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1 Introduction

Hydromax is an application for river flow forecasting and flood alarms which provides
in real-time short-term predictions of river flows based on rainfall and past river flow
measurements, and long-term flood forecasting based on meteorological forecasts. The
purpose of this brief paper is to give a general description of Hydromax and to
demonstrate its performance with typical experimental examples and statistical
assessments.

For each river basin, the forecasted river flows are produced by a mathematical model
which involves four parts:

1) An optimal minimum variance interpolator which computes the mean areal rainfall on
the watershed.

2) A non-linear conceptual production function which describes the water storage in the
watershed and computes the effective rainfall from the mean areal rainfall.

3) A linear ARX transfer function which describes the superficial runoff of the net rainfall
towards the watershed outlet and computes the short term river flow forecasting.

4) A simulation model which produces long term river flow forecasts from meteorological
data.

The identification of the model is quite data saving because only rainfall and river flow
measurements are required while a detailed physical description of the basin is not
needed. Hydromax has been developed to be user friendly and to fulfill the real-time
forecasting requirements. It is successfully in routine operation for more than five years in
the Meuse river (Walloon region, Belgium) and its main tributaries.

2 Telemetering and data acquisition

To be operational, Hydromax must be connected to a reliable telemetering network
and a data acquisition system accessible from the forecasting center and able to achieve
frequent on-line field measurements of both rainfall depths in raingauges and water levels
in rivers. In this paper, the Hydromax performance will be illustrated with data from the
telemetering system of Sethy (Service d'études hydrologiques, Walloon Ministry of Public
Works - Belgium). Hydromax uses about 60 stations scattered in the Meuse river basin as
shown in Fig. 1.



Fig. 1: The telemetering network of Sethy in the Meuse river basin

The data are collected with a basic time-step (∆t =1h). Hourly rainfall and river flow
measurements over a period of several years (including big floods) were thus available for
the model development. Obviously, the basic time-step ∆t must be much smaller than the
mean concentration time of the considered river basins.

3 Estimation of the mean areal rainfall

The input of the model is the mean areal rainfall over the considered watershed. The
possible spatial heterogeneity of the rainfall is thus not taken into account here. The point
rainfall depth is denoted P(z) with z=(x,y) ∈ !², the Cartesian coordinates. It is assumed to
be a realization of a two-dimensional random field with constant mean and linear
variogram. The rainfall measurements are available at n measurement stations and
denoted:
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The average areal rainfall PB over a catchment area Ω ∈ !² is then defined as:
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As is well known, an optimal (linear, unbiased, minimum variance) estimation of PB
can be computed from the set of rainfall observation {Pi, i=1, …,n} as :

i

n

i
i PPB "

=
=

1

λ

with the λi solutions of the so-called “kriging” system:
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where µ is a Lagrange multiplier and e(zi,zj) denotes the Euclidean distance between the
points zi and zj in !².

4 Computation of the effective rainfall with the production function

The role of the production function is to transform the mean areal rainfall PB into an
effective rainfall PN which is supposed to reach the basin outlet as surface runoff. The
model describes the balance of water volumes during time intervals ∆t. During each time
interval the amount of precipitated water is decomposed as follows:
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with t the discrete time index. E1(t) represents the part of the rainfall PB(t) that directly
evaporates during the current time interval. W(t) represents the amount of water that will
not participate in the runoff but will be stored in the basin under various forms (vegetation
interception, superficial depressions, soil moisture, etc …). The storage of the water in the
river basin is then represented by a linear reservoir with inflow W(t) described by the
difference equation:
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where S(t) denotes the stock of water in the river basin, I(t) is the amount of water drained
by percolation and E2(t) is the part of stored water evapotranspirating during the current
time interval. The percolation term I(t) is represented by a linear function of the available
water stock:
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with α a specific percolation parameter. The evapotranspiration terms E1(t) and E2(t) are
computed as:
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where ETP(t) represents an estimate of the seasonal potential evapotranspiration for the
considered basin. It is furthermore assumed that there is a physical upper limit Smax of the
amount of stored water S(t) in the river basin. The water storage W(t) is then expressed as
a function of S(t) and PB(t) in order to:

- guarantee the condition 0 ≤ S(t) ≤ Smax ∀t



- verify the hydrological principle that the effective rainfall PN(t) increases with both
rainfall intensity PB(t) and soil moisture S(t). The following function satisfies these
requirements:
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with β a specific runoff coefficient.

The production function model then involves three parameters (α, β, Smax) that have
to be calibrated from experimental data for each considered river basin.

5 Computation of the short term river flow forecasting with a linear transfer
function

At each time t, a forecasting Q̂ (t+h) is computed for the future time instant (t+h)(i.e.
with a prediction horizon of h measurement time steps) as a linear combination of past
river flow measurements and past effective rainfall values, with a linear regression model
(ARX model) of the form:
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where Q(t-(i-1) h) denotes the riverflow measurements at the past time instants (t-(i-1) h)
while PN(t-(j-1) h) represents the effective rainfall cumulated over h successive time steps
and computed with the production function.

For each river basin, the values of the prediction horizon h and the coefficient  ai, bj are
determined from experimental data. To get accurate forecasts, the prediction horizon h
must obviously be smaller than the natural response time of the river basin. As a rule of
thumb, it is selected between the one fifth and the one third of the peak time of the unit
hydrograph. The dimensions n and m of the regression terms in the model are selected
using classical statistical tools of system identification theory (correlogram of prediction
errors, Bayesion Information Criterion, etc …) according to a parsimony principle. The
parameters  ai and bj are calibrated by linear regression.

6 Computation of long term river flow forecasts from meteorological data

The goal here is to compute river flow forecasts over prediction horizons that are
significantly larger than the natural response time of the river basin. This obviously
requires to anticipate the future rainfalls by meteorological informations. Such long-term
riverf low forecasts may be computed by iterating the short-term prediction model as
follows:
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  where Q̂ (t+(i-1)h) represent successive iterated river flow forecasts and ))1(( hitPN −+
∧



 effective rainfall forecasts to be provided by the user.

7 An example : the flood of January 1995

In this last section, the Hydromax performance is illustrated with a typical forecasting
example in the Ourthe river basin. The outlet of the river basin is located at Tabreux (1607
Km²) and four raingauges are available (see map in Fig. 1). Hourly rainfall-riverflow data
during 2 years (1992-1993) have been used to calibrate the model. The estimated model
parameters are given in Table 1. The unit hydrograph of the river is also shown in Fig. 2.
The selected predicted horizon is h=6 hours.

Fig. 2 : Tabreux – Unit hydrograph

Table 1 : Tabreux - Parameters of the model

α β Smax a1 a2 b1 b2 b3 b4

0.00065 0.86 76 1.353 0.41 2.382 0.896 0.202 0.993

The predictive capability of the model is here illustrated with the big flood of January
1995 (which is not in data set for model construction). In Fig. 3, a typical example of on-line
forecasting with Hydromax is shown. We can see that Hydromax computes a short term
prediction for 18 p.m. of 198 m³/s (big blue dot on the figure), which is to be compared to
the actual value of 200 m³/s. Hydromax also computes a long term prediction over an
horizon of 42 hours (+ line) for the given scenario of future rainfalls and an “optimistic”
prediction (o line) under the assumption that the rainfall will definitely stop.



In Fig. 4, a comparison between the observed river flow discharges and the short-term
predictions all along this big flood of January 1995 is presented. Finally the statistical
accuracy of Hydromax at a level of 90 % is illustrated in Table 2.

Table 2 : Upper bound of the relative forecasting error at a level of 90 %

Horizon 6 hours ahead 12 hours ahead 18 hours ahead 24 hours ahead 30 hours ahead

≤−
Q
Q̂1 0.07 0.13 0.18 0.22 0.32

Fig. 3: Example of Hydromax windows : forecasting of Ourthe (a Meuse tributary) flow rate during
the big flood of January 1995
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Fig. 4 : Tabreux – Comparison between observed and forecasted discharges during the big flood of
January 1995
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