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Abstract: Conditions for boundary feedback stabilisability of linear 2×2 hyperbolic systems
over a bounded interval are investigated. The main result is to show that the existence of a
quadratic control Lyapunov function requires that the solution of an associated ODE is defined
on the considered interval. This result is used to give explicit conditions for the existence of
stabilising linear boundary feedback control laws. The analysis is illustrated with an application
to the boundary feedback stabilisation of open channels represented by Saint-Venant equations
with non-uniform steady-states. Copyright c©IFAC 2010
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1. INTRODUCTION

In this paper we discuss the boundary feedback stabil-
isation of linear 2×2 hyperbolic systems over a bounded
interval and its application to nonlinear systems with non-
uniform steady-states.

Conditions for boundary feedback stabilisability of linear
hyperbolic systems in canonical form are established in
Section 3. Our main result is to show that the existence
of a quadratic control Lyapunov function requires that the
solution of an associated ODE is defined on the considered
interval. This result is then used to give explicit conditions
for the existence of linear boundary feedback control laws
in two cases : (i) when the control is available on both
sides of the system; (ii) when the control is available only
on one side of the system.

Behind this analysis, our motivation is in fact to inves-
tigate the stabilisation of non-linear hyperbolic systems
with non-uniform steady-states. We are particularly inter-
ested in the stabilisation of open-channels using hydraulic
control devices. In Section 4, we show how our analysis
can be applied to the design of stabilising control laws for
open-channels represented by Saint-Venant equations with
a non-uniform steady-state.

A preliminary proposition, which is a key result for our
analysis, regarding the existence of functions satisfying
certain differential inequalities is first given in Section 2.

2. A PRELIMINARY PROPOSITION

Let L > 0, let a ∈ C0([0, L]) and b ∈ C0([0, L]). We
are interested in the existence of f ∈ C1([0, L]) and

g ∈ C1([0, L]) such that

f > 0 in [0, L], (1)

g > 0 in [0, L], (2)

f ′ < 0 a.e. in [0, L], (3)

g′ > 0 a.e. in [0, L], (4)

−f ′g′ > (af + bg)2 a.e. in [0, L]. (5)

A necessary and sufficient condition for the existence of
(f, g) is given in the following proposition.
Proposition 1. There exist f ∈ C1([0, L]) and g ∈
C1([0, L]) such that (1) to (5) hold if and only if the
maximal solution η of the Cauchy problem

η′ =
∣∣a+ bη2

∣∣ , η(0) = 0, (6)

is defined on [0, L].

Remark 1. The function

(x, s) ∈ [0, L]× R 7→
∣∣a(x) + b(x)s2

∣∣ ∈ R
is continuous in [0, L]×R and locally Lipschitz with respect
to s. Hence the Cauchy problem (6) has a unique maximal
solution.

Proof of Proposition 1. We start with the “only if” part.
Let f ∈ C1([0, L]) and g ∈ C1([0, L]) be such that (1) to
(5) hold. Let us define h ∈ C1([0, L]) by

h(x) :=
1

f(x)
, ∀x ∈ [0, L]. (7)

(Note that, by (1), f(x) 6= 0 for every x ∈ [0, L].) Then
(1), (3) and (5) become respectively
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h > 0 in [0, L], (8)
h′ > 0 a.e. in [0, L], (9)

g′h′ > (a+ bgh)2 a.e. in [0, L]. (10)
Note that, by (2) and (8), g(x)h(x) > 0 for every x ∈ [0, L].
This allows to define w ∈ C1([0, L]) by

w(x) :=
√
g(x)h(x), ∀x ∈ [0, L]. (11)

We have
w(0) > 0. (12)

Note that

w′ =
1

2
√
gh

(g′h+ gh′) . (13)

From (2), (4), (8), (9) and (13), we have
w′ > 0 a.e. in [0, L]. (14)

From (13) we have

w′2 =
1

4gh
(g′h+ gh′)2 = g′h′ +

1
4gh

(g′h− gh′)2 . (15)

From (10), (11), (14) and (15), we have

w′ >
∣∣a+ bw2

∣∣ a.e. in [0, L]. (16)
From (6), (12), (16) and a classical theorem on ordinary
differential equation, we have, on the interval of definition
I ⊂ [0, L] of η,

η < w. (17)
This shows that I = [0, L] and concludes the proof of the
“only if” part of Proposition 1.

Let us now turn to the “if” part of Proposition 1. We
assume that the maximal solution of the Cauchy problem
(6) is defined on [0, L]. Then, if ε > 0 is small enough, the
solution ηε of the Cauchy problem

η′ε =
∣∣a+ bη2

ε

∣∣+ ε, ηε(0) = ε, (18)
is defined on [0, L]. We choose such a ε > 0. Note that

ηε > 0 in [0, L]. (19)

Let us define f ∈ C1([0, L]) and g ∈ C1([0, L]) by

f(x) :=
1

ηε(x)
, ∀x ∈ [0, L], (20)

g(x) := ηε(x), ∀x ∈ [0, L]. (21)
(Note that, by (19), f is well defined.) Clearly (1) and (2)
hold. From (20) and (21), we have

f ′ = −η
′
ε

η2
ε

, (22)

g′ = η′ε. (23)
From (18), (22) and (23), we have (3), (4) and

−f ′g′ =
η′2ε
η2
ε

. (24)

From (20) and (21), we have

(af + bg)2 =
1
η2
ε

(
a+ bη2

ε

)2
. (25)

From (18), (24) and (25), we get (5).

This concludes the proof of the “if” part of Proposition 1.

Remark 2 With the proof of the ”if” part of Proposition
1, we have in fact proved that if the maximal solution η of
the Cauchy problem η′ =

∣∣a+ bη2
∣∣ , η(0) = 0 is defined on

[0, L], then there exist f ∈ C1([0, L]) and g ∈ C1([0, L])
such that

f > 0 in [0, L],

g > 0 in [0, L],

f ′ < 0 in [0, L], (26)

g′ > 0 in [0, L], (27)

−f ′g′ > (af + bg)2 in [0, L]. (28)
The point is that inequalities (26)-(27)-(28) hold in [0, L]
instead of a.e. in [0, L] for inequalities (3)-(4)-(5). Now
it is obvious that the existence of f ∈ C1([0, L]) and
g ∈ C1([0, L]) such that (1)-(2)-(26)-(27)-(28) hold implies
the existence of f ∈ C1([0, L]) and g ∈ C1([0, L]) such that
(1)-(2)-(3)-(4)-(5) hold. Hence we have in fact established
the following more general result.
Proposition 2. The three following statements are equiva-
lent:

• There exist f ∈ C1([0, L]) and g ∈ C1([0, L]) such
that (1)-(2)-(3)-(4)-(5) hold.

• There exist f ∈ C1([0, L]) and g ∈ C1([0, L]) such
that (1)-(2)-(26)-(27)-(28) hold.

• The maximal solution η of the Cauchy problem η′ =∣∣a+ bη2
∣∣ , η(0) = 0 is defined on [0, L].

3. STABILISATION OF LINEAR SYSTEMS

We consider the linear 2×2 hyperbolic system in canonical
form

∂ty1 + λ1(x)∂xy1 + a2(x)y2 = 0,
∂ty2 − λ2(x)∂xy2 + b1(x)y1 = 0, (29)

under the boundary conditions

y1(t, 0) = u1(t),
y2(t, L) = u2(t), (30)

where t ∈ [0,+∞) is the time variable, x ∈ [0, L] is the
space variable, the functions λ1, λ2 are in C1([0, L], ; R+)
and the functions a2, b1 are in C1([0, L]; R).

This is a control system where, at time t, the state
is (y1(t, ·), y2(t, ·))T ∈ L2(0, L)2 and the control is
(u1(t), u2(t))T ∈ R2. Our concern is to analyze, by using a
control Lyapunov function, the stabilisability of this sys-
tem with linear decentralised boundary feedback control
laws.

Remark 3. There is no loss of generality in considering
systems in canonical form (29). Indeed, for any linear 2×2
hyperbolic system, there always exist canonical coordi-
nates which allow to transform the system into canonical
form. This will be illustrated in Section 4.

We consider the following control Lyapunov function can-
didate

V (y) :=
∫ L

0

(
q1(x)y2

1(t, x) + q2(x)y2
2(t, x)

)
dx, (31)

where q1 ∈ C1([0, L]; (0,+∞)) and q2 ∈ C1([0, L]; (0,+∞))
have to be determined. The time derivative V̇ of V along
the trajectories of (29)-(30) is
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V̇ =
∫ L

0

(
2q1y1∂ty1 + 2q2y2∂ty2

)
dx

= −
∫ L

0

(
2q1y1(λ1∂xy1 + a2y2)

+2q2y2(−λ2∂xy2 + b1y1)
)
dx

= −B −
∫ L

0

Idx,

(32)

with
B := λ1(L)q1(L)y2

1(t, L)− λ2(L)q2(L)u2
2

− λ1(0)q1(0)u2
1 + λ2(0)q2(0)y2

2(t, 0), (33)
I := (−(λ1q1)x)y2

1 + 2(q2b1 + q1a2)y1y2
+ ((λ2q2)x)y2

2 . (34)
A necessary condition for V to be a (strict) control
Lyapunov is that I is a strictly positive quadratic form
with respect to (y1, y2) for almost every x in [0, L], i.e.

−(λ1q1)x > 0 a.e. in [0, L], (35)
(λ2q2)x > 0 a.e. in [0, L], (36)

−(λ1q1)x(λ2q2)x > (q2b1 + q1a2)2 a.e. in [0, L]. (37)

We define the functions f ∈ C1([0, L]) and g ∈ C1([0, L])
such that

f(x) := λ1(x)q1(x), ∀x ∈ [0, L], (38)
g(x) := λ2(x)q2(x), ∀x ∈ [0, L]. (39)

The quadratic form V is coercive with respect to (y1, y2) ∈
L2(0, L)2 (i.e. ∃σ > 0 such that V (y1, y2) > σ

∫ L
0

(y2
1 +

y2
2)dx) if and only if (1) and (2) hold. Note that (35)

is equivalent to (3) and that (36) is equivalent to (4).
Property (37) is equivalent to (5) with a and b defined
by

a(x) :=
a2(x)
λ1(x)

, b(x) :=
b1(x)
λ2(x)

, ∀x ∈ [0, L]. (40)

Following Proposition 1, we consider the maximal solution
η of the Cauchy problem

η′ =
∣∣∣∣a2

λ1
+
b1
λ2
η2

∣∣∣∣ , η(0) = 0. (41)

It follows from Proposition 1 that a necessary condition for
the existence of a control Lyapunov function of the form
(31) is that η is defined on [0, L].

Let us now assume that η is indeed defined on [0, L]. We
study the following two cases:

(i) The control is on both sides: we can choose u1 and
u2 for feedback stabilisation.

(ii) The control u2 is of the following form u2(t) =
My1(t, L), where M is a given constant. Only u1 can
be chosen freely.

(Note that the case where u1(t) = My2(t, 0), where M is
a given constant and u2 is free follows from the case (ii)
by replacing x by L− x.)

In case (i) there is a strict control Lyapunov V of the
form (31). Indeed, by Proposition 2, there exist q1 ∈
C1([0, L]; (0,+∞)) and q2 ∈ C1([0, L]; (0,+∞)) such that
(35), (36) and (37) hold everywhere in [0, L] (instead a.e.
in [0, L]). Then we consider the following decentralized
feedback laws

u1(t) := k1y2(t, 0), u2(t) := k2y1(t, L). (42)

If we take

k2
2 6

λ1(L)q1(L)
λ2(L)q2(L)

, k2
1 6

λ2(0)q2(0)
λ1(0)q1(0)

, (43)

then
V̇ 6 −δ(|y1|2L2(0,L) + |y1|2L2(0,L)), (44)

for some δ > 0 independent of (y1, y2).

We now turn to the case (ii). Note that in order to have
V̇ 6 0 we must have

M2 6
f(L)
g(L)

. (45)

However, it follows from our proof of Proposition 1 (and
with the notations therein) that

g(L)
f(L)

= g(L)h(L) = w2(L) > η2(L). (46)

(See in particular (17).) Let us first treat the case where
a2 6= 0. Then η(L) > 0 and it follows from (45) and (46),
that a necessary condition for the existence of a control
Lyapunov of the form (31) is that

|M | < 1
η(L)

. (47)

Conversely, let us assume that (47) holds. Then, it follows
from Proposition 1 that there exist f ∈ C1([0, L]) and
g ∈ C1([0, L]) such that (1) to (5) and (45) hold. Then it
suffices to take the feedback law u1(t) := k1y2(t, 0) with

k2
1 6

λ2(0)q2(0)
λ1(0)q1(0)

=
g(0)
f(0)

. (48)

Finally let us deal with the case a2 = 0. Then it follows
from Proposition 2 that there exist f ∈ C1([0, L]) and
g ∈ C1([0, L]) such that (1)-(2)-(26)-(27)-(28) and (45)
hold (in fact in this case the existence of such f and g is
straightforward). We then proceed as above: we take the
feedback law u1(t) := k1y2(t, 0) with k1 satisfying (48).

Remark 4. The proof of Proposition 1 provides a way to
construct “good” coefficients q1 and q2 for the Lyapunov
function: Take ε > 0 small enough and consider the
solution of the Cauchy problem

η′ε =
∣∣∣∣a2

λ1
+
b1
λ2
η2
ε

∣∣∣∣+ ε, ηε(0) = ε, (49)

and then define q1 and q2 by

q1(x) :=
1

λ1(x)ηε(x)
, ∀x ∈ [0, L], (50)

q2(x) :=
ηε(x)
λ2(x)

, ∀x ∈ [0, L]. (51)

Of course (49) can be replaced by some similar Cauchy
problem whose solution could be simpler to compute. For
example, if a2 > 0 and b1 > 0, one can replace (49) by

η′ε = (1 + ε)
∣∣∣∣a2

λ1
+
b1
λ2
η2
ε

∣∣∣∣ , ηε(0) = ε. (52)

4. APPLICATION TO SAINT-VENANT EQUATIONS

We consider a pool of a prismatic horizontal open channel
with a rectangular cross section and a unit width. The
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dynamics of the system are described by the Saint-Venant
equations

∂tH + ∂x(HV ) = 0

∂tV + ∂x

(
V 2

2
+ gH

)
+ gC

V 2

H
= 0 (53)

with the state variables H(t, x) = water depth and V (t, x)
= water velocity. C is a friction coefficient and g the
gravity acceleration.

The channel is provided with hydraulic control devices
(pumps, valves, mobile spillways, sluice gates, ...) which
are located at the two extremities and allow to assign the
values of the flow-rate on both sides:

Q1(t) = H(t, 0)V (t, 0)
Q2(t) = H(t, L)V (t, L) (54)

The system (53)-(54) is a control system with state
H(t, x), V (t, x) and controls Q1(t), Q2(t). This system is
clearly open-loop unstable. The objective is to design de-
centralised control laws, with Q1(t) function of H(t, 0) and
Q2(t) function of H(t, L), in order to stabilise the system
about a constant flow-rate set point Q∗.

A steady-state (or equilibrium profile), corresponding to
the set-point Q∗, is a couple of time-invariant non-uniform
(i.e. space-varying) state functions H∗(x), V ∗(x) such that
H∗(x)V ∗(x) = Q∗ which satisfy the differential equations

∂x(H∗V ∗) = 0,

∂x
(V ∗2

2
+ gH∗

)
+ gC

V ∗2

H∗
= 0.

These equations may also be written as

V ∗∂xH
∗ = −H∗∂xV ∗ = − gCV ∗3

gH∗ − V ∗2
. (55)

In this section, as a first stage towards a more com-
prehensive study of the problem, we shall focus on the
stabilisability of the linearised system by using the analysis
of the previous section.

In order to linearise the model, we define the deviations of
the states H(t, x) and V (t, x) with respect to the steady-
states H∗(x) and V ∗(x) :

h(t, x) , H(t, x)−H∗(x), v(t, x) , V (t, x)− V ∗(x).
Then the linearised Saint-Venant equations around the
steady-state are :
∂th+ V ∗∂xh+H∗∂xv + (∂xV ∗)h+ (∂xH∗)v = 0

∂tv + g∂xh+ V ∗∂xv − gC
V ∗2

H∗2
h+

[
∂xV

∗ + 2gC
V ∗

H∗

]
v = 0.

The characteristic (Riemann) coordinates are defined as
follows:

z1(t, x) = v(t, x) + h(t, x)
√

g

H∗(x)

z2(t, x) = v(t, x)− h(t, x)
√

g

H∗(x)

(56)

⇐⇒
h(t, x) =

z1(t, x)− z2(t, x)
2

√
H∗(x)
g

v(t, x) =
z1(t, x) + z2(t, x)

2
With these definitions and notations, the linearised Saint-
Venant equations are written in characteristic form:

∂tz1 + λ1(x)∂xz1 + γ1(x)z1 + δ1(x)z2 = 0
∂tz2 − λ2(x)∂xz2 + γ2(x)z1 + δ2(x)z2 = 0 (57)

with the characteristic velocities
λ1(x) = V ∗(x) +

√
gH∗(x), −λ2(x) = V ∗(x)−

√
gH∗(x)

and the coefficients

γ1(x) = g
CV ∗2

H∗

[
− 3

4(
√
gH∗ + V ∗)

+
1
V ∗
− 1

2
√
gH∗

]
δ1(x) = g

CV ∗2

H∗

[
− 1

4(
√
gH∗ + V ∗)

+
1
V ∗

+
1

2
√
gH∗

]
γ2(x) = g

CV ∗2

H∗

[
1

4(
√
gH∗ − V ∗)

+
1
V ∗
− 1

2
√
gH∗

]
δ2(x) = g

CV ∗2

H∗(x)

[
3

4(
√
gH∗ − V ∗)

+
1
V ∗

+
1

2
√
gH∗

]
The steady-state flow is subcritical (or fluvial) if the
following condition holds

gH∗(x)− V ∗2(x) > 0 ∀x. (58)
Under this condition, the system is strictly hyperbolic with

−λ2(x) < 0 < λ1(x) ∀x.

We now introduce the notations

ϕ1(x) = exp(
∫ x

0

γ1(s)
λ1(s)

ds),

ϕ2(x) = exp(−
∫ x

0

δ2(s)
λ2(s)

ds),

ϕ(x) =
ϕ1(x)
ϕ2(x)

,

and the canonical coordinates
y1(t, x) = ϕ1(x)z1(t, x), y2(t, x) = ϕ2(x)z2(t, x). (59)

Then the model is written in canonical form
∂ty1 + λ1(x)∂xy1 + ϕ(x)δ1(x)y2 = 0,
∂ty2 − λ2(x)∂xy2 + ϕ−1(x)γ2(x)y1 = 0. (60)

According to Proposition 1 and our analysis in Section 3,
in order to check the condition for the existence of the
quadratic control Lyapunov function, we need to solve
the following third-order differential system on [0, L] (with
H∗(x) = Q∗/V ∗(x)):

dV ∗

dx
=
gC

Q∗

(
(V ∗(x))5

gQ∗ − (V ∗(x))3

)
V ∗(0) = V ∗o

dψ

dx
=
γ1(x)
λ1(x)

+
δ2(x)
λ2(x)

ψ(0) = 0

dη

dx
=
eψ(x)δ1(x)
λ1(x)

+
γ2(x)

eψ(x)λ2(x)
η2(x) η(0) = 0

As a matter of illustration, we compute the solution of this
system with the following parameter values : L = 1000 m,
g = 9.81 m/s2, C = 0.001 s2/m, Q∗ = 5 m3/s and the
initial condition V ∗o = 1 m/s. The function η exists over
the interval [0, L] and is shown in the following figure.

Let us now impose a boundary condition of the form
y1(t, 0) = k1y2(t, 0) (61)

with

k2
1 6

λ2(0)q2(0)
λ1(0)q1(0)

to the canonical system (60). Then, using the definition
(59) of the canonical coordinates, the definition (56) of the
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Riemann coordinates and the physical boundary condition
(54), it is a matter of few calculations to get the physical
stabilising control law which implements the boundary
condition (61)

Q1(t) =
H(t, 0)
H∗(0)

×[
Q∗ − ϕ1(0)− k1ϕ2(0)

ϕ1(0) + k1ϕ2(0)

√
gH∗(0)(H(t, 0)−H∗(0))

]
for the open channel represented by the Saint-Venant
equations. We remark that this control law is a non-linear
feedback function of the water depth H(t, 0) although it
is derived on the basis of a linearised model. Obviously, a
similar derivation leads to a control law for Q2(t) at the
other side of the channel.

5. CONCLUSION AND FINAL REMARK

Conditions for boundary feedback stabilisability of linear
hyperbolic systems in canonical form have been estab-
lished. The main result was to show that the existence of
a quadratic control Lyapunov function requires that the
solution of an associated ODE is defined on the consid-
ered interval. This result has been used to give explicit
conditions for the existence of linear boundary feedback
control laws. The analysis is illustrated with an application
to the boundary feedback stabilisation of open channels
represented by Saint-Venant equations with non-uniorm
steady-states.

An interesting final remark is that we could believe that
more general stabilisability conditions could be obtained
by considering a more general Lyapunov function candi-
date (with a cross term) of the form

V (y) :=
∫ L

0

(
q1(x)y2

1 + q2(x)y2
2 + q3(x)y1y2

)
dx. (62)

In fact this is not true because it can be shown that, for the
canonical control system (29)-(30), there exist necessarily
coefficients λi(x), a2(x), b1(x) such that if (62) is a control
Lyapunov function then q3(x) must be zero.

The results presented in this paper bring various exten-
sions to our previous contributions to the same subject.
The interested reader is referred to e.g. Bastin et al. [2008],
Prieur et al. [2008], Coron et al. [2008], Bastin et al. [2009]
and the references therein.
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tive boundary conditions for one dimensional nonlinear
hyperbolic systems. SIAM Journal of Control and Op-
timization, 47(3):1460–1498, 2008.

C. Prieur, J. Winkin, and G. Bastin. Robust boundary
control of systems of conservation laws. Mathematics of
Control, Signal and Systems (MCSS), 20:173–197, 2008.

Copyright by IFAC 1085


