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Summary. A non-linear model for the description of packet-switched communica-
tion networks is presented. This model is combined with a model of an additive
increase, multiplicative decrease end-to-end controller to obtain a global description
of a controlled packet switched network with buffering delays. The global stability of
this general model is then analysed using singular perturbation analysis. It is shown
that under sufficiently small propagation delays, this general model is globally and
exponentially stable.

1 Introduction

Since the Jacobson’s seminal paper [2] describing the dynamical behaviour
of the Transfert Control Protocol (TCP), this congestion control has been
able to cope with an unpreceded growth of Internet users and a tremendous
increase of available bandwidth.

Many papers have been published to analyse and explain this success and
many disciplines have been used to study congestion control algorithms : A
review of Internet congestion control may be found in [6].

The contribution of this paper is twofold : firstly, we present a global fluid
flow model for the network dynamics description using the buffer levels as our
state vector which is a natural way of including buffering delays.

Secondly, we combine this network model with a model of an additive
increase, multiplicative decrease model studied by Kelly in [4, 3]. This model
is adapted and viewed as a controller connected in feedback to our network
model. The dynamics of these two systems are analysed separately and the
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singular perturbation theory is used to obtained results on the global stability
of the closed loop system.

Stability results that take into account propagation delays are studied in [3,
10] where sufficient conditions for local stability are derived. In [9], the global
stability of a congestion control algorithm derived from the same congestion
model is studied with propagation delays and time-varying buffering delays.
However, a single buffer is considered. In contrast, in this paper, the global
stability of an arbitrary topology is studied.

2 A global fluid flow model for packet-switched networks

A common framework to analyse packet-switched networks is to abstract the
existence of each individual packet into the concept of a continuous flow of
information. This is the so-called fluid flow modelling paradigm and is not
without comparison with fluid dynamics which does not account for each
individual fluid molecules.

Such a fluid flow model might be constructed as follows (see also [1]) :
Consider the Fig. 1 showing a typical network buffer. The level of data in the
buffer at time t is noted x(t). The buffer is fed at a rate u(t) and is drained
at a rate v(t).
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Fig. 1. A simple network with a sender, a router and a receiver

The output rate v(t) may be expressed as a function of the buffer level
x(t) by way of a processing rate function noted r(x). This function satisfies
the following properties :

• The function r(x) is C1

• r(x = 0) = 0 : There is no output if the buffer is empty
• limx→∞ r(x) = µ > 0 : The output rate of the buffer is limited by a

constant µ which is the maximum link capacity
• r(x) is monotonically increasing

Note that, with these properties, the processing rate function may be rewritten
as r(x) = r̃(x)x. With these notations, a fluid flow model for the system
depicted in Fig. 1 may be written as:

ẋ = u− r(x)

In order, to obtain a global description of a general network, let us now
consider Fig. 2 showing the interconnection between two adjacent buffers.
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Fig. 2. Interconnection of two adjacent buffers

We assume that there are nb buffers numbered from 1 to nb (index set Ib),
ns senders numbered from nb + 1 to nb + ns (index set Is) and nr receivers
numbered from nb + ns + 1 to nb + ns + nr (index set Ir). The following
definitions and notations are introduced :

Ai ⊂ Ib is the index set of upstream buffers connected to the buffer i;
Si ⊂ Is is the index set of senders connected to the buffer i;
Bi ⊂ Ib is the index set of downstream buffers connected to the buffer i;
Ri ⊂ Ir is the index set of receivers connected to the buffer i;
xi(t) is the content (or occupancy) of the buffer i;
vi(t) is the flow of packets entering the buffer i;
wi(t) is the flow of packets leaving the buffer i;
fij(t) is the flow of packets on the link i → j.

As before, the flow balance equation around the buffer i is written :

ẋi = vi − wi =
∑

k∈Si∪Ai

fki −
∑

j∈Bi∪Ri

fij i = 1, n (1)

The flow fki between the buffer k and the buffer i is written as the product
of two terms :

fki = αkirk(xk)

where

αki is the routing variable, that is to say the fraction of the output flow
from the buffer k that is going toward the buffer i. We have that∑

i∈Bk∪Rk
αki = 1

rk(xk) is the processing rate function of the buffer k

Finally, the sender flow rates fki with k ∈ Is are modelled as :

fki = dk k ∈ Is

with dk, the demand of the sender k. With these notations and definitions, it is
readily seen that the general form of the state equations for a communication
network is:



ẋi =
∑

`∈Si

d` +
∑

k∈Ai

αkirk(xk)−
∑

j∈Bi∪Ri

αijri(xi) i ∈ Ib (2)

This general state space model of communication networks is a compart-
mental network system which can be written in a compact matrix form:

ẋ = G(x)x + Bd (3)

where

x is an n-dimensional state vector with entries xi, i ∈ Ib ;
d is an input vector with non-zero entries of the form d`, ` ∈ Is ;
B is a nb × ns permutation matrix that connects each sender to its corre-
sponding buffer;
G(x) = [gij(x)] is a so-called compartmental matrix with the following
properties:
1. G(x) is a so-called Metzler matrix with non-negative off-diagonal en-

tries which are either 0 or of the form:

gij(x) = αjir̃j(xj) i, j ∈ Ib i 6= j

(note the inversion of the indexes !) ;
2. The diagonal entries are non positive and have the form:

gii(x) = −r̃i(xi)−
∑

j 6=i

gij(x) i, j ∈ Ib k ∈ Ir

3. The matrix G(x) = [gij(x)] is diagonally dominant:

|gii(x)| >
∑

j 6=i

gji(x)

An important property is that a compartmental system of the form (3) is a
non-negative system. In the specific case of a communication network, this
means that if the initial buffer loads are non-negative (xi(0) > 0), then the
buffer loads are guaranteed to be non-negative along the system trajectories
(xi(t) > 0, ∀t) in accordance with the physical reality.

3 Model of the AIMD mechanism

Each sender r ∈ Is, with demand dr is connected to a distinct receiver through
the network (we therefore consider the case where nr = ns). The rate of
information reaching the receiver r at time t is denoted Dr(t). The function
Dr(t) is also referred to as the excretion rate in the compartmental system
framework. The set of buffers (network resources) that are used to connect



the sender to the receiver r is called a route. We write j ∈ r to indicate that
a resource j ∈ Ib belongs to the route r ∈ Is.

A congestion control is a decentralised control algorithm that forces the
controlled system to operate at an equilibrium point which must satisfy some
global properties of fairness or should maximize the global utilization of the
available resources. This is illustrated in Fig. 3 which shows a network with
2 routes and 5 network buffers. The receivers relay a congestion indication
carried by data packets back to the sender that must react to alleviate the
congestion. This is referred to as end-to-end (e2e) congestion control. In order
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Fig. 3. Packet switched network with end-to-end congestion control.

to probe gradually for available bandwidth and to react quickly to congestion
indication, congestion control law, such as TCP for instance, implement a
mechanism known as additive increase, multiplicative decrease [2]. The time
evolution of the demand of the sender r may be expressed by the following
system of differential equation ([4, 3, 10]) :

d

dt
dr(t) = κr

(
wr − dr(t)

∑

j∈r

ηj(t)
)

r ∈ Is (4)

where
ηj(t) = pj

( ∑

s:s∈j

ds(t)
)

(5)

Assume that wr, κr > 0 and that pj(x), x > 0, is non-negative, continuous,
strictly increasing function. ηj(t) may be interpreted as a price advertised
by the resource j which naturally increases with the total flow using the
resource j. From the point of view of the source sr, the aggregated price of
all the resources used by the route r represents the congestion information as
represented in Fig. 3. The sum

Cr =
∑

j∈r

ηj(t) (6)

can be interpreted as the cost associated with the route r. Equation (4) ex-
presses that, if this cost is low, the demand increases almost linearly with wr



whereas if the cost is high, the demand decreases almost exponentially. In the
next Section, a function Cr which takes into account the particularities of the
model (3) will be redefined.

It is shown in [3, 4] that the unique equilibrium point of system (4)-(5)
given by

dr =
wr∑
j∈r ηj

is globally and asymptotically stable. In the next Section, the global network
model (3) is combined with the congestion control (4) to obtain a global
controlled network model with buffering delays. Such an equilibrium point
has been termed proportionaly fair by Kelly.

4 Global network model with E2E congestion control

In order to connect systems (3) and (4), a cost function Cr(x) has to be
defined. This function must reflect the congestion state of the route r and
plays the role of eq. (6) but takes into account the buffering delays.

Consider the extension of system (3) given by :
{

ẋ = G(x)x + Bd
żr = Dr − dr r ∈ Is

(7)

Suppose that zr(0) = z0, we then have that z0 − zr is equal to the quan-
tity of information that has been injected into the route r in transit towards
the receiver . We may therefore consider a cost Cr(−zr) where Cr is a non-
decreasing function with limx→−∞ Cr(x) = 0 and limx→+∞ Cr(x) = +∞.
The global model now becomes :





ẋ = G(x)x + Bd
żr = Dr − dr r ∈ Is

ḋr = κr

(
wr − dr(t)Cr(−zr)

)
r ∈ Is

(8)

In the following section, a singular perturbation analysis is performed to anal-
yse the stability of system (8).

5 Singular perturbation analysis

In eq. (8), the parameters κr have dimension 1/[s]. It is therefore natural to
rewrite them as κr = 1/Tr = γr/T where Tr corresponds to some fixed prop-
agation delays on the route r. The parameter T then appears as an obvious
choice for a singular parameter (See [5] for the development of this theory).
Singular perturbation analysis therefore allows us to view system (8) as the
superposition of two dynamics : fast dynamics governed by the E2E control
on one hand, and network dynamics, on the other hand.



5.1 The boundary-layer system (fast dynamics)

Let us now focus on the e2e dynamics. Viewing the state variables x, z as fixed
parameters, the dynamics are given by

T ḋr = γr(wr − drCr(−zr))
def= gr(z, d)

This system has a single equilibrium point

dr =
wr

Cr(−zr)
def= hr(zr)

which can be shifted to the origin with the change of variable yr = dr −
hr. In order to reveal the two different time scales inherent to the singular
perturbation analysis, the following change of variable is also performed :

T
∂yr

∂t
=

∂yr

∂τ
⇒ ∂τ

∂t
= 1

T

⇒ t = t0 + Tτ

If we consider T → 0, the boundary layer system is finally given by :

∂yr

∂τ
= gr(z, y + h(z)) = −yrγrCr(−zr) (9)

Given the definition of the cost function C(z), the origin of (9) is obviously
exponentially stable.

5.2 Reduced system (slow dynamics)

The reduced system is obtained by setting dr = hr(zr) in the two first equa-
tions of system (8). That is to say that we now study the network model (7)
“as if” the E2E controller would converge infinitely fast. The reduced model
can be written :

{
ẋ = G(x)x + Bd′

żr = Dr − d′r r ∈ Is
with d′r =

wr

Cr(−zr)
(10)

If we write J = [Jij ], the Jacobian of this system, it is easy to check that
Jii ≤ 0, Jij ≥ 0 ∀i 6= j. These systems are cooperative. However, it is no longer
a compartmental system as (10) is not necessarily positive. It is nonetheless
still possible to show global stability using the following results. Indeed, (10)
has a first integral with positive gradient H =

∑
i xi +

∑
r żr = cst. It is

shown in [8] that cooperative systems with monotone first integral have a
unique equilibrium point in H. Moreover, it is shown in [7] that if such a
system has an irreducible Jacobian matrix, this unique equilibria is a global
attractor. Irreducibility can easily be checked as it is equivalent to strong
connectivity of the graph associated to the Jacobian.



5.3 Stability results

Given the exponential stability of systems (9) and (10), standard results from
singular perturbation analysis allow to state the following stability result :
Their exist T ∗ > 0 such that for all T < T ∗, the unique equilibria of (8)
is exponentially stable. Therefore, it means that for sufficiently small fixed
propagation delays or equivalently for sufficiently fast convergence of the con-
troller, the global system (8) is globally stable.

6 Conclusion

A global fluid flow model for the description of packet switched networks
has been presented. This model, using the buffer levels as its state vector, is
suitable to take into account the buffering delays. It was illustrated that this
model which is based on mass conservation laws seems appropriate to study
congestion control laws which are themselves rooted in a packet conservation
principle. This model was then combined with an AIMD model used in the
literature which is viewed as a controller for our network model. Using singular
perturbation analysis, the global stability of the closed loop system has been
studied.
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