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Abstract:

Based on a detailed metabolic network of CHO-320 cells built using available information
gathered from published reports, the flux distribution can be evaluated using tools of positive
linear algebra (in particular, the algorithm METATOOL devised in T. Pfeiffer and Schuster
(1999); S. Schuster (1999)), and to study the influence of the interconnection level of the network
as well as the availability of specific measurement information on this flux distribution. As this
latter information is usually not sufficient to completely define the metabolic fluxes (i.e., the
linear system of equations is underdetermined and an infinity of solution exists), it is of interest
to compute the range of possible (non-negative) solutions. Interestingly, depending on the
available measurements, the intervals obtained for the intracellular fluxes can be quite narrow,
especially for the fluxes surrounding the central metabolism. In this study, the construction of
the metabolic network and the selection of its structure (depending on the cell life cycle) are
discussed with a view to the determination of the flux distribution. In addition, the sensitivity
of the solution space to the availability of specific measurements is assessed.

1. INTRODUCTION

The examination of metabolic fluxes under different envi-
ronmental conditions may result in a better understanding
of the fundamental metabolism of cells in culture, which is
essential for the design of bioreactors, media formulations
and control strategies (Craig Zupke, 1995).

The determination and study of metabolic fluxes in vivo
has been termed Metabolic Flux Analysis and occupies
a central place in metabolic engineering (Stephanopoulos,
1999). Material balancing can be used to provide estimates
of major metabolic pathway fluxes when all significant
metabolite uptake and production rates are measured
(Gregg B. Nyberg, 1999; Provost and Bastin, 2004). This
approach is based on the a priori knowledge of a detailed
underlying metabolic network and the use of the funda-
mental assumption that internal metabolites are in quasi-
steady state (Joanne M. Savinell, 1992; Gregg B. Nyberg,
1999; Hendrik P. J. Bonarius, 1997; Craig Zupke, 1995;
I. Nadeau, 2000).

When applied to complex networks, material balancing
may not be sufficient to uniquely determine all fluxes, as
the number of unknown fluxes may exceed the number
of linear mass balance equations (Gregg B. Nyberg, 1999;
Hendrik P. J. Bonarius, 1997). Either additional experi-
mental flux data or additional theoretical constraints are
required to find one unique flux distribution out of the
solution space (J.Bonarius et al., 1996). Depending on
the underlying assumptions, the resulting flux distribu-
tion could be very different. Any conclusion about the

metabolism of the cell, deduced from a particular flux
distribution, should be taken with care.

Depending on the metabolic phase under consideration
(for instance the growth phase), reactions can be assumed
irreversible (even if in another metabolic phase the reac-
tions are indeed occurring in the reverse way) and the
corresponding fluxes non-negative, so that tools of non-
negative linear algebra, or convex analysis, can be ex-
ploited to compute the set of admissible solutions (Provost,
2006). In particular, METATOOL (T. Pfeiffer and Schus-
ter, 1999; S. Schuster, 1999) allows the computation of
the non-negative space of solutions, and as an extension
intervals for each metabolic flux.

The focus of this study is on metabolic flux analysis of
complex networks in the usual situation where extracel-
lular data are not sufficient to provide the missing infor-
mation required to define a unique solution to the mass
balance system. To this end, a detailed metabolic network
of CHO cells is first built based on published reports. The
validity of the network structure is tested by considering
alternative network configurations, i.e., the selection of
the flux directions, depending on the cell life cycle. Using
METATOOL, intervals bounding the metabolic fluxes are
computed in a straightforward way, and the influence of
specific measurement information is assessed.

This paper is organized as follows. Section 2 describes
how a detailed metabolic network of CHO cells has been
built. The set of experimental data is briefly described
in section3. In Section 4, the methodology used for the
metabolic flux interval analysis is introduced, some nu-



merical results are presented and a few case studies are
discussed. Finally, Section 5 draws conclusions and per-
spectives.

2. METABOLIC NETWORK DESCRIPTION

For the representation of the metabolism of CHO cells, a
metabolic network based on several series of bioreactions
of a generic mammalian cell has been built. This graphical
representation of the metabolism includes:

• Glycolysis;
• Pentose Phosphate Pathway;
• Tricarboxylic Acid Cycle;
• the Amino Acid metabolism and Protein and Anti-

body Synthesis;
• the Urea Cycle
• the Nucleic Acid Synthesis;
• the Membrane Lipid Synthesis.

Fig. 1. Schematic Representation of the Metabolic Net-
work for CHO-320 cells

Numerous works deal with metabolic flux analysis of
animal cells, like Hybridoma (J.Bonarius et al., 1996;
Hendrik P. J. Bonarius, 2000; Liangzhi Xie, 1994),
HEK-293 (I. Nadeau, 2000; O. Henry, 2005), MDCK
(Aljoscha Wahl) and CHO cells (Provost, 2006; A. Provost,
2007; C. Altamirano, 2006). The metabolic networks de-
scribed in all these studies consider the main catabolic
and anabolic pathways occurring within the cell with a
relatively limited level of complexity. Among all these
studies the central metabolism considered remains quite
similar, with the exception of a few reactions which are
specific to each type of mammalian cell.

2.1 Central Metabolism

The Central Metabolism comprises Glycolysis, the Pen-
tose Phosphate Pathway and the Tricarboxylic Acid Cy-
cle. Although metabolism embraces hundreds of different
enzyme-catalyzed reactions, the central metabolic path-
ways (present in all organisms), are limited in number
and remarkably similar in all forms of life (D.L. Nelson,
2005). Even if it is possible to find slight differences
between different cell kinds, they are hardly noticeable
among mammalian cells, with the exception of course, of
genetically manipulated cell lines. The central metabolism
considered herein is the usual metabolism used for strictly
aerobic eukaryotic organisms (Liangzhi Xie, 1994; Gregg

B. Nyberg, 1999; Hendrik P. J. Bonarius, 1998, 2000;
Provost, 2006; C. Altamirano, 2006).

As intermediates of the TCA cycle are removed to
serve as biosynthetic precursors, they are replenished by
anaplerotic reactions. Normally, the draw off and the re-
plenish reactions are in dynamic balance, thus concen-
trations of TCA cycle intermediates remain almost con-
stant. Among the most common anaplerotic reactions, the
reversible reaction catalyzed by malic enzyme is widely
distributed in eukaryotes and prokaryotes (D.L. Nelson,
2005).

The main carbon and energy sources for mammalian cells
in culture are glucose and glutamine, the latter also serving
as the primary nitrogen source. There are additional
requirements for other nutrients, but their contribution
to energy metabolism is small compared to the demand
for the main substrates (Craig Zupke, 1995). Hence, the
contribution of amino acids to energy production has often
been neglected. Major products of glucose and glutamine
metabolism are biomass, secreted protein, energy in de
form of ATP , reducing power for biosynthesis, carbon
dioxide, and the waste products lacate and ammonia
(Craig Zupke, 1995).

2.2 Amino Acid, Protein & Antibody Metabolism

Regarding the amino acid metabolism in mammalian cells,
essential amino acids, which cannot be synthesized by
the cell and must therefore be provided in the culture
medium, are only considered in the catabolic phase. In
contrast, for non-essential amino acids (produced by the
cell metabolism and possibly not supplied in the culture
medium), both, anabolic and catabolic phases are taken
into account. The pathways of amino acids catabolism
are quite similar in most organism. The routes of their
degradation converge to the central catabolic pathways,
where their carbon skeleton find the way to the TCA
cycle, and their amino group is shunted into other routes.
The catabolic pathways of all 20 amino acids converge
to form only five products, all of which enter the TCA
cycle: Acetyl-CoA, Oxaloacetate, Fumarate, Succinyl-CoA
and α-ketoglutarate (D.L. Nelson, 2005). All catabolic
reactions of amino acids and biosynthetic reactions of
nonessential amino acids have been taken from references
(D.L. Nelson, 2005) and (KEGG) based on metabolic
pathways of several mammalian organism.

The cell line CHO-320 was derived from a mutant of the
CHO-K1 cell, transfected with human IFN-γ to synthesize
and secrete this antibody (Fa-Ten Kao, 1968; Provost,
2006). This cell line is auxotrophic with respect to proline,
and thus it cannot synthesize proline from either ornithine
or glutamate and relies on its external supply for growth
(Fa-Ten Kao, 1967). Hence, Proline for CHO cells is also
an essential amino acid among the classical ones (His, Ile,
Leu, Lys, Met, Phe, Thr, Trp, Val).

Mammalian tissue is ureotelic, which means that the
excess NH3 is converted into urea and then excreted
(J.Bonarius et al., 1996). Accordingly, small amounts of
urea can be detected during CHO-320 cell cultures. Hence,
the Urea Cycle has been included as a part of the metabolic
network of CHO-320 cells.



Since proteins are built to play a specific role, and some-
times, their composition and structure depend on the
organisms that produce them, their composition and di-
mensions can vary widely. Therefore, it is not possible
to establish a standard protein composition, given that
the stoichiometric coefficients should be evaluated for each
organism and each type of protein. In Provost (2006)
an average composition of proteins for eukaryotic cells
is presented, composition that does not differs from the
percentage of amino acids occurrence in proteins given
in D.L. Nelson (2005). Thus, an average stoichiometric
pattern based on these references has been considered to
simulate protein synthesis as a simplified reaction. In the
same way, the reaction synthesis of the INF-γ antibody is
a simplified reaction whose stoichiometric pattern is based
on its known amino acid sequence (Elisabeth M. A. Curl-
ing, 1990; Peter H. Van Der Meide, 1986; Drugbank). In
table 1 the different contributions of amino acids to protein
and INF-γ synthesis are presented.

Table 1. Average Stoichiometric Composition
for Protein and INF-γ Antibody Synthesis

Amino acids Percentage of Percentage of
occurrence in Proteins occurrence in INF-γ

Alanine 7.8 5.48
Arginine 5.1 5.48
Histidine 2.3 1.37

Asparagine 4.3 6.85
Cysteine 1.9 1.37
Isoleucine 5.3 4.79
Aspartate 5.3 6.85
Glutamine 4.2 6.16
Leucine 9.1 6.85

Glutamate 6.3 6.16
Glycine 7.2 3.42
Lysine 5.9 13.7
Serine 6.8 7.53
Proline 5.2 1.37

Methionine 2.3 2.74
Tyrosine 3.2 3.42

Phenylalanine 3.9 6.85
Threonine 5.9 3.42

Tryptophan 1.4 0.68
Valine 6.6 5.48

2.3 Nucleotide Metabolism

Nucleotide synthesis, and in turn DNA and RNA syn-
thesis, only considers the de novo pathways, i.e., they are
synthesized from its main precursor: Ribose5−Phosphate,
final product of the Pentose Phosphate Pathway. The
second route leading to nucleotides, the salvage path-
way, is not considered herein because it recycles the free
monomers released from nucleic acid breakdown. As this
study does not consider degradation of nucleic acids, the
salvage pathways of synthesis are not considered into the
metabolic network. The de novo pathways for purine and
pyrimidine biosynthesis appear to be identical in nearly all
living organism (D.L. Nelson, 2005).

DNA and RNA structures are slightly different. Both
molecules contain two major purine bases, adenine and
guanine, and two major pyrimidines. Cytosine is one of
the pyrimidines in both nucleic acids, but the second is

thymine in DNA and uracil in RNA (D.L. Nelson, 2005).
In order to simulate nucleic acids synthesis as two simpli-
fied reactions (in a similar way as for proteins), average
percentages of nucleotide composition have been consid-
ered. In Sueoka (1961, 1962); Seoka (1988) an average
composition of nucleic acids is given, at different Guanine-
Citosine base concentrations for several cell types. On this
base, two overall reactions for both RNA and DNA, can
be established.

2.4 Lipid Metabolism

Among all different kinds of lipids, we only consider those
which play a structural role as components of membranes.
There are three general types of membrane lipids: Glyc-
erophospholipids, Sphingolipids and Sterols. The carbon
chains of fatty acids (phospholipids major components),
are assembled in a repeating four step sequence which
is the same in all organisms (D.L. Nelson, 2005). The
most common unsaturated and monounsaturated (a single
double bond) fatty acids of animal tissues are palmitate
(16:0) and stearate (18:0), and palmitoleate (16:1) and
oleate (18:1), respectively (D.L. Nelson, 2005; J.Bonarius
et al., 1996). Usually, glycerophospholipids contain one
saturated fatty acid (C16 or C18), and one unsaturated
fatty acid (C18 to C20) (D.L. Nelson, 2005). Hence, the
synthesis of phospholipids herein is in agreement with the
last statement.

It is assumed that CHO-320 cells are able to synthesize
Cholesterol, due to its fundamental role in the structure
of many membranes and because in mammalian cells,
cholesterol can be synthesized from acetate precursors
(Russell, 1992; D.L. Nelson, 2005).

In D.L. Nelson (2005); Hu (2004); Jakubowski (2008) usual
percentages of membrane phospholipids are specified. In
order to represent an overall reaction for the synthesis of
an average membrane lipid, its phospholipid composition
has been established on the base of these reference values.

It is worth mentioning that the metabolic network built
for this study, corresponds to a metabolism of growing
cells. Therefore, a specific flux direction has been assigned
to some of the reactions according to this phase of the
cell life. The complete series of bioreactions included in
the metabolic network studied in the present work, are
presented in Appendix A. The analysis of the complete
network has been done using the method described here-
after.

3. EXPERIMENTAL DATA BASE

The experimental data base originates from CHO-320
cells cultures used in Provost and Bastin (2004); Provost
(2006). These experimental data correspond to measure-
ments collected from three different batch cultures of a
CHO-320 cell line. This data set contains the extracellular
concentrations of the main substrates: Glucose and Glu-
tamine; the main metabolism excretion products: Lactate,
Alanine and Ammonia; and the concentration of 14 addi-
tional amino acids, along with the evolution of the biomass
inside the bioreactor during the growth phase.



4. METABOLIC FLUX ANALYSIS

4.1 Method

Pseudo steady-state assumption A high turnover of the
pools of most intracellular metabolites is supposed to
happen within the cells, and it is therefore reasonable to
formulate the assumption of balanced growth paradigm.
This hypothesis states that inside growing cells, all internal
metabolites are in quasi-steady state, i.e., for each internal
metabolite involved in a given metabolic network, the
production and consumption fluxes are balanced, and so,
the net sum is zero. The quasi-steady state condition
is mathematically expressed by a mass balance equation
of the internal metabolites with no accumulation (zero
time derivatives). This can be expressed by means of the
stoichiometric matrix N and the flux distribution vector
v.

N · v = 0 (1)

It is worth noting that v is a non-negative vector, since
the flux direction is fixed depending on the particular
metabolic phase (growth, maintenance, death) under con-
sideration. This is different from considering irreversible
reactions. Loads of the metabolic reactions are reversible,
but they have a predominant direction depending on
metabolic conditions. Therefore, each of them could be
seen as a net reaction with a fixed direction.

The algebraic relation (1) between the intracellular fluxes
around the intracellular metabolites is the fundamental
equation that underlies the metabolic flux analysis.

Metabolic Flux Analysis Metabolic Flux Analysis is a
methodology in metabolic engineering for the quantifica-
tion of pathway fluxes when extracellular measurements
are the only available data. By building a proper metabolic
network for the intracellular reactions and applying steady
state mass balances around the internal metabolites, an
admissible flux distribution can be found. This solution is
represented as a vector, where its entries are the rates at
which each reactions take place.

The specific uptake and excretion rates of the measured
external species (vm) are linear combinations of some of
the metabolic fluxes, thus, by defining a proper matrix
Nm, the specific consumption and production rates can be
expressed as:

vm = Nm · v (2)

The aim of metabolic flux analysis is to compute the
unknown (non-negative) vector v from measurements vm.
Thus, the admissible flux distribution v must now satisfy
the complete system (3), in order to agree with the
experimental data.

(

N
Nm

)

· v =

(

0
vm

)

(3)

In general, this system is underdetermined, as a metabolic
network happens to be composed of less nodes (internal
metabolites) than connections (reactions), and usually,
the number of external measurements is not sufficient to
provide the missing information, i.e., the missing linear
equations in system (3). Therefore, the solution of the
system is not unique but admits a set of admissible non-
negative flux distributions.

System (3) constraints the set of solutions, as solutions
compatible with observed measurement data are now
sought. The constrained solution set, called Flux distri-
bution Space F , is obtained from:

(

N 0
Nm −vm

)

·

(

v
1

)

= 0 (4)

The set F of admissible solutions is a convex polyhedral
cone whose edges, the extreme rays fi give any admissible
vector v by an appropriate non-negative linear combina-
tion.

v =
∑

i

αifi with
∑

i

αi = 1 and αi ≥ 0 (5)

The extreme rays are obtained by applying the software
METATOOL (T. Pfeiffer and Schuster, 1999) to the first
matrix of equation (4).

The flux distribution space F provides the limiting values
of the flux interval for each metabolic flux. This is, every
extreme ray provides a particular solution to v, and in
turn, to every metabolic flux. Thus, among all possible
values that vi may have, there will be an upper and a
lower value which will define the limits for this flux vi.
The bounds vmin

i
and vmax

i
can be defined from the convex

basis vectors fi of the flux space as:

vmin

i
∆ min {fki, k = 1, ..., p} (6)

vmax

i
∆ max {fki, k = 1, ..., p} (7)

where fki represents the i− th element of the basis vector
fk of the flux space F .

4.2 numerical results

The metabolic network (N) representing the intracellular
mass balances at quasi steady-state, includes 118 biore-
actions and 80 internal metabolites. Together with the
available measurements in table 2, the system of equations
(4) reaches a final dimension of 99 × 118.

Table 2. Extracellular Measurements in
[mmol/h · 109cell]

vglucose vglutamine vlactate valanine vammonia

0.1781 0.0502 0.3445 0.0457 0.0088

varg vasn vasp vglu vgly

2.1417e−3 1.1278e−3 3.1785e−3 9.5475e−4 2.2295e−3

vile vleu vlys vmet vphe

1.5278e−3 2.6013e−3 2.1245e−3 7.2375e−4 9.9808e−4

vser vthr vtyr vval

9.2342e−4 1.1842e−3 7.6104e−4 1.9561e−3

With the above described set of measurements and the
previously defined metabolic network, the admissible space
of solutions is computed with METATOOL from system
(4). In this case, the constraints imposed by the external
measurements are not strong enough to provide a well
restricted range of fluxes. Although, a limited set of flux
distributions is found (see Fig. 2), some important inputs
are missing (as His, Cys, Pro and Trp), which generates
a large uncertainty on their uptake (or eventually pro-
duction) rates. These non-measured uptake or production
rates may vary significantly within their (mathematically)
admissible ranges and as a consequence, the metabolic
fluxes of the reactions which are directly or indirectly



Fig. 2. Flux Distribution Intervals. Red crosses indicate the mean value of each flux, which is also a particular solution.
(*) v64 upper limit reaches 4,4707 [mmol/h · 109].

connected to them can undergo large variations. Thus, in
order to be able to limit the flux ranges, it is required to
possess additional measurement information.

4.3 Case studies

Testing different network structures As already pointed
out, the metabolism involves several reversible reactions,
whose net direction is not a priori known and depends on
the metabolic phase of the cell (i.e., if a reversible reaction
operates in both directions, then a net positive flux should
occur in the designated direction). In the metabolic net-
work under consideration, a fixed flux direction is given to
each biochemical reaction according to the corresponding
metabolic phase. Nevertheless, there are some reversible
reactions whose net direction cannot be decided only on
the basis of the metabolic phase of the cells. It is the case of
the reactions in figure 3, which can run in both directions
depending on the need for some metabolites in particular
reactions or pathways. To calculate the solution space
presented in the previous subsection, a particular choice
has been made for the direction of these four reversible
reactions (as they appear in Appendix A). Nevertheless,
as other configurations might be possible, it is useful to
test them, i.e., to change the direction of these reactions
and to investigate if a solution to the flux analysis exists.

Fig. 3. Reversible Reactions

Among the 16 possible flux distributions that can be
obtained by changing the direction of the above reactions,

only two of them possess a solution space, i.e., only two
network configurations admit a solution satisfying the
constraints imposed by the extracellular measurements
(experimental data of table 2). One of them is obviously
the configuration considered to calculate the solution space
of the previous subsection. The second admissible config-
uration is characterized by:

v24 : Malate → Pyruvate + CO2

v25rev : αKG + NH+
4 + NAD(P )H → Glu + H20 + NAD(P )+

v26 : Oxaloacetate + Glu → Asp + αKG

v48 : Asn → Asp + NH+
4

This latter flux distribution implies the occurrence of re-
action v25 in the reverse direction, from α -ketoglutarate
to glutamate, which has generally been reported to be
feasible in cultures under high ammonia concentrations.
Normally, this reaction produces α -ketoglutarate from
glutamate, as a second step of the metabolic path-
ways for glutamine degradation (Markus Schneider, 1996).
Also in other kind of mammalian cells, specifically Hy-
bridoma cells cultures, it has been demonstrated that
under ammonia-stress conditions, the reaction catalyzed
by glutamate dehydrogenase (reaction v25) goes in the
reverse sense, while control cells transform glutamate in
α-ketoglutarate and ammonia (Hendrik P. J. Bonarius,
1998). In our CHO cell culture, ammonia is constantly
produced and accumulated, but its concentration during
the growth phase is probably not sufficient to stimulate the
shift of direction in v25, even if it is mathematically possi-
ble. In Hendrik P. J. Bonarius (1998) the ammonia-stress
condition is given by 10 mM of ammonia, while, in our
culture at the end of the growth phase its concentration
only reaches 5 mM.

This kind of test can also be achieved for the extracellular
measurements, i.e. to check that if a metabolite is assumed
being consumed whereas it is normally produced (or vice
versa), no valid flux distribution intervals can be found.
Considering the reaction sequences in the correct direction
allows a feasible flux distribution to be obtained. To our
eyes, this can be interpreted as a sign of the consistency
of our metabolic network.



Measurements Sensitivity Depending on the number and
type of available extracellular measurements, the number
of basis vectors fi changes, as well as the size of the flux in-
tervals. Some measurement information appears as critical
for the determination of the flux intervals, whereas some
other measurement inputs are less influencial. In order to
determine which measurements are required to compute
relatively narrow flux intervals, we test the effect of the
presence/absence of particular extracellular measurements
on the solution space.

Generally, one can rely on glucose, lactate and ammonia
measurements, as their quantification procedures are quite
simple and widespread. On the other hand, the determi-
nation of all amino acid uptake and excretion rates can be
more delicate and time-consuming. Thus, in the following,
we focus attention on the impact of the availability of
measurement information for the amino acids uptake and
excretion rates. As in our experimental data base, the
measurements of four of the amino acids are not available,
an estimation is first achieved based on the literature
(C. Altamirano, 2004) so as to ”virtually” complete the
data base.

To proceed with the analysis, one of the twenty (16 real
and 4 estimated) amino acid measurements is removed
(one at the time), in order to see in which way this
particular measurement affects the obtained flux intervals.
As a result, two groups of amino acid measurements
are found. The first one includes measurements whose
absence increases the size of the intervals of up to 100%.
These amino acids, listed from lower to higher impact,
are: Gly, Ala, Trp, Met, Cys, Thr, Ser and Asp. The
second group includes measurements whose availability
has a much larger influence on the interval size. Again from
lower to higher impact, the corresponding amino acids are:
Lys, Leu, Tyr, Phe, Ile, Val, Pro, Glu, Asn, His, Gln and
Arg. In order to ilustrate the range in which the intervals
are varying, the highest percentages of increase (for each
metabolic routes) are presented in table 3.

Table 3. Increase of flux intervals in relation
with amino acid measurements

Metabolic Pathway First Group of Second group of
Amino acids (%) Amino acids (%)

Glycolysis 50.7 239.9

TCA 86.0 4867.0

PPP 17.2 116.0

Urea Cycle 96.6 9697.4

Nucleotides 118.9 11927.4

Lipids 62.7 3107.9

Apparently, the variation in the flux interval sizes signif-
icantly depends on which amino acid (uptake or produc-
tion) measurement is missing and on the degree of inter-
connection of the internal routes that follow (or precede)
each consumption (or production) reaction. In addition,
we have tested different scenarios where several amino
acid measurements of the first group are missing, and it
has been found that three, four or even five of these mea-
surements can be missing, while obtaining still reasonable
percentages of increase in the interval sizes (table 4).

Hypothetical additional measurements By estimating the
uptake or production rate of a number of species, the

metabolic flux intervals can be significantly restricted in
their size, thus providing useful estimation of the flux
distribution. Starting from the assumption that we possess
the measurements of all 20 amino acids and that we
are able to measure a few more extracellular (substrates
or products) metabolites, we analyze in which order of
magnitude these additional constraints reduce the size of
the intracellular flux intervals.

Five hypothetical measurements have been considered in
this analysis, where three out of them are usually (or
easily) measured: urea uptake rate, CO2 evolution rate
(CER) and antibody production rate (INF−γ). The other
two, Choline and Ethanolamine uptake rates, may need
more specific methods for their determination, which are
however still practicable. As the latter two are the only
extracellular inputs of the Lipid Pathways, they should
carry valuable information.

The essays are systematically performed including one
measurement at a time. The percentages in which the
flux intervals are reduced are shown in figure 4. Clearly,
each measurement has a different effect over the different
metabolic pathways. The knowledge of the urea uptake
rate, for example, drastically reduces the intervals of the
nucleotide pathways ( 60%), the urea cycle (97%), and
some reactions involved in the metabolism of ammonia.
By measuring the CER, the pathways of the central
metabolism (Glycolysis, TCA and PPP) are very signif-
icantly reduced. On the other hand, the measurement of
INF − γ production rate only reduces the uncertainty
of the amino acid catabolism fluxes, as amino acids are
direct precursors of the antibody. Finally, it seems that
the measurement of choline should be enough to effec-
tively reduce the flux intervals of the lipid pathways.
Interestingly, it appears that choline is a more informative
measurement than ethanolamine. Ethanolamine enters in
a small cyclic route involving phosphatidylserine and phos-
phatidylethanolamine, which may result in a system with
more degrees of freedom than the system obtained when
choline is measured. The result of this analysis is quite
practical, and hence, one would be able to decide which
metabolites provide the more usefull information and thus,
which are to be measured instead of others. In our case,
the more informative measurements appear to be the CER
and urea and choline uptake rates. By measuring these
extracellular metabolites, the intervals are significantlty
reduced. Even if the measurement of the antibody pro-
duction does not seem to be very informative, it is of
fundamental interest to measure it, since INF − γ is the
main product of interest of CHO-320 cell cultures.

5. CONCLUSIONS

In this study, a detailed metabolic network of CHO− 320
is built based on information available in the literature.
Together with the classical assumption that the internal
metabolites are in quasi-steady state, the measurements
of the time evolution of a number of culture components
provide a set of constraints on the metabolic network.
However, the number of measurements is usually not
sufficient to fully determine the flux distribution, and it
is necessary to resort to the concept of Flux Space, which
defines admissible ranges for the flux distribution.



Table 4. Percentage of increase of the interval size generated by missing measurements of the
First group

Pathway Gly, Ala, Met Gly, Ala, Cys Gly, Ala, Ser Gly, Ala, Asp Gly, Ala, Met, Cys Gly, Ala, Met, Asp Gly, Ala, Met, Cys, Ser

Glycolysis 25.7 38.4 40.0 57.5 38.5 62.0 40.0

TCA 48.2 89.8 89.5 102.8 90.2 286.0 97.5

PPP 12.6 17.2 17.2 17.2 17.2 17.2 17.2

Urea Cycle 37.0 91.6 91.6 115.6 91.6 304.2 91.6

Nucleotides 63.7 131.1 130.6 160.1 131.2 392.3 131.2

Lipids 23.6 59.7 64.5 74.3 60.7 193.7 64.5

Fig. 4. Reduction Percentage of Flux Intervals by adding Hypothetical Measurements



Based on a set of limited available measurements of extra-
cellular components, alternative network configurations,
corresponding to different net directions of several re-
versible pathways, are systematically investigated. Among
the 16 candidate configurations, only 2 appears feasible, as
they correspond to an admissible solution space. However,
only one of them is likely to occur, depending on the level
of concentration of ammonia.

Then, the influence of the availability of the measurements
of the uptake or production rates of the 20 amino acids is
assessed. As a result, the amino acids can be classified
in two groups, one with limited influence and the other
with critical influence. Considering the first group, it is
possible to evaluate reasonable flux distributions, even in
the situation where up to 5 measurements are missing.

On the other hand, it is of interest to consider the situation
where the measurements of all 20 amino acids are available
(as well as, of course, standard measurements of glucose,
lactate and ammonia) and to evaluate the benefits of
additional measurements such as urea uptake rate, CO2

evolution rate (CER), antibody production rate (INF −
γ), Choline and Ethanolamine uptake rates. The more
informative measurements appear to be CER, urea and
choline uptake rates, which allow the flux intervals to be
significantly reduced.

Interestingly, the resulting flux ranges can be quite narrow,
thus providing a very useful insigth in the cell metabolism,
even in the situation where some extracellular component
measurements are missing and the underlying system of
mass balance equations is underdetermined.

Further work will include additional experimental studies
in order to built more complete and informative data base
and to support our analysis.
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Appendix A. COMPLEX METABOLIC NETWORK

Glycolysis

v1 : Glu + ATP → G6P + ADP

v2 : G6P ↔ F6P

v3 : F6P + ATP → DHAP + G3P + ADP

v4 : DHAP ↔ G3P

v5 : G3P + NAD
+

+ ADP ↔ 3PG + NADH + ATP

v6 : 3PG + ADP → Pyr + ATP + H2O

Tricarboxylic acid cycle

v7 : Pyr + NAD
+

+ CoASH → AcCoA + CO2 + NADH

v8 : AcCoA + Oxal + H2O → Cit + CoASH

v9 : Cit + NAD(P )
+

→ αKG + CO2 + NAD(P )H

v10 : αKG + CoASH + NAD
+

→ SucCoA + CO2 + NADH

v11 : SucCoA + GDP + Pi ↔ Succ + GTP + CoASH

v12 : Succ + FAD ↔ Fum + FADH2

v13 : Fum + H2O ↔ Mal

v14 : Mal + NAD
+

↔ Oxal + NADH

Pyruvate Fates

v15 : Pyr + NADH ↔ Lact + NAD
+

v16 : Pyr + Glu ↔ Ala + αKG

Pentose Phosphate Pathway

v17 : G6P + 2NADP
+

+ H2O → Rbl5P + 2NADPH + CO2

v18 : Rbl5P ↔ R5P

v19 : Rbl5P ↔ X5P

v20 : X5P ↔ R5P

v21 : X5P + R5P ↔ S7P + G3P

v22 : S7P + G3P ↔ F6P + E4P

v23 : X5P + E4P ↔ G3P + F6P

Anaplerotic Reaction

v24 : Mal + NAD(P )
+ ←→

−−−→ Pyr + HCO
−

3
+ NAD(P )H

Amino Acid Metabolism

v25 : Glu + H20 + NAD(P )
+ ←→

−−−→ αKG + NH
+

4
+ NAD(P )H

v26 : Oxal + Glu
←→

−−−→ Asp + αKG

v27 : Gln + H2O → Glu + NH
+

4

v28 : Thr + NAD
+

+ CoASH → Gly + NADH + AcCoA

v29 : 3PG + Glu + NAD
+

+ H2O → Ser + αKG + NADH

v30 : Ser ↔ Gly + H2O

v31 : Gly + NAD
+

→ CO2 + NH
+

4
+ NADH

v32 : Ser → Pyr + NH
+

4

v33 : Thr → αKb + H2O + NH
+

4

v34 : αKb + CoASH + NAD
+

→ PropCoA + NADH + CO2

v35 : PropCoA + HCO
−

3
+ ATP → SucCoA + ADP + Pi

v36 : Trp → Ala + 2CO2 + αKa

v37 : Lys + 2αKG + 2NADP
+

+ NAD
+

+ FAD
+

+ 3H2O → αKa + 2Glu + 2NADPH + NADH + FADH2

v38 : αKa + CoASH + 2NAD
+

+ H2O → AcetoAcCoA + 2NADH + 2CO2

v39 : AcetoAcCoA + CoASH → 2AcCoA

v40 : V al + αKG + CoASH + 3NAD
+

+ FAD
+

+ 2H2O → PropCoA + Glu + 2CO2 + 3NADH + FADH2

v41 : Ile + αKG + 2CoASH + 2NAD
+

+ FAD
+

+ H2O → AcCoA + PropCoA + Glu + CO2 + 2NADH + FADH2

v42 : Leu + αKG + CoASH + NAD
+

+ HCO
−

3
+ ATP + FAD

+
+ H2O → AcCoA + AcetoAc + Glu + CO2 + NADH + ADP + FADH2

v43 : AcetoAc + SucCoA → AcetoAcCoA + Succ

v44 : Phe + NADH → Tyr + NAD
+

+ H2O

v45 : Tyr + αKG + H2O → Fum + AcetoAc + Glu + CO2

v46 : Met + Ser + ATP + 2H2O → Cys + αKb + NH
+

4
+ AMP

v47 : Cys + H2O → Pyr + NH
+

4

v48 : Asn + H2O → Asp + NH
+

4

v49 : Arg + H2O → Orn + Urea

v50 : Orn + αKG ↔ GluγSA + Glu

v51 : Pro → GluγSA + H2O

v52 : GluγSA + NAD(P )
+

→ Glu + NAD(P )H

v53 : His + 2H2O → Glu + NH
+

4

Urea Cycle

v54 : Orn + CarbP → Cln

v55 : Cln + Asp + ATP → ArgSucc + AMP

v56 : ArgSucc → Arg + Fum

Proteine Synthesis

v57 : 0.023His + 0.053Ile + 0.091Leu + 0.059Lys + 0.023Met + 0.039Phe + 0.059Thr + 0.014Trp

+0.066V al + 0.051Arg + 0.019Cys + 0.042Gln + 0.072Gly + 0.052Pro + 0.032Tyr + 0.78Ala

+0.043Asn + 0.053Asp + 0.063Glu + 0.068Ser + ATP + 3GTP → Protein + AMP + Ppi + 3GDP + 3Pi

INF-γ Synthesis

INF − γ : 0.0137His + 0.0479Ile + 0.0685Leu + 0.1370Lys + 0.0274Met + 0.0685Phe + 0.0342Thr

+0.0068Trp + 0.0548V al + 0.0548Arg + 0.0137Cys + 0.0616Gln + 0.0342Gly + 0.0137Pro + 0.0342Tyr

+0.0548Ala + 0.0685Asn + 0.0685Asp + 0.0616Glu + 0.0753Ser + ATP + 3GTP → INF − γ + AMP + Ppi + 3GDP + 3Pi



Nucleotide Synthesis

v58 : R5P + ATP → PRPP + AMP

v59 : PRPP + 2Gln + Gly + Asp + 4ATP + CO2 → IMP + 2Glu + Fum + 4ADP + 2H2O

v60 : IMP + Asp + ATP + GTP → ADPRN + Fum + ADP + GDP

v61 : ADPRN + ATP ↔ ATPRN + ADP

v62 : IMP + Gln + 2ATP + NAD
+

+ 2H2O → GDPRN + Glu + ADP + AMP + NADH

v63 : GDPRN + ATP ↔ GTPRN + ADP

v64 : HCO
−

3
+ NH

+

4
+ 2ATP → CarbP + ADP

v65 : CarbP + PRPP + Asp + ATP + NAD
+

→ UDPRN + ADP + NADH + CO2 + H2O

v66 : UDPRN + ATP ↔ UTPRN + ADP

v67 : UTPRN + Gln + ATP → CTPRN + Glu + ADP

v68 : CTPRN + ADP ↔ CDPRN + ATP

v69 : 0.285(ATPRN + UTPRN ) + 0.215(GTPRN + CTPRN ) → RNA

v70 : ADPRN + ATP → dATP + ADP + H2O

v71 : GDPRN + ATP → dGTP + ADP + H2O

v72 : CDPRN + ATP → dCTP + ADP + H2O

v73 : UDPRN + ATP → dUTP + ADP + H2O

v74 : dUTP → dTTP

v75 : 0.285(dATP + dTTP ) + 0.215(dGTP + dCTP ) → DNA

Lipid Synthesis

Fatty Acids

v76 : AcCoA + HCO
−

3
+ ATP → MalCoA + ADP

v77 : 7MalCoA + AcCoA + 14NADPH → Palmitate + 7CO2 + 8CoASH + 14NADP
+

+ 6H20

v78 : Palmitate + CoASH + ATP → PalmCoA + AMP

v79 : PalmCoA + MalCoA + 2NADPH → Stearate + 2NADP
+

+ CO2 + CoASH

v80 : Stearate + CoASH + ATP → SteCoA + AMP

v81 : SteCoA + NADH → Oleate + NAD
+

+ H2O + CoASH

v82 : Oleate + CoASH + ATP → OleCoA + AMP

Glycerophospholipids

v83 : DHAP + NADH → Glyc3P + NAD
+

v84 : PalmCoA + OleCoA + Glyc3P → PA

v85 : SteCoA + OleCoA + Glyc3P → PA

v86 : PA + H2O → 1, 2DG

v87 : Choline + 1, 2DG + ATP + CTP → PC + ADP + CMP

v88 : Ethanolamine + 1, 2DG + ATP + CTP → PE + ADP + CMP

v89 : PE + Ser → PS + Ethanolamine

v90 : PS → PE + CO2

Sphingolipids

v91 : PalmCoA + Ser + NADPH → Sphinganine + NADP
+

+ CoASH + CO2

v92 : Sphinganine + PalmCoA → Ceramide + CoASH

v93 : Sphinganine + SteCoA → Ceramide + CoASH

v94 : Sphinganine + OleCoA → Ceramide + CoASH

v95 : Ceramide + PC → SM + 1, 2DG

v96 : Ceramide + PE → SM + 1, 2DG

Cholesterol Synthesis

v97 : 3AcCoA + 2NADPH → Mevalonate + 3CoASH + 2NAD
+

v98 : Mevalonate + 3ATP → IsopentenylpyroP + 2ADP + CO2

v99 : IsopentenylpyroP ↔ DimethylallylpyroP

v100 : IsopentenylpyroP + DimethylallylpyroP → GeranylpyroP

v101 : IsopentenylpyroP + GeranylpyroP → FarnesylpyroP

v102 : 2FarnesylpyroP + 2NADPH → Cholesterol + 2NADP
+

+ H2O

Membrane Lipid

v103 : 0.5PC + 0.2PE + 0.075PS + 0.075SM + 0.15Cholesterol → MembraneLipid

Transport Reactions

v104 : Glnext → Gln

v105 : Ala → Alaext

v106 : Gly → Glyext

v107 : Serext → Ser

v108 : Gluext → Glu

v109 : Asnext → Asn

v110 : Aspext → Asp

v111 : Cysext → Cys

v112 : Argext → Arg

v113 : Proext → Pro

v114 : Tyrext → Tyr

v115 : Etnext → Etn

By Products

v116 : CO2 → CO2,ext

v117 : NH
+

4
→ NH

+

4,ext
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