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Abstract— This article deals with the modelling of a road
network from a macroscopic point of view. After an introduc-
tion explaining how some macroscopic road network models are
established, some basic properties of the Aw & Rascle second
order model are recalled. A junction model compatible with the
Aw & Rascle model is then established and some examples are
presented in order to illustrate the plausibility of the model.

I. INTRODUCTION

In the fluid paradigm for road traffic modelling, the traffic
is described in terms of two basic macroscopic variables :
the density and the speed of the vehicles at position x along
the road and time t (denoted ρ(x, t) and v(x, t)). A usual
way to describe a network traffic model is as follows :

• First, the equations binding the values of ρ and v to
the initial conditions on an infinite single road are
considered. These equations are usually a set of par-
tial differential equations (PDE). A traditional problem
studied for such systems is the Riemann problem which
is an initial value problem where the initial condition
consists of two constant values :

(ρ(x, 0), v(x, 0)) =

{
(ρl, vl) if x < 0
(ρr, vr) if x ≥ 0

(1)

The Riemann problem is important, not only because
it allows an explicit solution but also because the so-
lution of any initial value problem with arbitrary initial
conditions can be constructed from a set of appropriate
Riemann problems (see e.g. [3]).

• Then, the junctions at the nodes of the network are
introduced. The junctions represent the connections
between different roads, for example the merging of
two roads in one or the fork of one road in two. An
appropriate description of the behaviour of the drivers
at the junction must then be provided. One way to do
this, is to describe the solution of the Riemann problem
at the junction.
If we consider a junction with some incoming and some
outgoing roads (see Fig. I), the initial state is

(ρi(x, 0), vi(x, 0)) = (ρi,0, vi,0) ∀x, ∀i (2)
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where subscript i refers to road i. The traffic state will
first evolve at the junction. Let (ρ̄i, v̄i) be the new state
on road i at the border of the junction just after this
evolution :

(ρi(0, t), vi(0, t)) = (ρ̄i, v̄i) ∀t > 0.

We then face a new Riemann problem on each road :

(ρi(x, 0), vi(x, 0)) =

{
(ρ̄i, v̄i) if x = 0
(ρi,0, vi,0) if x �= 0.

(3)

The choice of the values (ρ̄i, v̄i) and the resolution of
the Riemann problems (3) will provide the solution of
the Riemann problem at the junction (1).
Of course, the waves produced on the incoming (resp.
outgoing) roads must have a negative (resp. positive)
velocity to go away from the junction in order to get a
sensible model. To take this constraint into account in
the model, we will restrict the set of possible values of
(ρ̄i, v̄i) to a subset of R

2 called the admissible region
such that all waves produced by the Riemann problem
(3) have negative (resp. positive) speed if i corresponds
to an outgoing (resp. incoming) road.

The first time and space continuous models that were
developed in the literature were based on the LWR model
(see [12], [14], [9], [5], [8] and [10]). The LWR model
is a first order model which means that there is only one
PDE describing the evolution of the traffic state and that the
solution to the Riemann problem (1) consists of one wave
connecting the two initial states.

In this paper we intend to establish a second order traffic
network model based on the Aw and Rascle second order
single road model (see [2]). In Section II, we recall the
Aw & Rascle model, in Section III the admissible regions
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are established and some additional conditions are presented
in Section IV in order to guarantee a unique and realistic
solution to the Riemann problem at the junction. Some
conclusions are drawn in Section V.

II. THE AW & RASCLE SINGLE ROAD MODEL

The Aw and Rascle model (see [2]) for a single road is
described by two equations :

∂tρ + ∂x(ρv) = 0 (4)

(∂t + v∂x)v + (∂t + v∂x)p(ρ) = 0. (5)

where p(ρ) is an increasing function of the density such
as d2

dρ2 (ρp(ρ)) > 0. The first equation represents the con-
servation of the flow while the second equation describes
the evolution of the speed of the drivers in function of the
surrounding traffic state. Multiplying (4) by (v + p(ρ)) and
(5) by ρ and adding up these two equations, we obtain

∂t(ρ(v + p(ρ))) + ∂x(ρv(v + p(ρ))) = 0.

Therefore the system is composed of two conserved quanti-
ties : ρ and ρ(v + p(ρ)).

Working with a system like (4)–(5), we have to admit
discontinuous solutions. The meaning of the differential
equations in presence of discontinuities and the admissibility
of these discontinuities are explained in [3]. Because the
system is expressed by two equations of conservation, the
solutions of a Riemann problem

(ρ(x, 0), v(x, 0)) =

{
Ul = (ρl, vl) if x < 0
Ur = (ρr, vr) if x ≥ 0

consists of the connection of the left state Ul to an inter-
mediate state Uc by a first wave and the connection of this
intermediate state to the right state Ur by a second wave.
We have two waves because we have two conservation laws.
The two waves are different :

• the first one may be a shock or a rarefaction wave (see
Fig. 1). A shock wave is a discontinuity in ρ and/or in
v travelling at a constant speed. A rarefaction wave is
a self-similar solution, i.e. it depends only on x/t.

• the second one must be a contact discontinuity. The
contact discontinuity separates two constant states with
the same speed but different densities. This contact
discontinuity travels at the same speed as the vehicles.

We will not describe here the complete and rigorous
description of the Riemann problem (see [2]) but only the
two most simple and common cases. In Figure 2, we have
represented :

• the curve (ρ, ρvr) ;
• the curve (ρ, ρK − ρp(ρ)) passing by Ul;
• the two initial states (Ul and Ur) and the intermediate

state (Uc) which is the intersection of the two previous
curves in the (ρ, ρv) plane;

• the segment connecting Ul to Uc.

Two cases a) and b) must be considered.

Fig. 1. The possible waves connecting the left state to the intermediate
state in the solution of a Riemann problem for the Aw & Rascle model.
Only the density is represented here.

In Fig. 2 a): the solution consists of a shock wave
connecting Ul to Uc followed by a contact discontinuity
connecting Uc to Ur. The speed of the shock wave is equal
to the slope of the line connecting Ul to Uc.

In Fig. 2 b): the solution consists of a rarefaction wave
connecting Ul to Uc followed by a contact discontinuity
connecting Uc to Ur. The space occupied by the rarefaction
wave is[

d(ρK − ρp(ρ))
dρ

∣∣∣∣
ρ=ρl

t,
d(ρK − ρp(ρ))

dρ

∣∣∣∣
ρ=ρi

t

]
.

Fig. 2. The initials and intermediate state in the (ρ, ρv) plane for the
Riemann problem.

III. THE ADMISSIBLE REGIONS FOR THE JUNCTION

MODELS

As explained in the introduction, in order to formulate a
junction model we need first to explicit for each road the
admissible regions for the values of (ρ̄i, v̄i). The shape of
this admissible region will be different if we consider an
incoming or an outgoing road.
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A. Incoming road

(a) ρi,0 ≤ σΥK

(b) ρi,0 > σΥK

Fig. 3. The admissible regions for an incoming road.

On incoming roads, the only possible waves produced by
the Riemann problem

(ρi(x, 0), vi(x, 0)) =

{
(ρ̄i, v̄i) if x = 0
(ρi,0, vi,0) if x < 0

must obviously have a negative speed. Because, the speed of
the second wave (which is equal to the speed of the drivers)
is necessarily positive, the only admissible wave is a wave
of the first type. Hence (ρ̄i, ρ̄iv̄i) must be on the curve ΥK

passing through (ρi,0, ρi,0vi,0) where we define ΥK as

ΥK = (ρ, γK(ρ)) = (ρ, ρK − ρp(ρ))

and
σΥK

= arg max
ρ

γK(ρ).

In terms of solutions described in Section II, we have
• (ρi,0, vi,0) = Ul ;
• (ρ̄i, v̄i) = Ur = Uc.

Because Ur = Uc, we do not have the second wave which
has always a positive speed.

a) If ρi,0 ≤ σΥK
: the only possibility to have a

wave with negative speed, is to have ρ̄i > τΥK
(ρi,0) (see

Fig. 3(a))1 where, for each ρ �= σΥK
, τΥK

(ρ) is the unique
number τΥK

(ρ) �= ρ such that

γK(ρ) = γK(τΥK
(ρ)).

In that case, the wave along the incoming road is a shock
wave with a negative speed.

b) If ρi,0 ≥ σΥK
and ρ̄i ≥ ρi,0: we will have a shock

wave with a negative speed. In the other case (ρ̄i ≤ ρi,0),
we will have a rarefaction wave. In order that the right limit
of this rarefaction wave has a negative speed, we need that
ρ̄i ≥ σΥK

(see Fig. 3(b)).
The admissible region for an incoming road is thus com-

posed of the part of the curve ΥK represented in Fig. 3 and,
of course, (ρi,0, vi,0) for which there isn’t any wave.

We can notice a great similarity with the LWR first order
models. For these models, a value called the “sending capac-
ity” or the “traffic demand” was introduced by Daganzo (see
[6] for details). This value represents the greatest possible
outflow of a road segment and is equal to

sending capacity =

{
Q(ρ) if ρ ≤ arg maxρ Q(ρ)
max Q(ρ) if ρ > arg maxρ Q(ρ)

where Q(ρ) represents the flow associated to the density ρ.
In our second order model, the greatest possible outflow
of a road segment is the maximal flow for a point on the
admissible region and is equal to

sending capacity =

{
γK(ρ) if ρ ≤ arg maxρ γK(ρ)
max γK(ρ) if ρ > arg maxρ γK(ρ).

The similarity is obvious with the replacement of Q(ρ) by
γK(ρ). In the second order model, the sending capacity is
function of the density but also of the speed (via the value
of K).
The admissible region satisfies some intuitive ideas :

• if there is nobody on the incoming road (ρi,0 = 0), the
maximal flow allowed to leave the road is zero;

• if there are few vehicles on the incoming road (ρi,0 �
σΥK

), the flow allowed to leave the road is low (less
than ρi,0vi,0) ;

• if there is a lot of vehicles on the incoming road (ρi,0 �
σΥK

), the flow allowed to leave the road may be high
(up to γK(σΥK

)).

B. Outgoing road

On outgoing roads, the only possible waves produced by
the Riemann problem

(ρi(x, 0), vi(x, 0)) =

{
(ρ̄i, v̄i) if x = 0
(ρi,0, vi,0) if x > 0

1For the illustrations in this paper, the functions p(ρ) used are of the
following form :

p(ρ) =
vref

γ

„
ρ

ρmax

«γ

, γ > 0

which is a plausible p(ρ) relation (see [1]).
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must obviously have a positive speed. This case is more
complex than the previous one because we may have here
the presence of the two waves. The second wave has always
a positive speed, we can thus connect any intermediate state
Uc on the curve (ρ, ρvr) to Ur = (ρr, ρrvr). The admissible
region is thus the (ρ, ρvr) curve plus the region of the
(ρ, ρv)–plane which can be connected to the curve (ρ, ρvr)
with any rarefaction or shock wave with positive speed.

In order to characterise the admissible region we will
consider all the curves ΥK for all the possible values of
K ∈ ]0,∞[.

a) 0 ≤ K ≤ vr In this case, the curve ΥK is necessar-
ily located under the curve (ρ, ρvr). The left state
(ρ̄i, v̄i) will be connected to the intermediate state
Uc which is the vacuum (ρ = 0) by a rarefaction
wave. In order that the left limit of this rarefaction
wave has a positive speed, we need that

d(ρK − ρp(ρ))
dρ

∣∣∣∣
ρ=ρl

≥ 0.

It implies that ρ̄i must be lesser than σΥK
(see

Fig. 4(a) ).
b) vr < K & γK(σΥK

) ≤ σΥK
vr In this case, the

curve ΥK is greater than the curve (ρ, ρvr) at the
beginning but crosses the line before its maximum.
If (ρ̄i, ρ̄iv̄i) is on the part of ΥK above the curve
(ρ, ρvr), it will be connected to the intermediate
state Uc by a shock wave with positive speed. If
(ρ̄i, ρ̄iv̄i) is on the part of ΥK under the curve
(ρ, ρvr), it will be connected to Uc by a rarefaction
wave. In order that the left limit of this rarefaction
wave has a positive speed, we have that ρ̄i must be
lesser than σΥK

(see Fig. 4(b)).
c) vr < K & γK(σΥK

) > σΥK
vr In this case, the

maximum of ΥK is above the curve (ρ, ρvr). If
(ρ̄i, ρ̄iv̄i) is on the part of ΥK under the curve
(ρ, ρvr), it should be connected to Uc by a rar-
efaction wave with a negative speed, which is
impossible.
If (ρ̄i, ρ̄iv̄i) is above the straight line, it will be
connected to Uc by a shock wave whose speed will
be the slope of the curve connecting (ρ̄i, ρ̄iv̄i) to
Uc. In order to have a positive slope, we must have
that

ρ̄i ≤ τΥK
(ρc)

where ρc is the density of the intermediate state Uc

(see Fig. 4(c)).

If we combine the admissible regions (AR) for all the
values of K, we obtain the AR for an outgoing road
represented in Figure 5. This AR satisfies some intuitive
ideas :

• if there is nearly nobody on the outgoing road (ρi,0 ≈ 0,
vi,0 � 0), the AR is quite large ;

• if there are many vehicles on the outgoing road (ρi,0 �
0, vi,0 ≈ 0), the AR is smaller.

In fact, the AR only depends on the speed of the vehicles
on the road. If v1 ≤ v2, the AR associated with v1 will be
included in the AR associated with v2.

(a) 0 ≤ K ≤ vr

(b) vr < K & γK(σΥK
) ≤ σΥK

vr

(c) vr < K & γK(σΥK
) > σΥK

vr

Fig. 4. Some parts of the admissible region for an outgoing road.
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Fig. 5. The admissible region for an outgoing road.

IV. ADDITIONAL CONDITIONS

In order to have a unique solution, additional conditions
are needed :

1) A first condition is indisputable : the conservation of
flow. The sum of the entering flows must be equal to
the sum of the leaving flows at the junction.

2) The second equation of the Aw and Rascle model (5)
describes the behaviour of the drivers. It says that
the Lagrangian derivative of the speed is equal to the
Lagrangian derivative of −p(ρ). It means that a driver
will adapt his speed if the quantity p(ρ) is modified.
The most natural extension of this behaviour to the
junction is

va − vb = p(ρa) − p(ρb)

where the subscripts a and b means “after” and
“before” the junction. In other words, the quantity
v +p(ρ), which describes the behaviour of the drivers,
is “conserved” through the junction by the drivers.
Here, the meaning of conservation is not the same as
in “conservation of the flow” : the total flow of the
quantity v+p(ρ) is not necessary the same before and
after the junction but each driver tends to conserve his
quantity v +p(ρ) which describes his behaviour. If we
have only one incoming road, all the drivers have the
same behaviour, and thus :

va + p(ρa) = vb + p(ρb).

If we consider the case where there are several incom-
ing roads, we may assume that the behaviour of the
drivers after the junction will be a mean of the driver
behaviours from the incoming roads. In other words :

va + p(ρa) =
∑

i

αi(vi + p(ρi))

where αi is the proportion of the drivers coming from
the incoming road i.

3) The two previous additional conditions are not suffi-
cient to have a unique solution to the Riemann problem
at the junction. In order to get a unique solution, like
for the first order model (see [9], [5], [11] and [10]),
we may assume that the drivers act such that the flow
entering the outgoing roads is maximised with respect
to the previous restrictions.

A. The diverge junction

It is reasonable to assume that, the drivers having fixed
destination intention, the proportions of the total flow enter-
ing into road 2 and 3 are fixed (α2 and α3).

With the additional conditions presented in section IV, the
optimisation problem at the junction can be expressed as

max
ρ̄i,v̄i

ρ̄1v̄1

subject to⎧⎨
⎩

ρ̄1v̄1 = ρ̄2v̄2
α2

= ρ̄3v̄3
α3

v̄1 + p(ρ̄1) = v̄2 + p(ρ̄2) = v̄3 + p(ρ̄3)
(ρ̄i, v̄i) ∈ ARi

where ARi is the admissible region associated to road i
with initial state (ρi,0, vi,0). The solution of this optimisation
problem produces the new values of (ρi, vi) at the junctions
which allow to solve the Riemann problems on each road. It
can be shown that this solution of the optimisation problem
has some good properties :

• the solution exists and is unique ;
• if all the drivers take the same road (α2 = 0, α3 = 1),

the solution is the same as the classical Aw & Rascle
model for an infinite single road ;

• the solutions are physically acceptable. For example if
there is not too much traffic on the outgoing roads, all
the flow on the incoming road must pass (see Fig. 6).
If the traffic on the outgoing roads is important, only
a part of the flow on the incoming road may pass (see
Fig. 7). In the Figures, the red cross correspond to the
solution, the blue line to the curve ΥK passing through
the solution and the hatched area to the admissible
region of the outgoing roads ;

• the only situation where no flow can leave the incoming
road is when the speed on one of the outgoing roads is
equal to zero (the AR is reduced to curve (ρ, 0) which
is associated to a zero flow).
It implies that, if only one of the outgoing roads is
jammed up, the outflow of the other road is equal to
zero. This is a rather hard constraint on the outflows.
The reason is that the Aw & Rascle model, used to
describe the evolution on one road, doesn’t make any
distinction between the different lanes. In a single lane
road, if a driver stops because he is unable to turn left,
he also blocks all the drivers wanting to turn right. To
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remove this hard constraint, it would be needed to adapt
the Aw & Rascle model to take the different lanes into
account.

Fig. 6. The solution to the following Riemann problem : (ρ1,0, v1,0) =
(50, 30), (ρ2,0, v2,0) = (10, 70), (ρ3,0, v3,0) = (10, 70), α2 = α3 =
0.5.

Fig. 7. The solution to the following Riemann problem : (ρ1,0, v1,0) =
(30, 100), (ρ2,0, v2,0) = (70, 10), (ρ3,0, v3,0) = (70, 10), α2 = α3 =
0.5.

B. The merge junction

For the merge junction, we need to introduce a coefficient
describing how the available space on the outgoing road is
spread out between the incoming roads in case of congestion.
A simple way to introduce these coefficient is to make them
depend on the flows wishing to enter the outgoing road (see
[10]) :

αi =
f∗

i

f∗
1 + f∗

2

where f∗
i is the maximal flow able to leave the road i

(the “sending capacity”). With the additional conditions
introduced above, the optimisation problem at the junction
can be expressed as

max
ρ̄i,v̄i

ρ̄1v̄1 + ρ̄2v̄2

subject to⎧⎨
⎩

ρ̄1v̄1
α1

= ρ̄2v̄2
α2

= ρ̄3v̄3

v̄3 + p(ρ̄3) = α1(v̄1 + p(ρ̄1)) + α2(v̄2 + p(ρ̄2))
(ρ̄i, v̄i) ∈ ARi

It can be shown that the solution of this problem has some
good properties :

• the solution exists and is unique ;
• if one of the incoming roads is empty (ρ = 0), the

solution is the same as the classical Aw & Rascle model
for an infinite single road ;

• the solutions are physically acceptable. For example if
there is not too much traffic on the roads, all the flow
on the incoming roads must pass (see Fig. 8). If the
traffic on the different roads is important, only a part of
the flow on the incoming roads may pass (see Fig. 9).

• the only situation where no flow can leave the incoming
road is when there is no traffic on the incoming road or
when the speed on the outgoing road is equal to zero
(the AR is reduced to curve (ρ, 0) which is associated
to a zero flow).

• the model is sometimes able to naturaly represent the
capacity drop phenomenon. The capacity drop phe-
nomenon is a critical phenomenon which represents the
fact that the outflow of a traffic jam is significantly lower
than the maximum achievable flow at the same location.
We can easily understand this phenomenon at a junction
where two roads merge in one : if there are too many
vehicles trying to access the same road, there is a sort of
mutual embarrassment between the drivers which results
in an outgoing flow lower than the optimal possible
flow. This phenomenon has been experimentally ob-
served (see [4] and [7]). The flow decrease, which may
range up to 15 %, has a considerable influence when
considering traffic control ([13]). To have of a model
describing this phenomenon is thus a critical feature in
the establishment of a traffic state regulation strategy.
To illustrate this phenomenon, we can carry out a series
of simulations whose solutions are presented in Table I.
To simplify, we consider the case where the state on
road one and road two are the same. We start from an
equilibrium (row 1) with a total passing flow of 3000
veh/h. If we apply a perturbation (row 2) consisting
of an increasing of the incoming flow (3300 veh/h)
we obtain the new equilibrium represented in row 3.
To this new equilibrium corresponds a total passing
flow of 2165 veh/h. This illustrates the capacity drop
phenomenon : the incoming flows are higher but the
outgoing flow drop down. Moreover, if we try to return
to the initial state by a new perturbation on the incoming
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roads (row 4), we don’t exactly obtain again the same
total passing flow but a lower one.

state ρ1 v1 f1 ρ3 v3 f3

1 equilibrium 20 75 1500 51.4 58.36 3000
2 perturbation 30 55 1650 51.4 58.36 3000
3 equilibrium 80.7 13.42 1082.5 52 41.6 2165
4 perturbation 20 75 1500 52 41.6 2165
5 equilibrium 91.5 15.9 1458.5 47.8 61 2917

TABLE I

THE CAPACITY DROP PHENOMENON ILLUSTRATED IN A PARTICULAR

CASE.

Fig. 8. The solution to the following Riemann problem : (ρ1,0, v1,0) =
(10, 80), (ρ2,0, v2,0) = (10, 80), (ρ3,0, v3,0) = (30, 90).

Fig. 9. The solution to the following Riemann problem : (ρ1,0, v1,0) =
(30, 90), (ρ2,0, v2,0) = (30, 90), (ρ3,0, v3,0) = (50, 30).

V. CONCLUSIONS

Adding only one new assumption (“conservation” of the
quantity v + p(ρ) representing the behaviour of the drivers)
to some commonly admitted assumptions (conservation of
the flow, sharing of the available space on the outgoing

road based on coefficients function of the sending capacities,
drivers acting such as maximising the passing flow), we
obtain a coherent and realistic model for the junction able
to represent the capacity drop phenomenon. This junction
model, which doesn’t add any new parameter in addition
to those introduced by the Aw & Rascle single road model
(the function p(ρ)), combined with this single road model,
provides a complete description of the traffic evolution on a
road network.

The extension of the junction model to n-incoming-1-
outgoing and 1-incoming-n-outgoing roads is direct. It does
not need to introduce additional assumptions. If we consider
multiple incoming and multiple outgoing roads, the extension
is more difficult. Additional criteria must be added in order
to describe how the different flows interact.
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