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Abstract: This article deals with the modelling of a road network from a
macroscopic point of view. First, the existing models for a road network based
on the LWR model are reviewed. Then, these models are extended to take account
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illustrated in a particular case. Copyright c©2005 IFAC
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1. INTRODUCTION

A good representation of the evolution of the
traffic state on a road network is necessary for the
analysis of congestion control strategies. The ca-
pacity drop phenomenon is a critical phenomenon
which represents the fact that the outflow of a
traffic jam is significantly lower than the maxi-
mum achievable flow at the same location. We can
easily understand this phenomenon at a junction
where two roads merge in one : if there are too
many vehicles trying to access the same road,
there is a sort of mutual embarrassment between
the drivers which results in an outgoing flow lower
than the optimal possible flow.
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This phenomenon has been experimentally ob-
served (see Cassidy and Bertini (1999) and Hall
and Agyemang-Duah (1991)). The flow decrease,
which may range up to 15 %, has a considerable
influence when considering traffic control (Papa-
georgiou (2002)). Having a model describing this
phenomenon is thus a critical element in the es-
tablishment of a traffic state regulation strategy.

There exists already some models, like the ME-
TANET cell-based model (see Papageorgiou et al.
(1990)), which are able to reproduce some of
the interesting behaviours on a network like the
capacity drop phenomenon at the end of a traffic
jam. In the case of macroscopic time and space
continuous models, there exist various network
models like the models developed by Holden and
Risebro (Holden and Risebro (1995)), by Coclite
and Piccoli (Coclite et al. (2004)) and by Herty
and Klar (Herty and Klar (2003)). But none



of these previous macroscopic models are able
to represent the capacity drop phenomenon. In
this article, we will present an extension of these
models in order to represent this phenomenon and
the important consequences of this modification
on the traffic behaviour. The main consequences
of this modification are the larger amplitude of the
traffic jams occurring at junctions and also that
some traffic jams, which were previously transient,
become permanent.

Recently, Lebacque (see Lebacque (2004)) has
proposed a model able to represent this drop
phenomenon by introducing a new state variable
describing the state of the junction. In this ar-
ticle, we will develop such model without the
introduction of new state variables. We will de-
velop our model on the basis of the Lighthill-
Whitham-Richards (LWR) model (see Lighthill
and Whitham (1955) and Richards (1956)) for the
description of the traffic state evolution on a single
road. In Section 2, we review the existing network
models based on the LWR model. In Section 3,
a new model of the junctions is introduced which
incorporates a representation of the capacity drop
phenomenon. The consequences will be presented
in Section 4.

2. THE LWR ROAD NETWORK MODELS

2.1 The LWR single road model

In LWR models, the traffic state is represented
from a macroscopic point of view by the function
ρ(x, t) which represents the density of vehicles at
position x and time t. The dynamics of the traffic
are represented by a conservation law expressed
as

∂ρ

∂t
+

∂(ρv)

∂x
= 0 (1)

where v = v(x, t) is the velocity of cars at (x, t).
The main assumption of the LWR model is that
the drivers instantaneously adapt their speed in
function of the surrounding density i.e. :

v(x, t) = V (ρ(x, t)). (2)

The function f(ρ) = ρV (ρ) is then the “flow rate”
representing the number of vehicles per time unit
passing through a particular position in function
of the traffic state at this position. Inserting (2)
in (1), the LWR model is :

∂ρ

∂t
+

∂f(ρ)

∂x
= 0. (3)

In accordance with the physical observations, it
is usually assumed that the speed-density relation
is a decreasing function ( ∂V

∂ρ
< 0) defined on the

interval [0, ρmax] with :

V (0) = Vmax : the maximal velocity of the vehi-
cles when the road is (almost) empty;

V (ρmax) = 0 : the velocity drops to zero when
the density is maximal and the traffic is totally
congested.

Then the flow rate f(ρ) = ρV (ρ) is a non mono-
tonic function with f(0) = 0 and f(ρmax) = 0
which is maximal at some critical value σ : the
traffic is moving freely when ρ < σ while the traffic
is congested when ρ > σ (see Fig. 1).
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Fig. 1. The speed and the flow in function of the
density.

A traditional problem studied for a conservation
law of the form (3) is the Riemann problem
which is an initial value problem where the initial
condition consists of two constant values :

ρ(x, 0) =

{

ρl if x ≤ 0

ρr if x > 0.

If the function f(ρ) is concave, the solution of the
Riemann problem consists in the connexion of the
initial states (ρl and ρr) by a wave of one of the
following types :

• shock wave if ρr > ρl. This shock wave
(a discontinuity in ρ) is moving at the speed
f(ρr)−f(ρl)

ρr−ρl

;
• rarefaction wave if ρr < ρl. The rarefaction

is a self-similar solution, i.e. it depends only
on x/t. The space occupied by the rarefaction
wave at time t is [f ′(ρl)t, f

′(ρr)t].

The Riemann problem is important, not only
because it allows an explicit solution but also
because the solution of any initial value prob-
lem with arbitrary initial conditions can be con-
structed from a set of appropriate Riemann prob-
lems (see e.g. Bressan (2000)).

However, the idea presented in this article doesn’t
rely on the concave assumption, a non-concave
function f(ρ) as represented in Figure 1 may be
used as well for the simulations.

2.2 The network model

The LWR model (3) is defined for a single unidi-
rectional road. But in this paper, we are concerned



with the analysis of traffic congestion in road
networks.

The simplest network we consider is a junction
composed of two incoming and one outgoing infi-
nite roads (see Fig. 2). Naturally, we assume that
the density on each link satisfies the single road
LWR model

∂ρi

∂t
+

∂f(ρi)

∂xi

= 0 ∀t, xi ∈

{

] −∞, 0[ i = 1, 2

]0,∞[ i = 3.

(4)
In order to complete the model, we need to de-
scribe the mechanism that occurs at the junction.
A first condition is the conservation of flows

2
∑

i=1

f(ρi(0, t)) = f(ρ3(0, t)) ∀t. (5)
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Fig. 2. A simple network.

Like for the single road model, one of the ele-
mentary problem we can study, and from which a
global solution will be constructed, is the Riemann
problem. For a Riemann problem at a junction, we
take as initial condition a constant density on the
three roads :

ρi(xi, 0) = ρi,0 i = 1, 2, 3. (6)

However as it can be expected, for the system of
conservation laws (4), the boundary condition (5)
and the initial condition (6) are not sufficient to
have a unique solution to the Riemann problem at
the junction. In addition, some of the admissible
solutions may be totally unrealistic. For instance,
ρ̄1 = ρ̄2 = ρmax, ρ̄3 = 0 is always a possible
mathematical solution although is is clearly coun-
terintuitive (except obviously in the presence of
a red light at the entrance of the third road). A
natural way to have a unique solution is to add a
model describing the behaviour of the drivers at
the junction.

2.3 A brief review of some junction models

To describe a solution of a Riemann problem at
a junction, given the initial condition (6) at time
t, the model must express the values of the new
densities at the borders of the junction at time
t+ :

ρi(0, t
+) = ρ̄i i = 1, 2

ρ3(0, t
+) = ρ̄3.

After having specified the values of the densities
at the borders of the roads, the solution of the

Riemann problem at the junction will be based
on the Riemann problems on the different roads :

{

ρi(xi, 0) = ρi,0 ∀xi < 0

ρi(0, 0) = ρ̄i

i = 1, 2

{

ρ3(0, 0) = ρ̄3

ρ3(x3, 0) = ρ3,0 ∀x3 > 0.

Several models of junctions have been proposed in
the literature (see Coclite et al. (2004), Herty and
Klar (2003), Jin and Zhang (2003), Lebacque and
Khoshyaran (1998-2002) and Holden and Risebro
(1995)). They all involve the following condition :

Because the wave (ρi,0—ρ̄i) produced on an in-
coming road by the Riemann problem at the junc-
tion must have a negative speed (to not immedi-
ately re-enter in the junction), the possible values
for ρ̄i must be restricted to a subset of [0, ρmax].
This is the same for the outgoing road where the
speed of the waves (ρ̄3—ρ3,0) produced by the
Riemann problem at the junction must be posi-
tive. Based on the speed of the waves described in
section 2.1, one can show that we must have

ρ̄i ∈

{

{ρi,0}∪]τ(ρi,0), ρmax] if 0 ≤ ρi,0 < σ
[σ, ρmax] if σ ≤ ρi,0 ≤ ρmax

i = 1, 2

ρ̄i ∈

{

[0, σ] if 0 ≤ ρi,0 ≤ σ
{ρi,0} ∪ [0, τ(ρi,0)[ if σ < ρi,0 ≤ ρmax

i = 3

where for each ρ 6= σ, τ(ρ) is the unique number
τ(ρ) 6= ρ such that f(ρ) = f(τ(ρ)). In terms of
flow, the admissible regions for the flows are

f(ρ̄i) ∈ [0, Si] =

{

[0, f(ρi,0)] if 0 ≤ ρi,0 ≤ σ
[0, f(σ)] if σ ≤ ρi,0 ≤ ρmax

i = 1, 2

f(ρ̄i) ∈ [0, Ri] =

{

[0, f(σ)] if 0 ≤ ρi,0 ≤ σ
[0, f(ρi,0)] if σ ≤ ρi,0 ≤ ρmax

i = 3 (7)

where Si represents the “sending” capacity (some-
times called the traffic demand) of an incoming
road and Ri the “receiving” capacity (the traffic
supply) of an outgoing road (see Daganzo (1995)
and Lebacque (2004)).

In our simple network represented in Fig. 2, a
natural additional condition to (5) and (7) could
be the maximisation of the passing flow :

2
∑

i=1

f(ρ̄i).

In the case where S1 + S2 ≤ R3, the maximum is
unique

{

f(ρ̄i) = Si i = 1, 2

f(ρ̄3) = S1 + S2.



If S1 + S2 > R3, we must give some “priority
factors” between the incoming flows. Several are
possible (see Jin and Zhang (2003)) :

• the priority factors may be function of the
incoming flows

αi =
Si

∑2
i=1 Si

;

• the priority factors may depend on some
fixed coefficients pi depending on the road
geometry

αi =







pi R3pi ≤ Si

Si

R3
Si < R3pi.

The possible passing flow is then split between
the incoming roads in function of these priority
factors :

{

f(ρ̄i) = αiR3 i = 1, 2

f(ρ̄3) = R3.

In the case of multiple incoming–outgoing roads,
some other models were developed (see Holden
and Risebro (1995) and Coclite et al. (2004)).

3. A NEW MODEL FOR THE JUNCTIONS

As we have already said in the introduction,
the capacity drop phenomenon has a significant
importance when considering the establishment
of a regulation strategy. However, none of the
previous cited models are able to represent this
capacity drop phenomenon.

Instead of maximising the criterion over the region
defined by (7), we suggest to make the maximisa-
tion over a subregion. Defining

R′
3 = min

(

R3, g

(

∑

i

Si

))

where g(x) is a function whose shape is repre-
sented in Figure 3.

f(σ) 

x 

g(x) 

f(σ) 

Fig. 3. Possible shape of a g-“capacity drop func-
tion”.

In this expression of R′
3, we have

•
∑

i Si which represents the sum of the flows
wishing to enter the outgoing road ;

• the function g(·) which expresses the fact
that when too many vehicles are trying to
enter in the same road (

∑

i Si > f(σ)), there
is a sort of mutual embarrassment which
decreases the capacity of the outgoing road
(R′

3 ≤ g(·) < f(σ));
• the min(R3, ·) to be guarantee to remain in

a subregion of (7).

We may now optimise any of the criteria men-
tioned in section 2.3 with

f(ρ̄i) ∈

{

[0, Si] i = 1, 2
[0, R′

3] i = 3

instead of (7).

This redefinition of the reception capacity is a cor-
rect expression of the capacity drop phenomenon :
if too many drivers are trying to access the same
road (a traffic jam is occurring), the output flow
will be lower than the maximum achievable flow
(f(σ)). As we will see in the next section, this
modification has significant consequences on the
system behaviour.

4. SIMULATION EXPERIMENTS

In this section, the consequences of the capacity
drop at the junctions will be presented for the
simple network represented in Figure 2. The func-
tion f(ρ) used is represented in Figure 1 with
f(σ) = 2880 [veh/h].
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Fig. 4. The demand at the entrance of the first
incoming road.

As initial condition, we take 1400 [veh/h] for the
flows on the two incoming roads and 2800 on the
outgoing one. This is an admissible state for (7)
and it is optimal for all the criteria presented in
section 2.3. After a while, a temporary increase of
flow up to 1550 is added at the beginning of the
first incoming road (see Fig. 4). The sum of the
two incoming flows (1400+1550=2950) is too high
for the outgoing road so a traffic jam will occur.
We may now distinguish two cases :



without the capacity drop representation : the
traffic jam will grow and, when the incoming
flow on the first road will finally go back to 1400,
the traffic jam will decrease to finally disappear
(see Fig. 5 where the traffic state on road 1 and
road 2 are represented).

with the capacity drop representation : be-
cause of the presence of the traffic jams in
front of the junction, the reception capacity
of the outgoing road will drop down to 2736
(=0.95f(σ)). The traffic jam will grow and,
even after that the incoming flow on the first
road has gone back to 1400, the sum of the
incoming flows is too high for the new reception
capacity of the outgoing road (1400+1400 >
2736). As we can see in Fig. 6, the traffic jam
will never stop of growing. In order to make the
jam disappear, the incoming flow must be sig-
nificantly lower than it was before the creation
of the jam.

Fig. 5. The evolution of the traffic state in absence
of a capacity drop representation.

Fig. 6. The evolution of the traffic state in pres-
ence of a capacity drop representation.

Fig. 7. The evolution of the traffic state in pres-
ence of a capacity drop representation and a
ramp metering strategy.

5. CONCLUSIONS

As we have seen in the previous section, the
representation of the capacity drop phenomenon
has significant consequences on the system be-
haviour. Here, the application of a control strategy
is meaningful. We can use, for example, some
ramp metering strategy (see Papageorgiou (2002))
to maintain the density at the entrance of the
junction under a critical threshold. The control
will permit to return to the full reception capacity
of the outgoing road and make the traffic jam
disappear forever as it can be seen in Fig. 7. At
first glance, it may seem surprising that the traffic
state on road 3 at the end of the simulation is
not the same that at the beginning. The reason
is that the control strategy, in order to make the
traffic jam disappear, had to limit the entering
flow. After the traffic jam has disappeared, the
vehicles stopped at the entrance of road 1 must
still enter into the road so the demand at the end
of the simulation is higher than at the beginning.

Without this modification, the control wasn’t
needed to make the system return to an un-
congested state. A correct modelling of the ca-
pacity drop phenomenon at the junctions is thus
a critical element in the establishment of a traffic
state regulation strategy.

If we consider now a more general network with
multiple incoming-outgoing roads junction such as
in the models Coclite et al. (2004) and Holden
and Risebro (1995), the same modification is still
possible. We modify the reception capacity of the
jth outgoing road by

R′
j = min

(

Rj , g

(

∑

i

αjiSi

))

where αji represent the percentage of drivers
from the incoming road i who wish to enter the
outgoing road j.



REFERENCES

Alberto Bressan. Hyperbolic Systems of Conser-
vation Laws – The One-dimensional Cauchy
Problem. Oxford University Press, 2000.

M. J. Cassidy and R. L. Bertini. Some traffic
features at freeway bottlenecks. Transportation
Research Part B, B33:25–42, 1999.

G. M. Coclite, M. Garavello, and B. Piccoli.
Traffic flow on a road network. to appear in
SIAM J. Math. Anal., 2004.

C.F. Daganzo. The cell transmission model 2:
network simulation. Transportation Research B,
29B(2):79–93, 1995.

F. L. Hall and K. Agyemang-Duah. Freeway
capacity drop and the definition of capacity.
Transportation Record, (1320):99–109, 1991.

M. Herty and A. Klar. Modeling, simulation, and
optimization of traffic flow networks. SIAM J.
Sci. Comput., 25(3):1066–1087, 2003.

H. Holden and N. H. Risebro. A mathematical
model of traffic flow on a network of unidirec-
tional roads. Siam J. Math. Anal., 26(4):999–
1017, 1995.

W.L. Jin and H.M. Zhang. On the ditribution
schemes for determining flows through a merge.
Transportation Research PartB, (37):521–540,
2003.

JP Lebacque. The godunov scheme and what it
means for first order traffic flow models. In
Transportation and traffic flow theory, Proceed-
ings of the 13th ISTTT, Pergamon, 1996.

JP Lebacque. Intersection modeling, application
to macroscopic network traffic flow models and
traffic management. In S. Hoogendoorn and
M. Schreckenberg, editors, Proceedings of Traf-
fic and Granular Flow’03. Springer, 2004.

JP Lebacque and MM Khoshyaran. Transporta-
tion planning: the state of the art, Macroscopic
flow models, pages 119–139. 1998-2002.

M. J. Lighthill and J. B. Whitham. On kinematic
waves. i: Flow movement in long rivers. ii: A
theory of traffic flow on long crowded roads.
Proc. Royal Soc. London Ser. A, (229):281–345,
1955.

HK Lo. A dynamical traffic assignment formu-
lation that encapsulates the cell-transmission
model. In Transportation and traffic flow the-
ory, Proceedings of the 14th ISTTT, Pergamon,
1999.

P Nelson and N. Kumar. Point constriction, inter-
face and boundary conditions for the kinematic-
wave model, trb 2004 annual meeting. 2004.

M. Papageorgiou, J.-M. Blosseville, and H. Hadj-
Salem. Modelling and real-time control of
traffic flow on the southern part of Boulevar
Périphérique in Paris: Part ii : coordinated on-
ramp metering. Transportation Research Part
A, 24A(5):361–370, 1990.

Markos Papageorgiou. Freeway ramp metering :
An overview. IEEE transactions on intelligent
transportation systems, 3(4):271–281, december
2002.

P. I. Richards. Shock waves on the highway. Oper.
Res, (4):42–51, 1956.

N. Elloumi and H. Haj-Salem, METACOR: A
Macroscopic Modelling Tool For Urban Corri-
dor, volume I, 135-149, Capri-Italy. Congress
Center, June 23-28, 1994. TRISTAN III : TRI-
ennal Symposium on Transportation Analysis.


