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Abstract

In many process control applications, the system under consideration is compart-
mental and positive. This means that the system satisfies a mass conservation condition
and that both the state variables and the control input are physically constrained to re-
main non-negative along the system trajectories. For such systems, the design of state
feedback controllers makes sense only if the control function is guaranteed to provide
a non-negative value at each time instant. The purpose of this paper is to present a
positive control law for the feedback stabilisation of a class of positive compartmental
systems which are dissipative but can nevertheless be globally unstable. The approach
is illustrated with an application to the control of an industrial grinding circuit.
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1. INTRODUCTION

In many practical applications of control engineering, the dynamical system under consid-
eration is compartmental and positive. This means that the system is governed by a law

of mass conservation and that both the state variables and the control input are physically
constrained to remain non-negative along the system trajectories as stated in the following

definition :

Definition 1. Positive System. A control system ẋ = f(x, u) x ∈ IRn, u ∈ IR is positive

if

x(0) ∈ IRn
+

u(t) ∈ IR+ ∀t ≥ 0

}

=⇒ x(t) ∈ IRn
+ ∀t ≥ 0.

(Notation. The set of non-negative real numbers is denoted as usual IR+ = {a ∈ IR, a ≥ 0}.
For any integer n, the set IRn

+ is called the “non-negative orthant”. Similarly the set of

positive real numbers is denoted IP = {a ∈ IR, a > 0} and IP n is called the “positive
orthant”.)
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For such systems, it is an evidence that the design of state feedback controllers makes
sense only if the control function is guaranteed to provide a non-negative value at each time

instant.
The purpose of the present paper is to present a positive control law for the feedback

stabilisation of compartmental systems which are described in Section 2. These systems

have several interesting structural properties which are emphasized. In particular, they are
dissipative but can nevertheless be globally unstable. In Section 3, a positive control law is

proposed in order to achieve global output stabilization with state boudedness in the positive
orthant. The controlled output has a clear physical meaning : it is the total mass contained

in the system. The approach is illustrated with an application to a compartmental model of
an industrial grinding circuit in Section 4. Some final comments are given in Section 5.

2. DISSIPATIVE COMPARTMENTAL SYSTEMS

We consider the general class of single-input compartmental systems described by a set of

state equations of the form :

ẋi =
∑

j !=i

rji(x)xj −
∑

k !=i

rik(x)xi − qi(x)xi + biu i = 1, . . . , n (1)

with:

• the state vector x = (x1, x2, . . . , xn) ∈ IRn
+ and the control input u ∈ IR+

• the functions rij(x) and qi(x): IRn
+ → IRn are differentiable

• the vector b = (b1, b2, . . . , bn)T has non negative entries and at least one of them is
positive : bi ≥ 0 ∀i and bi > 0 for at least one i

System (1) is representative of a wide class of dynamical systems of interest in numerous
engineering applications. Typical examples are chemical or biological industrial processes

(see e.g. [1]), ecological systems or communication networks (see e.g. [2]).
In these systems :

1. Each state variable xi is the amount of some material or immaterial ”species” involved
in the system.

2. The terms rik(x)xi represent various transport, transformation or interaction phenom-
ena between the species inside the system

3. The terms qi(x)xi represent an outflow of material leaving the system.

4. The terms biu represent an inflow of material injected into the system from the outside.

2



Compartmental systems have several interesting structural properties which are now pre-
sented.

Property 1. The system (1) is positive. Indeed, if xi = 0, then ẋi =
∑

j !=i rji(x)xj +biu ≥ 0.
This is sufficient to guarantee the forward invariance of the non negative orthant if the

functions rij(x) and qi(x) are differentiable.

The total mass contained in the system is

M(x) =
n∑

i=1

xi

Property 2. A compartmental system is mass conservative in the sense that the mass

balance is preserved inside the system. This is easily seen if we consider the special case of
a closed system (1) without inflows (u = 0) and without outflows (qi(x) = 0, ∀i). Then it is

easy to check that dM(x)/dt = 0 which shows that the total mass is indeed conserved.

The model (1) is also written in matrix form as:

ẋ = G(x)x + bu (2)

where G(x) is a so-called compartmental matrix with the following properties:

1. G(x) is a Metzler matrix, i.e. a matrix with non-negative off-diagonal entries:

gij(x) = rji(x) ≥ 0

(note the inversion of indices !)

2. The diagonal entries of G(x) are non-positive:

gii(x) = −qi(x)−
∑

j !=i

rij(x) ≤ 0

3. The matrix G(x) is diagonally dominant:

|gii|(x) ≥
∑

j !=i

gji(x)

The term compartmental is motivated by the fact that such systems are usually represented

by a network of conceptual reservoirs called compartments. Each quantity (state variable) xi

is supposed to be contained in a compartment which is represented by a node in the network.
The flows between the compartments are represented by directed arcs i → j labeled with

the so-called fractional rates rij. Additional arcs, labeled respectively with fractional outflow
rates qi and inflow rates biu are used to represent inflows and outflows of the system. An

illustrative example will be given in Fig. 2.
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Definition 2. A compartment i is said to be outflow connected at x if there is a path
i → j → k → . . . → ! with positive fractional rates rij(x) > 0, rjk(x) > 0, . . . from that

compartment to a compartment ! from which there is a positive outflow q!(x) > 0. The
system is said to be fully outflow connected at x if all compartments are outflow connected
at x. When the property holds for all x in the non-negative orthant, the system is simply

said to be fully outflow connected.

Property 3. The compartmental matrix G(x) is non singular if and only if the compart-
mental system is fully outflow connected at x. This shows that the non-singularity of a

compartmental matrix can be directly checked by inspection of the associated compartmen-
tal network.

Property 4. If u = 0 (no inflow), the unforced system ẋ = G(x)x is dissipative in the
sense that the total mass M(x) decreases along the system trajectories, because we have

dM(x)/dt = −∑n
i=1 qi(x)xi ≤ 0.

Property 5. If u = 0 (no inflow) and if the system is fully outflow connected, the origin
x = 0 is a globally asymptotically stable equilibrium of the unforced system ẋ = G(x)x in

the non-negative orthant, with the total mass M(x) =
∑n

i=1 xi as Lyapunov function. This
property is equivalent to the zero state observability of the system ẋ = G(x)x with output
y = M(x). (see [4] for a definition of the zero state observability)

3. CONTROL DESIGN FOR GLOBAL STABILISATION

Although the system is dissipative when the control input u is zero (no inflow), it can

nevertheless be globally unstable when there is a non zero inflow u(t) > 0 which is the normal
mode of operation in practical applications. The symptom of this instability is an unbounded

accumulation of mass inside the system. An example will be given in the application section
of the paper. This obviously makes the problem of feedback stabilisation of compartmental
systems in the positive orthant relevant and sensible. One way of approaching the problem

is to consider that the control objective is to globally stabilize the total mass M(x) at a
given positive set point M∗ > 0 in order to prevent the unbounded mass accumulation. This

control objective may be achieved with the following positive control law :

u(x) = max(0, ũ(x))

ũ(x) =

(
n∑

i=1

bi

)−1 (
n∑

i=1

qi(x)xi + λ(M∗ −M(x))

)

where λ is an arbitrary design parameter.

The set Ω = {x : M(x) = M∗ and x ∈ IRn
+} is called an “iso-mass”, because it is the set

of all x corresponding to the same total mass M ∗.
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The stabilizing properties of this control law are given in the following theorem.

Theorem. For the closed loop system (2)-(3) with arbitrary initial conditions in the non-
negative orthant x(0) ∈ IRn

+ :

(i) the iso-mass Ω is forward invariant

(ii) the state x(t) is bounded for all t > 0 and converges to the iso-mass Ω.

Proof. Along the closed loop trajectories, we have :

dM(x)

dt
= −

n∑

i=1

qi(x)xi +

(
n∑

i=1

bi

)

u(x)

(i) if x ∈ Ω, then M(x) = M∗ and

u(x) = ũ(x) =

(
n∑

i=1

bi

)−1 (
n∑

i=1

qi(x)xi

)

hence Ṁ(x) = 0 which proves that Ω is forward invariant.

(ii) if x (= Ω, then u(x) =

{
0 if ũ(x) < 0
ũ(x) if ũ(x) ≥ 0

Suppose that ũ(x) < 0 and u(x) = 0, then M(x) > M ∗ necessarily.

Consider the Lyapunov function candidate V = 1
2(M

∗ −M(x))2. We have :

V̇ = (M∗ −M(x))
dM(x)

dt
= (M∗ −M(x))

(
n∑

i=1

qi(x)xi

)

≤ 0

Suppose that u(x) = ũ(x) ≥ 0, then

V̇ = −λ(M∗ −M(x))2 ≤ 0

If V̇ = 0 then either x ∈ Ω which is a forward invariant set of the closed loop (see above)

or x ∈ {x :
n∑

i=1

qi(x)xi = 0 and M(x) > M∗}

which does not contain any invariant set from Property 5. The result then follows from
Lasalle’s theorem.
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Figure 1: An industrial grinding circuit

4. APPLICATION TO AN INDUSTRIAL GRINDING CIRCUIT

A schematic lay-out of an industrial grinding circuit used in cement industries is depicted

in Fig.1. It is made up of the interconnection of a ball mill and a separator as shown in
the figure. The ball mill is fed with raw material. After grinding, the milled material is

introduced in a separator where the finished product is separated from the oversize particles
which are recycled to the ball mill. A simple dynamical model has been proposed (see [3])
for this system under the form:

ẋ1 = −γ1x1 + (1− α)φ(x3)

ẋ2 = −γ2x2 + αφ(x3)

ẋ3 = γ2x2 − φ(x3) + u

with the following notations and definitions :
x1 = amount of finished product in the separator
x2 = amount of oversize particles in the separator
x3 = amount of material in the ball mill

u = feeding rate
γ1x1 = outflow rate of finished product

γ2x2 = flowrate of recycled product
φ(x3) = grinding function

The parameter α is the separation constant of the separator (0 < α < 1). The grinding
function φ(x3) is non monotonic as represented in Fig. 2. It can be written under the form

φ(x3) = x3ϕ(x3) with ϕ(x3) an appropriate monotonically decreasing function. This model is
readily seen to be a special case of the general compartmental system (2) with the following
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Figure 3: Compartmental network

definitions :

r12(x) = 0 r13(x) = 0 q1(x) = γ1

r21(x) = 0 r23(x) = γ2 q2(x) = 0
r31(x) = (1− α)ϕ(x3) r32(x) = αϕ(x3) q3(x) = 0

The network associated to this model is represented in Fig. 3. Remark that only the links
corresponding to physically existing transformation rates are represented in the network. In

other terms, the fractional rates rij and qi that are identically zero are not represented.
When the control input is constant u = ū (constant) > 0, the global instability of the

system appears if the state is initialised in the set D defined by the following inequalities:

D






(1− α)φ(x3) < γ1x1 < ū
αφ(x3) < γ2x2

∂φ/∂x3 < 0
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Indeed, it can be shown that this set D is positively invariant and if x(0) ∈ D then x1 → 0,
x2 → 0, x3 → ∞. This means that there is an irreversible accumulation of material in

the mill with a decrease of the production to zero. In the jargon of cement industries, this
is called mill plugging. In practice, the state may be lead to the set D by intermittent
disturbances like variations of hardness of the raw material.

The iso-mass is M(x) = x1 + x2 + x3 and we have Ṁ(x) = −x1 + u. The control law is
written :

u(x) = max(0, ũ(x))

with :

ũ(x) = γ1x1 + λ(M∗ −M(x))

= λM∗ + (γ1 − λ)x1 − λx2 − λx3

It is interesting to analyse the behaviour of the system in the invariant set Ω which is in fact
the behaviour of the zero dynamics :

{
ẋ2 = −γ2x2 + (1− α)φ(x3)
ẋ3 = γ1(M∗ − x2 − x3) + γ2x2 − φ(x3)

The equilibria of the zero-dynamics must satisfy the following relation :

(
(γ1 − γ2)

γ2
α + 1

)

φ(x3) + γ1x3

︸ ︷︷ ︸
ψ(x3)

= γ1M
∗

The zero-dynamics have a unique equilbrium in Ω if the following inequality is satisfied :

∂ψ

∂x3
> 0 =⇒ ∂φ

∂x3
> − γ1γ2

αγ1 + (1− α)γ2

If γ2 ≥ γ1, this unique equilibrium is easily shown to be globally asymptotically stable in Ω

by using the Bendixsson theorem.
In this case, it follows that the feedback controller is able not only to prevent the mill

from plugging by regulating the total mass at an arbitrary set point, but also to stabilise
the system at a unique equilibrium which is globally asymptotically stable in its domain of
physical existence (the positive orthant).

5. FINAL COMMENTS

1. The controller (3) proposed in this paper has an intereting robustness property. In-
deed it is fully independent from the functions rij(x). This means that the feedback
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stabilisation is robust against a full modelling uncertainty regarding the internal trans-
formations between the species inside the system. This is quite important because in

many practical applications,the rij(x) are precisely the most uncertain terms of the
model.

2. The condition that the system is fully outflow connected which guarantees the dissi-
pativity of the unforced system is critical for our result. It implies that, in absence of
feeding (u = 0), there is a natural ”wash-out” of the material contained in the system.

Besides the fact that it is a common property in many practical applications, it must
be emphasized that, without natural dissipativity, there is no hope to globally stabilise

the total mass M(x) at an arbitrary set point.
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