is unknown
and may be a (scaled) time delayed version of an actual
leak. This is unimportant as far as detection is concerned,
but it may have to be taken into account if we also want
to estimate when a leak started.

By replacing the derivative ẏi+1(t) by the difference
(yi+1((k + 1)T ) − yi+1(kT ))/T where T is the sampling
interval, a discrete time model can be obtained. Here a
sampling interval of 1 minute was used and hence we
obtained the model

yi+1(k + 1) = yi+1(k)+

ci,inh
3/2

i (k − τi) + ci+1,outh
3/2

i+1(k) − di(k) − li(k) (2)

The parameters ci,in, ci+1,out and τi were estimated from
observed data using prediction error methods for system
identification (Weyer (2001), Ooi et. al. (2005), Eurén and
Weyer (2006)). The parameters are given in Table 1.

1 For the purpose of this study we have not explicitly considered
the effects of rainfall and evaporation. This is often reasonable since
rainfall, if measured, can be incorporated in di(t), and losses due to
evaporation are often small compared to losses due to leaks.
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3. CUSUM ALGORITHM FOR LEAK DETECTION

Equation (2) expresses the change in water level as a
function of the in- and outflows. Intuitively one can there-
fore detect leaks by comparing the change in water level
against the known in- and outflows. In the absence of leaks
equation (2) can be written as

yi+1(k + 1) − yi+1(k) − ci,inh
3/2

i (k − τi)−

ci+1,outh
3/2

i+1(k) + di(k) = 0 (3)

and when a leak is present the left hand side of (3)
becomes negative. With this observation the leak detection
problem becomes a standard change detection problem.
The variable

zi(k + 1) =yi+1(k + 1) − yi+1(k)−

ci,inh
3/2

i (k − τi) − ci+1,outh
3/2

i+1
(k) + di(k) (4)

takes on values around zero before a change, and negative
values after a change, i.e. when a leak is present. Note that
all variables in (4) are measured or known so zi(k) can be
computed on-line.

One of the most well known algorithms for this problem
is the cumulative sum (CUSUM) algorithm (Page (1954),
Basseville and Nikiforov (1993), Gustafsson (2000)). If a
leak is present

gi(l) =

l∑

k=τi+1

zi(k)

will become more and more negative as l increases and
an alarm is raised when a threshold is exceeded. In
implementations of the CUSUM algorithm it is common
to reset gi(l) to zero if it becomes positive and to add
a small positive drift term to zi(k). As a rule of thumb
(Gustafsson 2000) the drift term should be chosen equal to
half the change we want to detect. The CUSUM algorithm
can therefore be written as

gi(τi) = 0

for l = τi, τi + 1, . . .

gi(l + 1) = min(gi(l) + zi(l + 1) + ai, 0) (5)

if gi(l + 1) < γi

Alarm time = l + 1

gi(l + 1) = 0

end %if

end %for

An alarm is raised if gi(l + 1) < γi, and ai in (5) is the
drift term. The threshold γi is a trade off between quick
detection of leaks and false alarm rate. If −γi is small,
leaks will be detected quickly, but the false alarm rate will
also be high. The last reset time before the first detection
can be taken as a lower estimate for the time when the leak
started since there is no indication (gi(l) + zi(l + 1) + ai

was positive) that a leak was present at that time.

3.1 Robustness with respect to uncertainty in the model
parameters

The CUSUM algorithm is quite robust to uncertainty
in the model parameters since such uncertainty can be
compensated for by adjusting the threshold value as shown
next. In our case ci,in = −ci+1,out since we have identical

gates at the upstream and downstream end of the channel.
Let ci = ci,in. Ignoring the resets and the drift term, gi(l)
can be written as

gi(l) =yi+1(l) − yi+1(τi)−

ci

l∑

k=τi+1

(h
3/2

i (k − τi) − h
3/2

i+1(k)) +

l∑

k=τi+1

di(k)

and the alarm condition becomes

ỹi+1(l) − cixi(l) < γi (6)

where ỹi+1(l) = yi+1(l) − yi+1(τi) +
∑l

k=τi+1
di(k) and

xi(l) =
∑l

k=τi+1
(h

3/2

i (k − τi) − h
3/2

i+1(k)). From (6) it can
be seen that an incorrect value of the model parameter
ci can be compensated for by adjusting the threshold
γi. These days irrigation channels often have automatic
control systems for water level regulation and the water
level will not vary much and hence yi+1(l) ≈ yi+1(τi). If in
addition there are no known off takes, the alarm condition
becomes approximately

−cixi(l) < γi or − xi(l) < γi/ci (7)

in which case the effect of an incorrect model parameter
can be completely absorbed by adjusting the threshold γi.
(7) is equivalent to monitoring the accumulated flows over
the upstream and downstream gate and to raise an alarm
if more water flows over the upstream gate than over the
downstream gate which makes sense if the water level is
constant and there are no known offtakes.

4. EXPERIMENTAL RESULTS

4.1 Operational conditions

The Coleambally Channel no. 6 is operated in closed loop
as sketched in Fig. 5. The setpoint for the water level in
Pool i is ri+1(t), and the output of the controllers are

ui(t) = h
3/2

i (t). The controller equations are given by

Ui(s) = Ci(s)(Ri+1(s) − Yi+1(s)) + Fi(s)Ui+1(s) (8)

where Ui(s), Ui+1(s), Ri+1(s) and Yi+1(s) are the Laplace
transform of ui(t), ui+1(t), ri+1(t) and yi+1(t) respec-
tively. The feedback controllers Ci(s) are PI controllers
augmented with lowpass filters, i.e.

Ci(s) =
Ki(1 + Tis)

Tis
·

1

1 + Ti,fs

Fi(s) are lowpass filters with gains less than 1 in the pass
band. For details see Ooi and Weyer (2007).

4.2 Implementation issues

The measurements required in order to implement the
CUSUM algorithm for Pool i are yi+1, hi and hi+1.
This means that the only data communication that has
to take place is between Gate i + 1 and i. As part
of the computations for the controller in Fig. 5 yi+1

and hi+1 are already transmitted to Gate i, and hence
the leak detection algorithm can be executed locally at
Gate i without any additional data communication. In
other words the leak detection algorithm allows for a
decentralised implementation requiring only neighbouring
gates to communicate. Communication with a central node
is only necessary when an alarm is raised.
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Fig. 5. Controller configuration for Pool 4 and 5
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Fig. 6. Data for Pool 4

4.3 Experimental data

The data sets are shown in Fig. 6 and 7. Gate 6 was under
manual control and Gate 4 and 5 were controlled as shown
in Fig. 5. The flow (head) over Gate 6 was increased at
time 110min causing the water levels to drop before the
controllers brought them back. In addition as shown in the
bottom graph of Fig. 6 an offtake started at time 70min at
location 31 which is just upstream of Gate 5. At location
32 which is just upstream of Gate 6 there was a small
ongoing offtake which finished at time 280min as shown
in the bottom graph of Fig. 7. For the purpose of this
study, these offtakes were treated as unknown leaks. The
sampling period for the water levels and the gate positions
was T = 1 min. Note that the water levels and gate
positions at a site is relative to a local reference points,
and hence the measured water levels at Gate 5 and 6 are
not directly comparable. Also note that the head over Gate
5 is the same in Fig. 6 and 7. They look slightly different
only because one is drawn with a solid line and the other
with a dashed line.

4.4 Results

We applied the CUSUM algorithm in Section 3 to the
data in Fig. 6 and 7. The alarm thresholds were set to
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Fig. 7. Data for Pool 5

γi = −0.015m for both pools. A rule of thumb is that
the drift term in (5) should be selected equal to half the
change we want to detect (Gustafsson (2000)). In irrigation
channels we often want to detect quite small leaks and
therefore ai = 0 is often a reasonable choice. However, if
we only want to detect leaks larger than say 1 ML/day
(0.0116m3/sec) rough calculations based on the surface
areas of the two pools suggest that the drift terms should
be set to a4 = 3.15·10−5m for Pool 4 and a5 = 2.44·10−5m
for Pool 5. The cumulative sum gi(l) with and without
the drift term are shown in Figs. 8 and 9 for Pool 4 and
5 respectively. After each alarm gi(l) was reset to zero,
and the detection algorithm was started over again. The
dashed vertical lines marks the alarm times, and the dash
dotted lines is the last reset time before the first alarm.
Of course, in practice corrective action will be taken to
stop the leak, and gi(l) will not be repeatedly reset to zero
after an alarm. Here we have done it just to illustrate the
algorithms capability of detecting leaks.

As we can see the offtake in Pool 4 is quickly detected
both with and without the drift term. It starts at time
70 min and it is detected at time 96 min. This is not
surprising since the offtake is relatively large and the
algorithm continue to give alarm every 10 minutes or so
indicating an ongoing leak. The last reset time is a bit
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Fig. 8. Results for Pool 4. a4 = 0 in the upper plot. Vertical
dashed lines are the alarm times. The vertical dash
dotted line (the leftmost vertical line) is the last reset
time before the first alarm.
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Fig. 9. Results for Pool 5. a5 = 0 in the upper plot. Vertical
dashed lines are the alarm times. The vertical dash
dotted line (the leftmost vertical line) is the last reset
time before the first alarm.

before the actual offtake starts when there is no drift term,
but with the drift term the last reset event in Pool 4 before
the first alarm occurs at time 70 minutes which is when the
offtake starts, and hence provides in this case an accurate
estimate of the start time of the leak.

The offtake in Pool 5 is much smaller, and it is detected
after about 100 minutes without a drift term and only
about 10 minutes later with the drift term. For Pool 5 we
only got one alarm which is not surprising since the offtake
was small and it also stopped after 280 minutes. Without
the drift term the cumulative sum was never reset to 0,
but it was reset a few times in the first 15 minutes with
the drift term.

0 50 100 150 200 250 300 350 400
−0.015

−0.01

−0.005

0
Pool 4. g(l). Model parameter is 0.5

Minutes

m

0 50 100 150 200 250 300 350 400
−0.015

−0.01

−0.005

0
Pool 4. g(l). Model parameter is 0.2

Minutes

m

Fig. 10. g4(l) for Pool 4 with incorrect model parameters.
c4,in = 0.05 in the upper plot and 0.02 in the lower
plot. Vertical dashed lines are the alarm times. The
vertical dash dotted line (the leftmost vertical line) is
the last reset time before the first alarm.

From Figs. 8 and 9 it can be seen that even quicker
detection could have been achieved in both Pool 4 and 5 by
using an alarm threshold closer to zero, e.g. γi = −0.01m.

4.5 Robustness against uncertainty in the model para-
meters.

In order to investigate the robustness we changed the
model parameter c4,in = −c5,out for Pool 4 to 0.02 and
0.05. For Pool 5 we changed the value of c5,in = −c6,out to
0.01, 0.012 and 0.028. These values are 40 to 50% above
and below the nominal parameter values, so the ”errors”
are quite large. The drift terms a4 and a5 were as before
and so were the thresholds γ4 and γ5. The results are
shown in Figs. 10 and 11.

Apart from when c5,in = 0.01 the leaks are still detected.
This shows that the algorithm is robust against uncer-
tainties in the model parameters as shown in Section 3.1.
When ci,in is smaller than the nominal value, it takes a
longer time for the leaks to be detected. Of course there
is a limit to how much uncertainty that can be tolerated,
and the leak in Pool 5 was not detected (with the above
threshold and drift term) with c5,in = 0.01. However, a
small adjustment of the threshold to say γ5 = −0.012m
(the horizontal line on the bottom graph in Fig. 11) would
have been enough to detect the leak. This shows that an
error in the model parameter can be partly compensated
for by adjusting the threshold.

4.6 Future developments

In addition to detecting the presence of a leak it may also
be of interest to estimate the size of the leak and the
location within the pool of the leak. A possible approach
to the first problem is to estimate the slope of gi(l) or
to compute the average time between alarms. The size
of the leak could then be inferred from this information.
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Fig. 11. g5(l) for Pool 5 with incorrect model parameters
c5,in = 0.028 in upper plot and 0.012 in the middle
and 0.01 in the lower plot. Vertical dashed lines are
the alarm times. The vertical dash dotted line (the
left most vertical line) is the last reset time before the
first alarm.

Based on the time between alarms in the upper plot of
Fig. 8 between time 200 minutes and 300 minutes a rough
estimate of the size of the leak is 28 ML/day which is a bit
larger than the measured value of 20 ML/day. The reason
for this can be twofold: Inaccurate measurement of the
flow at the offtake and an error in the estimate of c4,in and
c5,out.

Estimate of the location of the leak is difficult, even with
access to measurements of the immediate downstream
water level (yds,i in Fig. 3). Intuitively, if the leak occurs
at the downstream end, the water level at the downstream
end will start to decrease before the water level at the
upstream end, and vice versa if the leak is at the upstream
end. However, the natural variations in the measured water
levels make it difficult to pinpoint when a water level
starts to decrease, and estimates of the location become
unreliable.

5. CONCLUSIONS

In this paper we have developed a simple CUSUM al-
gorithm for leak detection in open water channels. The
algorithm has been successfully tested on data from an
operational irrigation channels with very good results.
Leaks were quickly detected, and the algorithm was ro-
bust against model uncertainties. Moreover, it allows for a
decentralised implementation.
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