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I. INTRODUCTION 

In the four companion papers of this session 
[ 1) -[ 4] a systematic methodology has been de­
veloped for the treatment of an identification 
problem. Technical answers have been given to 
the questions any user is faced with when he 
has to identify a model for a sys~em within 
a given model set. But the first question a 
user faces is: "Does system identification 
have something to offer for my problem and, 
if yes, how much can I hope for?" The answer 
depends upon the objective the user pursues 
and the prior knowl~dge he has. 

In this presentation we will consider System 
Identification from an applications viewpoint. 
The choice of an appropriate model set is the 
most difficult step of the identification 
procedure. We shall see that prior knowledge 
and the pursued objective are the main ingre­
dients for this choice. For a given objective 
the amount of prior knowledge often enables 
the user to say a priori whether system iden­
tification has something to offer, and how 
much. 

We present a number of applications to illus­
trate our arguments. These are all drawn from 
our own experience over the last ID years. 
This is therefore a rather personal account, 
which does not claim to cover the considerable 
amount of applied work that has been accom­
plished by many other groups throughout the 
world. 

2. WHAT CAN SYSTEM IDENTIFICATION BE USED FOR? 

The possible objectives can be broadly 
classified as follows. 

2. I. Estimation of parameters that have a 
physical interpretation. 

This covers a broad class of applications, 
particularly in non industrial problems. 
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Several examples are given to illustrate this. 

~~~~El~_l: Groundwaterflow model 
The flow of water in a p,roundwater reservoir 
is described by the following 2-dimensional 
partial differential equation: 

~ = div T grad h + q (2. I) 

Here h is the water level (=the state), q is 
the input flow rate (=the input), S is the 
storage coefficient and T is the transmissivi­
ty. Sand T are functions of the soil charac­
teristics. The estimation of Sand T is often 
the purpose of the identification, because 
they provide a physical insight into the beha­
viour of the reservoir. For example, a high 
value of T in a sub region means that a high 
Dumping rate can be achieved in that area. 

~~~El~_~: Cardiovascular, model. 
The cardiovascular s ystem can be represented 
by the following electrical model: 

left ventricle systemic vascular bed 

Fig. I 

Voltages represent blood pressures, while 
currents represent blood flows. The parameters 
Cl' C2 , L, rand C(t) can be estimated from 
measurements of aortic Dressure p(t) (i.e. 
vl(t» and ejected blood flow q(t) (i.e. il(t». 
These parameters can be given a physical in­
terpretation: Cl and C2 are related to the 
distensibility of the vascular wall, L is re­
lated to the inertia of the blood mass, r 
represents the peripheral resistance, while 
I/C(t) is related to the contractility of the 
left ventricle (5) . 
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~~~El~_~: A biomethanization process. 
Biomethanization is an anaerobic fermentation 
process where the decomposition of biodegra­
dable matters by bacterial populations is lin­
ked to methane gas production. The third stage 
of the biochemical reaction can be described 
by the following nonlinear state-space model 
[ 6] : 

( 

lJ*xs ) 

~t(Xs) ~ ::x: ~s - gx 
Y(K+s) + pgu - gs 

(2.2a) 

q (2.2b) 

x (concentration in methanigenic bacteria) 
and s (substrate concentration) are the state 
variables; q (gas production) is the output; 
g (dilution rate) and u (concentration of 
acids in the influent) are the inputs. The 6 
parameters have the following interpretation: 

k decay rate for the bacteria 
K saturation of the bacterial growth 
p unknown part of the introduced acids 

which are hydrolized during the reaction 
lJ~: specific growth rate for the bacteria 
Y and Y~: yield 20efficients. 

It is easy to observe that these physical 
parameters cannot be uniquely identified from 
inputs and outputs. Defining 

x = Y*x, 5 = s/K, Y = Y~KY, a = p/K 
leads to an equivalent state-space model that 
has only 4 unknown parameters: K, lJ , Y, a. 
However the physical significance of the 2 
parameters Y and a is not so clear. 

2.2. Obtaining a model for simulation studies. 

In order to study the effect of different con­
trol strategies on a variable of interest, it 
is of course always best to work on the sys­
tem itself. But in practice this is not always 
possible for the following reasons : 
a) experiments may be too costly; 
b) the system can be unstable : experimenting 

can then be dangerous; 
c) the time constants of the system can be 

very large , which would make the experi­
menting much too slow. 

For these reasons it is often required to 
design a model of the system which is then 
used for simulation studies. 

~~~~El~_l: Groundwater flow model. 
A groundwater flow model allows one to select 
by simulation the best pumping locations and 
to study the effect of new pumping stations 
on the base flow of the rivers that drain 
that reservoir. 

~~~~El~_~ : Biomethanization process. 
The mode l allows us : 
a) to look for optimal nominal steady state 

values 
b) to study various starting procedures for 

the process. 
These studies are almost impossible on the 
process itself, because 
a) in its present working condition it is 

technically very difficult to maintain 
the process in st~ady state 

b) the starting procedure for a biomethani-

zation reactor takes several weeks as 
opposed to a few minutes on the simulated 
model. 

2.3. Prediction. 

In many applications, it is desired to pre­
dict in real time the future evolution of 
the output of a system, based on measure­
ments made on the system. One can distin­
guish two cases : either the output is con­
sidered as a purely stochastic random pro­
cess, or it is related to another mea sura­
b le variab le. 

~!~El~_~: Riverflow prediction. 
This example will be extensively discussed 
in section 5. The two cases just mentioned 
will be considered, depending on whether 
or not rainfall and evapotranspiration in­
puts are used to predict future riverflows. 

2.4. Control. 

In many applications, particularly in indus­
trial applications, the objective of the 
identification exercise is to design a con­
troller. 

~~~El~_~: Temperature control in a glass-
furnace. 

The production of high-quality glass requires 
that the variations of the temperature in 
the glass melt be kept at a st~ict minimum. 
In (7) a rather simple lumped stochastic 
model was identified, which relates some 
temperatures in the glass melt to the fuel 
flow. This model was then used to design a 
predictor and a minimum variance feedback 
controller. 

The classification in terms of the pursued 
objective is useful because what can be 
accomplished with system identification, and 
~he rel?ted q~estion of what prior knowledge 
~s requ~red, ~s very often a function of the 
objective. One should bear in mind, however, 
that several of these objectives will often 
~e pursued at the same time. For example, 
~~ the groundwater flow application, objec­
t~ves I and 3 are simultaneously pursued. 

3. WHAT FORM CAN PRIOR KNOWLEDGE TAKE AND 
HOW TO OBTAIN IT ? 

In this section we describe different forms 
~f prior knowledge and the ways of obtaining 
~t. We shall use the name "prior knowledge" 
to denote two different concepts : 
- real knowledge or information about the 

model structure, the parameters or the 
data, that has been communicated to the 
user or that he has gathered from the 
data. 

- assumptions that the user makes before he 
embarks on his identification exercise 
(such prior assumptions are often required 
to guarantee identifiability). Prior 
knowledge can be available about the 
model structure, the parameter vector e 
or the data Z. 



What Does System Identification Have to Offer? 79 

3.1. Knowledge about the model structure. 

The structure of the model set can be obtai­
ned essentially in two different ways. 
a) From physical principles or experimental 

findings. 
~~~~El~~: The structure of the groundwater 
flow model or the methane reactor model 
are based on physical principles, while 
the nonlinear part of the rainfall-river­
flow model (see section 5) is based on 
experimental findings. 

b) From data analysis. 
~~~~El~: Nonlinear relationships can often 
be detected by correlating the time-varia­
tion of a parameter with other measurable 
variables of the system. See [8] for 
examples. 

3.2. Knowledge about the parameters . 

This prior knowledge can take three forms 
a) e ED or ga(e) = 0; the parameters lie in 

a domain or satisfy a constraint which 
depends on a small number of parameters a. 
The estimation of e(often a high-dimensio­
nal vector) is replaced by the estimation 
of a(usually of small dimension). 
~~~~El~: In the groundwater flow applica­
tion, the transmissivities must be positi­
ve, for physical reasons. For identifia­
bility reasons, the assumption is sometimes 
made that the transmissivity is a polyno­
mial function of space : see section 6. 

b) a prior estimate ~(.) of e is available: 
this gives an initial guess for e in the 
optimization algorithm . 

c) a prior density faCe) is given or is assu­
med. The estimation problem becomes Baye­
sian. This prior knowledge will improve 
the accuracy of the estimate of e, and can 
be used in the computation of the covarian­
ce on the error of 9. The groundwater flow 
application in section 6 will illustrate 
this point. 

The estimation of a prior statistical model 
for e contains two steps : 
I) the estimation of the structure of this 

model. It can be obtained from experimen­
tal findings; very simple Gauss-Markov 
models are usually adopted. (Example: a 
Wiener field in the ground-waterflow appli­
cation of section 6; a Wiener process in 
many time-varying models). 

2) the estimation of the parameters a of this 
statistical model. (If e is a Wiener pro­
cess ~ ek = e

k
_

1 
+ E

k
, then the variance 

E{E ~ } = a must be estimated). If e is a 
measurable physical variable, e can some­
times be estimated a priori from experimen­
tal findings. In most cases a will be adju~ 
ted a posteriori in such a way that the pre­
diction error variance on the outputs of 
the model is of the same order of magnitude 
as the variance of the measurement errOr~. 
See section 6. 

3.3. Knowledge about the data. 

This knowledge can take the following two 
forms : 
a) ZEDZ' i.e. the data are constrain~d. 

~~~El~: riverflows can only be positive. 
b) fa(Z): a prior density is given . 

~~~El~ : Experimental findings tell us 
that rainfalls and riverflows obey a log­
normal distribution. Therefore, in the 
rainfall-riverflow model the input-output 
data are replaced by their logarithms. 
This has two advantages : 
a) the data now have a gaussian distribu­

tion 
b) there is no risk that the model would 

predict a negative riverflow. 

4. HOW TO CHOOSE A MODEL SET FROM PRIOR 
KNOWLEDGE ? 

In many peoples' minds system identification 
suggests the idea that there is a "true sys­
tem". In fact there does not exist something 
as a true system. But since thiR concept is 
useful and operational, we shall consider 
that the user postulates that there is an 
exact description of that part of reality 
that is of interest to him. This exact des­
cription (which is the user's approximation 
of reality) is called by him the true system. 
To fix the ideas, assume that the true system 
is as follows: 

Source of 
uncertainty 

BI 

vet) 

u( t) Input-output z (t) ~ y (t) ----. model l' 
+ B2 

Fig. 2a: The true system 

The user's idea about the true system will 
dep end upon the prior knowledge he has about 
each of the boxes BI and B2 of Fig.2a. A li­
miting case is where he has no prior knowled­
ge at all. 

The task of the user is then to choose a mo­
del set and to estimate its parameters. This 
choice will be a function of his objective 
and will be based on his prior knowledge. It 
is the most diffi cult part of the identifica­
tion procedure. In order to clarify th e dis­
cussion, we distinguish between two catego­
ries of models (both are of course predictors 
in the sense defined in [ 2] ) 
a) prediction models : 

y(t+lie) = fp(Ut,yt;e) 

The prediction of y(t+ l) is based on all 
input-output data up to time t. 

b) simulation models : 
t 

y(t+lie) = fS(U ;e) 

The prediction of y(t+ l) uses the inputs 
only. 

Remarks: I) both models can be identified 
uslng-a prediction error identification me­
thod that minimizes some function of the er­
rors y(t+I)-y( t+l ie). 

2) simulation models are often cal ­
led "output error models". 
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We can now formulate an answer to the question 
"What does system identification have to 
offer?" by considering each of the objectives 
separately. 

4.1. Prediction. 

The objective is to construct a model that is 
able to predict 9(t+l) from measurements of 
input-output data taken on the system. Such a 
model can be identified and its performance 
can be evaluated without any prior knowledge 
about the "true system": the quality criterion 
coincides with the identification criterion. 
The model will converge to the best possible 
predictor in the chosen model set [ 2]. Of 
course any knowledge about what is in Bl and 
B2 will be helpful in selecting the model set 
and will improve the performance of the pre­
dictor (see the riverflow mode:s of section 5). 

4.2. Simulation 

Here the objective is to construct a model 
that is able to simulate the behaviour of the 
true system even when the environment is 
different than that which prevailed during 
data collection. This is the case, e.g., in 
the methanization process. One could think of 
idenEifting a prediction model 9(t+ll 6) = 
fp(Y ,U ; 6), and of transformint it ~~to a 
s~mulation mod~~ bt replacing Y by Y : 
y(t+1I6) = fp(Y ,U ; 6). But this could yield 
disastrous results, because the best predic­
tion model is not always the best simulation 
model as the following example indicates. 

Example: Let the true system be 

yet) + a
o
y(t-l) = bou(t-l) + coe(t-l) 

where {u(t) } and {e(t) } are independent se­
quences of 1. 1.d. zero IT,ean random variables 
of unit variance. See Fig. 2b. 

l+c -1 
e (t) z 

0 Bl : 
-1 l+a z 

0 

b 7-
-1 

u( t) 0 z (t) 
B2: ----1 

l+a z • 
0 

Fig. 2b 

Consider first a prediction model: 

;111: 9(t+ll a,b) = -ay(t) + bu(t) 

v (t) 

1" yet) -

Then the best predi ctor will yield a =a -c /r 
b =b , where r =E {y2(t) }. Consider now ~ 0 0, 

simu~ation mod~l: 

112 : 9(t+ll a,b) -ay(tl a,b) + bu(t) 

bz -1 
----1 u(t+l) 
l+az 

Within model set ~2' the best predictor will 
yield a~ = a , b~ = b . Now suppose that the 
steady-stateOgain of £he system must be com­
puted. Then the simulation model will give 
the correct answer, b /1+a , while the pre­
diction model will yi~ld aOcompletely erro-

neous answer bo/(I+ao-co /ro). 

With a simulation model we want to model B2 
onl~ in order to predict z(t), i.e. we want 
to filter out the effect of the noise. With 
a prediction model on the other hand we want 
to predict yet); hence we want to model vet). 
The important difference between prediction 
and simulation is the following: 
- with prediction, the model selection crite­

rion coincides with the identification cri­
terion: minimize some function of the pre-
diction error. 

- with simulation, the identification cri­
terion (min El(t,6,£(t,6» does not coinci­
de with the model selection criterion: in 
the above example the identification crite­
rion would select ~ , which is a poor simu­
lation model (except in the hypothetical 
case where the model set contains the true 
system). The identification criterion is 
unable to discriminate between a good or a 
bad model; only prior knowledge or exten­
sive simulation studies can do this. 

4.3. Estimation of parameters that have a 
physical interpretation. 

The model set must now be chosen to estimate 
physically meaningful parameters that cannot 
be directly measured. The quality criterion 
for the selection of the model set is that 
the estimated 8 must be as close as possible 
to the true 6 • Here again this selection 
criterion doe~ not coincide with the identi­
fication criterion. Therefore: 
a) prior knowledge about the structure of the 

relationship between parameters and data 
is essential. The user must know or pos­
tulate a "true system" (or at least that 
part of the true system that contains the 
parameters of interest); 

b) the model set must be chosen such that 6N 
converges to the true 6 • It must there­
fore contain this true ~ystem and it must 
be uniquely identifiable. Roughly speaking 
this means that the model set I'( (6) mus t 
have the same input-output properties as 
the true system for a unique value of the 
vector 6. Here the inputs are understood 
to contain both the deterministic and the 
stochastic inputs. A more precise defini­
tion of uniquely identifiable model sets 
is given in [9] • 

Prediction error methods allow us to make 
statements about convergence and asymptotic 
covariances of parameter estimates (see [2]). 
This makes sense only in the context of pa­
rameter estimation when the structure of the 
true system is known a priori. If in addition 
prior statistical knowledge is available 
about 6, this can be used to increase the 
accuracy of the estimates. See section 6; 
see also [3]. 

4.4. Control. 

For most control applications, particularly 
for minimum variance control, it is required 
to have a good predictor. Therefore the dis­
cussion of section 4.1 applies. It is even 
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less important here that the model set con­
tains the true system, because feedback tends 
to reduce the sensitivity to model inaccura­
cies. However if the objective is to simulate 
control strategies (including control actions 
that vary greatly from those that were used 
during data collection), then a simulation 
model is necessary, and section 4.2 applies. 

f~~£l~~i~~ : We have shown in this section 
that what system identification has to offer 
depends essentially on the pursued objective 
and on the available prior knowledge about 
the true system. The pursued objective deter­
mines which minimum amount of prior knowledge 
1.S required. 

5. APPLICATION I A RAINFALL-RIVERFLOW 
PROCESS. 

In this application it was desired to obtain 
a riverflow prediction model for the Sewois 
river (in Belgium). The river basin has a 
surface area of 1235 km2. The available data 
were daily values during 7 years (1967-1973) 
of the rainfall in 17 gauges, the mean evapo­
transpiration over the basin, and the river­
flow at the outlet of the basin. From the 17 
rainfall measurements, a daily mean rainfall 
over the whole basin can be computed using 
spatial interpolation techniques [ 10]. More 
details about this application can be found 
in [ 11]- [ 12] • 

The objectives of the identification were to 
obtain a short term riverflow E!~9i£!i~~_~2-
del allowing judicious actions in case of 
fl~ods, and a long term simulation model 
allowing a forecast of th~-ba;~-fl~;-(:-low 
water) under various rainfall hypotheses. As 
we learned more about the system and its 
structure, we identified a succession of mo­
dels. We first describe these models, and 
then compare their properties. 

The following notations will be used : 
L(k) = daily mean rainfall over the basin 
ETP(k) = daily potential evapotranspiration 
Q(k) = daily mean riverflow 
L(k) and ETP(k) are the inputs of the pro­

cess, while Q(k) is the output. 

Model Linear AR (I) -------
Q(k) aQ(k-l) + c + £(k) 

Model 2 

Q(k) 

Model 3 -------

Q(k) 

Model 4 -------

Linear ARMA (2,3) 

2 3 
L a.Q(k-i) + L c.£(k-i) + c + £ (k) 

i=1 1. i=1 1. 

Linear ARMAX (2,4,3) 

2 4 
L a.Q(k-i) + L b.L(k-i) 

i= I 1. i= I 1. 

3 
+ L c.£(k-i) + c + £(k) 

i=1 1. 

Nonl inear 

L(k) 
Fig. 3 SMI: PN(k) SM2 : 

Nonlinear ETP(k) 
Q(k) 

Linear 

Submodel I 
S~b~~d~i=l is a nonlinear dynamical model 
whose structure has been obtained from phy­
sical considerations and from experimental 
findings. A new state variable was intro­
duced, the storage S(k), which represents 
the amount of water stored on day k in the 
upper suface of the soil. The output of SMI 
is the net rain PN(k) : it represents that 
part of the rain that runs on the basin sur­
face and will eventually reach the river. 
The construction of this nonlinear model was 
based on the following considerations : 
I) a rainfall will contribute to a riverflow 

only if there is a rainfall surplus, 
i.e. if L(k) > ETP(k). 

2) assuming that there is a surplus, then the 
proportion of this surplus that will run 
off to the river will be much higher if 
the surface of the soil is very wet 
(S(k) large), then if it is dry (S(k) 
small). One can also define a saturation 
level for S (k) : S . 

Based on these ideas ~~a on experimental 
data, a nonlinear model was obtained. It 
depends on 3 parameters that must be esti­
mated. 

f~~~~! : SMI as just described is a clear 
example of a case where the user postulates 
a description of reality. This description 
is of course based on experience and fin­
dings, but in fact itmay have very little to 
do with reality. The important thing is that 
this model is identifiable and operational. 

g~~~~g~1=~ ARMAX (2,3,3) 

2 3 
Q(k) = L a.Q(k-i) + 

i= I 1. 
3 

L b.PN(k-i) 
i= I 1. 

+ L c .£ (k-i) + c + E(k) 
i=1 1. 

The parameters of the nonlinear model and 
the parameters of the ARMAX model were iden­
tified by minimizing a global prediction 
error criterion. 

Model 5 : Nonlinear 

Sl-f3 
O(k 

Fig.4 

Submodel I 
Thi~=~~~iinear submodel has an additonal 
output D(k), which represents the amount of 
water drained to the phreatic surface. 

Submodel 2 : Linear 
Thi~=i~=~=simulation model for the base flow 
(i.e. that part of the riverflow that origi­
nates from groundwater). The following model 
was obtained : 
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B (k) 

where 

BR(k) 

BL(k) 

BR(k) + BL(k) 

aBR(k-l) + aD(k-d ) 
r 

SBL(k-l) + bD(k-d l ) 

BR and BL are the short and long term compo­
nents of the base flow. The coefficient a, S, 
a, b, d

r
, d l are estimated during dry periods. 

Typically the following values were obtained 
a and S correspond to time-constants of 15 
and 244 days respectively, d r = 5 days, 
d

l 
= 30 days. The struct~re of SM2 was again 

determined by prior knowledge based on expe­
rimental and physical considerations. 

~~gw~~~l=~ : ARMAX (2,4,3) 

2 
Q(k) = B(k) + L a. {Q(k-i) 

i= I ~ 
- B(k-i)} 

4 
+ L d.PN(k-i) 

i= I ~ 
3 

+ L c.E(k-i) + c + E(k) 
i= I ~ 

Equivalently : 

Q(k) B(k) + ~~~~ PN(k) + ~~~~ E(k) 

Model 6 ------- Identical to model 5 but it uses 
only the best 3 rainfall gauges for 
the computation of L(k). 

Table I compares the performances obtained 
with these various models. 

model I 
2 
3 
4 
5 
6 

model 
model 
model 
model 
model 

Comments: 

G 
E 

3.46 
3.25 
2.65 
1. 80 
1. 90 
2.01 

G 2 
.::.£..2 
GQ 

7.4 % 
6.5 % 
4.3 % 
2.0 % 
2.2 % 
2.6 % Table I 

1)-Th~-ARMA(2,3) model performs only slightly 
better than a very simple AR(I) model. 

2) Adding a measurable input L(k) improves the 
performance still further, but the really si­
gnificant improvement occurs when a nonlinear 
model is introduced (model 4). This example 
clearly illustrates that system identification 
has much more to offer when prior knowledge 
(or prior assumptions) are injected by the 
user. 

3) Adding a base flow model (models 5 and 6) 
slightly decreases the one-step predictive 
performance of the model. This is due to a 
decrease in the data-to-parameter ratio. It 
illustrates the fact that, when the objective 
is prediction, it is not always necessary (and 
sometimes harmful) to have a complex model 
that accurately describes the "true system". 
On the other hand, models 5 and 6 are essen­
tial when it comes to long term simulations 
of the base flow. 

4) Notice finally that the model that uses on­
ly 3 pluviometers performs almost as well as 
the model that uses all 17. Recall however 
that these 3 pluviometers have been selected 

according to an optimal selection scheme [ 10] • 

6. APPLICATION 2 : THE GROUNDWATERFLOW 
PROCESS. 

It follows from physical laws that the flow 
of groundwater is described by (2. I). In many 
reservoirs the fluctuations of h are so small 
and so slow that a steady-state model is 
adequate: 

V(TVh) + q = 0 (6. I) 

The objective is then to estimate T(x,y) at 
all points of a domain ~ from measurements of 
the water level h. We shall first show that 
this model is not identifiable without prior 
assumptions for T. We then introduce a deter­
minis~ic model, and subsequently a stochastic 
model for T. Both will guarantee identifiabi­
lity, but the stochastic model will, in addi­
tion. allow us to obtain a measure of the 
accuracy of the parameter estimates. 

6. I. The problem of nonuniqueness. 

For pedagogical reasons we consider first a 
one-dimensional flow model: 

~ T(x) ~ + q(x) = 0 
dX dX 

o < x':;; L (6.2) 

In practice the state hex) is measured with 
error: 

z (x) = hex) + w(x) (6.3) 

If (6.2) and (6.3) are discretized and if the 
boundary condition is unknown, we obtain: 

I, ... ,n-I 
0, ... ,n 

(6.4) 
(6.5) 

The vector of unknown parameters becomes 
e = (To, .•• ,Tn_l,ho,hn)' For g~ven e, hl(e), 
... ,hn_l(e) can be computed us~ng (6.4). 
It appears clearly that we have n+2 parame­
ters with only n+1 measures z , ... ,z . Hence 
the model is not identifiable? n 

6.2. A deterministic approach. 

We now mention two deterministic approaches 
to overcome this nonuniqueness problem: 

a) A polynomial 

Tk t. T(xk) = 

model is postulated for T(x): 
M 
L algl (xk), k = O, ... ,n 

1=1 
where M« n, gl (x) are known polynomial func­
tions and a l are unkown coefficients. The 
following prediction error criterion is then 
minimized with respect to a l ,··· ,aM,ho,hn : 

J = 
h 

(6.6) 

The values of hk(e) for k=I, ... ,n-1 in (6.6) 
are obtained from (6.4). Note that this so­
lution corresponds to assuming a prior model 
g (S) = 0, where a contains much fewer para­
m~ters than e (see section 3). 

b) An alternative approach, known as regula­
rization, is to minimize a combined criterion: 
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(6.7) 

where J h is as above, A is a weighting coeffi­
cient, and J

T 
is a smoothness criterion: 

n-I 2 
J T = L (Tk-Tk_ l ) 

k=1 

The idea of these two methods is to incorpo­
rate prior structural constraints on the spa­
tial variability of T in order to guarantee 
identifiability. However the choices of the 
prior models (polynomial structure, smooth­
ness criterion) are rather arbitrary, and it 
is not always clear how to choose them. These 
two drawbacks disappear if a stochastic model 
is chosen for the spatial variability of T. 

6.3. A stochastic approach. 

It follows from experimental findings that the 
logtransmissivity can be represented by a Wie­
ner model. Let 8k = 10gTk . Then the model 
becomes: 

8k 
8

k
_

1 
+ qk '" 0, e (hk+l-hk) + e (h

k 
-h

k
_ l ) 

k I, ... ,n-I (6.8) 

8k 
8
k

_
1 + Ek , k I, ... ,n-I (6.9) 

zk hk + wk ' k =0, ... ,n (6. 10) 

The w
k 

are either measurement errors, or (more 
often) interpolation errors; the latter is 
true when the water level must be interpolated 
at all grid nodes. We assume that W={wo "" wn } 

and E={EI, ... , En_ l } are two mutually indepen­

dent i.i.d. Gaussian noises with variances 
2 2 "( ) 0w and 0E . Redeflnlng 8= 81,··,8n_l,ho, ··,hn 

we can then reformulate the problem as follows: 
using the known measurements zo, .•. ,zn' find 8 

that maximizes the density f
8

(E,W) subject to 
the constraints (6.8)-(6 .9). It can be shown 
that this reduces to minimizing 

J ( 8 ) ~ J ( 8) + ~ J w ( 8 ) ( 6. I I) 
02 E 0 2 

E w 
where n-I 2 J (8) L (8 k - 8

k
_ l ) (6.12) 

E k= I 
n 

h ) 2 J W( 8) L (zk - (6. 13) 
k=O k 

Comments: --------
I) The criterion (6.11) is almost identical 
to (6.7). Thus we have not only given a jus­
tification for the us e of the smoothness cri­
terion, but (6.11) also gives a guide as to 

2 2 
the choice of A in (6.7): A = 0 /0 . 

W E 

2) In practice 02 is known (the 2-D interpo­
lation techniqueWused to compute estimates of 
h at each grid node also computes standard 
deviations; see [ 14]) but CJ~ is unknown. cr~ is 
chosen such that the deviatlon between the 
water levels predicted by the model and the 
"measured" water levels (which usually result 
from spatial interpolation) is of the same 

order as the interpolation (or measurement) 
error (see 3.2,2). The deterministic and sto­
chastic approaches have been successfully 
applied to an aquifer in Belgium [1 3] -[ 15]. 
In Figs. 6-7 we show the effect of the choice 
of 02 on the es timated transmissivities and 
on tfie error between predicted and interpo­
lated water levels. Figs. 6a and 7a represent 
the water levels simul ated by the model (thick 
line) and the "measured" levels (fine line). 
The standard deviation of the measurement 
error is 0 = 3m. Figs. 6b and 7b represent 
the corres~onding transmissivities. We see 
from Fig. 7 that when T varies greatly in 
space, the fit between the simulated and the 
"measured" water levels is almost perfect: 
the root mean square (RMS) deviation is 3 .S cm 
(compared to a measurement error 0 of 3m). 
When T is very smooth, as in Fig .6~ this RMS 
deviation is 77cm. 

3) Fig. 8 shows estimated transmissivities 
with 20 confidence intervals along a cross­
section of the aquifer (see [1 5] for the error 
analysis). These standard deviations are Baye­
sian: they take into account both the prior 
\oliener model and the measurements of h. 

4) This example illustrates several points 
that were mentioned in sections 2 to 4: 
- the user has a c lear description of her 

"true" system, namely eq. (6 .1) . 
however, without prior assumotions on T, 
this is not enough. If her objective is to 
estimate T or to do simulation studies, then 
system identification has nothing to offer 
at this point. 
if prior assumptions are made on T, the mo­
del becomes identifiable. 

- the prior model on T injects new parameters 
(a , ..• ,aM; or A; or o ~ ) which must be 
es!imated. However a high-dimensional pro­
blem has been replaced by a low-dimensional 
one. 

- with the injection of a stochastic prior 
model f (T) for T, the global estimation 
problemabecomes Bayesian. a (here O ~ ) must 
be estimated, but this increased prlor know­
ledge improves the accuracy of the parameter 
estimates. f~(T) is alsoAused to compute 
standard devlations for T. 

7. CONCLUSION 

Thinking, knowledge and insights are often 
crucial. Identification is not an automatic 
procedure. Choosing t4t.:' a difficul t choice. 
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