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ABSTRACT 

The ability of telemetered networks to provide accurate estimates of 
rainfall-runoff model inputs is undermined by the high cost of automated 
stations and telemetering facilities. It is therefore of great importance 
to assess the resulting accuracy loss when areal rainfall is estimated using 
low density telemetered networks as compared to conventional raingage 
networks of greater density. Such an assessment has been carried out on a 
catchment area located in southern France, within the region covered by the 
flash flood warning system described in an accompanying paper presented at 
this symposium. The behaviours of two linear estimators are compared, using 
various network densities, mainly from the estimation error variance 
standpoint. For this comparison, the mean areal rainfall computed from a 
non-telemetered high density network is used as a reference. The two linear 
estimators considered are Thiessen polygons and climatological kriging. 

INTRODUCTION 

Real time flash flood forecasting requires as a first step the real time 
knowledge of the inputs (mainly rainfall) of the hydrological system. In 
the flash flood warning pilot system presented in a companion paper by 
Leoussov and Lebel this requirement is reached through telemetering 
facilities, the high cost of which results in a relatively low density 
observation network, thereby reducing the accuracy of the input estimation. 
The system is presently fully operational in terms of technology but 
improvement is needed with regard to accurate and timely flood forecasts. 
Along with a few other meteorological parameters, rainfall and runoff data 
are telemetered to a central site where the flood forecasting is carried 
out. After studying a few hydrological models, and ARMAX model (Delleur and 
Obled, 1985) was developed which enables forecasting the runoff one hour in 
advance for several watersheds, the area of which range from 300 to 600Km2. 
Today active research is still carried,, out to increase the forecasting lead 
time up to three hours. It appears nevertheless that a good estimation of 
the input remains a critical requirement to improve the accuracy of the 
forecasting. It was consequently decided to compare several areal rainfall 
estimators (Lebel, 1984) in order to select the most accurate and to assess 
the loss of information involved when using the telemetered network for 
real-time computation of areal rainfalls. 

This paper intends to summarize the main results of this comparison for 
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two widely used linear estimators: a classical method, the Thiessen polygon 
technique, and a more recent, statistically based method, kriging. Using 
the geostatistical approach on which is based the kriging technique, a 
theoretical accuracy criterion is developed: the scaled variance of the 
estimation error. This criterion is used as a tool to assess the accuracy 
of the different estimators and the influence of the network density. 

THIESSEN POLYGONS AND CLIMATOLOGICAL KRIGING 

The areal rainfall, over an area £,is commonly defined as: 

Z = -I Zk(x,y)dxdy (1) 
k s)s 

where Z^(x,y) denotes the point rainfall depth at the point (x,y), for the 
kt'1 time interval of duration 8, and s=/S/ 

This quantity Zs
k is obviously unknown since the rainfall depth is 

accessible only at a finite number (say n) of scattered pointwise 
observations. It is therefore common practice in hydrology to estimate Zs^ 
using linear estimators of the form: 

s n , i 
Z = 2 \Z (2) 

k i=l k 
i.e. as a weighted mean of the random variables Z^-k,Z^k, . .. ,Zn

k observed at 
the raingages. Thiessen polygons and Kriging differ from one another in the 
way of computing the coefficients Â . 

Thiessen polygons: In this method (Thiessen, 1911), the watershed S is 
divided into n zones of influence Sj, one for each raingage. The zone of 
influence of a raingage is defined by those points which are closer to that 
gage than to any other station. 

The weighting coefficients ?\| are then computed as: 
'Xj = Sj_/s i = 1,. .. ,n 

where Sj = /S^/ 

Climatological kriging: Climatological kriging is an extension of the 
kriging technique as applied to rainfall fields by Delfiner and 
Delhomme(1973), Creutin and 0bled(1982), Bastin et al.(1984) among others. 
Kriging is a linear minimum variance estimation method and as such it 
requires knowledge of the statistical spatial structure of the random field. 
This structure is characterized by a structural function, the variogram, 
which is often identified separately for each realization of the rainfall 
field. In a real time context this approach has two main drawbacks: (a) 
most often, a large number of field realizations have been observed and are 
available for the inference of the covariance function. By treating each 
realization separately, one makes only very partial use of the global 
statistical information contained in the whole data set; (b) a careful 
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determination of the random field structure function at each time step may 
be too time consuming for real time operation with short time steps. 
Furthermore, reliable values of the model parameters cannot be obtained from 
a small number of data points (less than around 15-20). 
Therefore, on the basis of several previous investigations (Creutin and 
Obled, [19823; Bastin et al., [19843; Lebel and Bastin, [19853), it appears 
that a reasonable trade off is to adopt an analytical variogram model of the 
form: 

y(h;k) = a(k) y* (h,0) (3) 

where h is the euclidian distance, alk) a scaling parameter and 0 a shape 
parameter. With this structure, all time non-stationarity (i.e. dependence 
on the time index k) is concentrated in the scale factor a(k), while the 
component y*(h,0) (which we call the "scaled climatological variogram") is 
time invariant. 

In a region of relatively regular weather patterns, Bastin et al (1984) 
successfully used a single climatological variogram y* for the estimation of 
areal rainfall throughout the year. In such a case the scaling factor a(k) 
mainly reflects the seasonal variation of the spatial structure of the 
rainfall field. In regions where the climatic variability is stronger (as 
it is the case in the Cevennes region), a unique climatological variogram 
y*(h,0) is used only for storms issuing from the same kind of weather 
conditions. The parameter, a (k) then mainly accounts for the scale effect 
due to the variation in time of the mean rainfall intensity. When the 
variogram is bounded we can impose, without loss of generality, that: 

lilt y*(h,0) = 1 

a(k) being the variance of the k*-*1 field and y*(h,0) the unique variogram of 
all the scaled random fields defined by: 

z*k = Zk/Ja(k) k=l K (4) 

The scaled experimental variogram of the process Z* is obtained from the 
accumulation of K scaled field realizations: 

y*(hii) = % S \z ) * -(z ) * ]2 
J k=lt k k J 

i i 
where (z ) * = z // a(k), 

k k 
and z1^ denotes the value taken by the random variable 

zv 
It can thus be proceeded to the identification of a model of the 

climatological variogram y* of Z*. This inference is performed using a 
"mean squared interpolation error"(MSIE) criterion (Lebel and Bastin, 1985) 
and is based on a much larger data set than the one which would have been 
used in a single realization context. 

An example of the scaled climatological variogram model corresponding to 
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FIGs 1 Recording raingage network 

over the area of study 

the time-step 8 = 1 h and using the entire recording raingage network (fig. 
1) over the Cevennes region is shown in figure 2. 

The density of the classical raingage network used to identify the 
variogram model is much larger than the density of the telemetered network 
presented in the companion paper by Leoussov and Lebel. The basic data were 
the strongest hourly autumn rainfalls between 1971 and 1980. These 
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rainfalls were accumulated to obtain 2,4,6,12 and 24 hour rainfalls. The 
identification of the scaled variogram for each of the six time steps was 
carried out using the MSIE method. The main results are as follow: 

(a) A locally constant drift model and a spherical isotropic scaled 
climatological variogram model were selected: it should be emphasized that 
this structural choice (stationary drift, bounded and isotropic 
variogram...) is not arbitrary, but results from a careful analysis. 

(b) The spherical variogram model is of the form: 

h h 
y*(h,B) = Hi(3 -) - (-)3) for 0 < h < 8 

B B 

y*(h,B) = 1 for h > B 
where 0 is the range of the variogram. The optimal estimates of S arising 
from the identification study are illustrated in figure 3, along with the 
empirical relation: 

6(d) = 25 90-3 

that has been derived from these values. This relation allows computation 
of 6 (and hence of the areal rainfall) at time steps for which the variogram 
was not inferred. 

(c) The parameter a(k) is estimated as the experimental variance of the kth 

realization of the rainfall field. 
For further details see Lebel and Bastin (1985). 
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FIG. 2 Scaled climatological variogram of hourly rainfall 
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FIG. 3 Relationship between the duration of rainfall accumulation and the 
range of the spherical variogram model 

An advantage of the climatological approach is that the coefficients A^ 
of the Kriging estimation are independent of a(k). Hence, they depend only 
on the scaled climatological variogram y*(h,B) and can be computed once and 
for all, as for the Thiessen estimator. This makes the climatological 
kriging technique very well suited to real time applications. 

MEASURING THE AREAL 
ESTIMATION ERROR 

RAINFALL ACCURACY WITH THE SCALED VARIANCE OF THE 

The variance of the estimation error of any linear estimator is defined as: 

(5) (a ) 2 = Var(Z 
k k 

Z ) = Var(S 7s±Z 
k k 

s 
Z ) 

k 
A byproduct of the climatological variogram approach is the possibility of 
computing a scaled variance of estimation error (os

u)
2, that can be used as 

a global (i.e. not relevant to a single event) comparative index of the 
accuracy of the areal rainfall estimation for various network densities. As 
a matter of fact, using the climatological variogram defined in section 2, 
it is easy to show (Lebel and Bastin, 1985) that the estimation error 
variance (5) of any linear estimator can be written: 

(a ) 2 = a(k). (a ) ' 
k u 

(6) 
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with: 

s . 1 n - r 1 
(a )•* = - Z A.,; Y*(uiu,0) du - - f f y*(uu',0) du du' * p (7a) 

u s i=l J s 2JsJ s 

where u± is the location of raingage i , u and u' are current points in S, 
Uj_u is the euclidian distance between u± and u, and p is the Lagrange 
multiplier (in the case of zero order drift). 

In practice, the integrals in expression (7a) are computed using the 
following discrete approximation: 

s i 1 L M 
Cff ) 2 = - Z Ajj Z Y*(u1u1,0> - - Z Z Y*(u1um,B) * fj (7b) 

u s i M 1 x 2 1=1 m=l 
3 

Given expression (6), <a3
n>

2 is the ratio between the areal rainfall 
estimation error variance and the field variance. 

Once the climatological variogram model has been chosen (i.e. once the 
value of 0 has been chosen), the scaled estimation error variance (o3 ) 2 can 
be viewed as depending exclusively on the number and the locations of the 
raingages. Therefore, <os

u)
2 is an efficient tool for solving raingage 

network optimization problems such as the optimal choice of raingage 
locations (Bastin et al., 1984). In this paper it will be used as the basic 
criterion for analysing the influence of the network density on the 
estimation and for comparing the two estimators. Of course, the validity of 
this criterion must be checked since by definition the kriging estimation 
error variance is lower than that of the other two methods. 

INFLUENCE OF THE NETWORK DENSITY ON THE ESTIMATION ACCURACY 

In order to compare several estimates of the areal rainfall over a given 
watershed (i.e. two estimators for various network densities), a reference 
value has to be chosen since no direct measurement of the areal rainfall is 
available. The Thiessen estimate base on the network of 34 classical 
raingages was selected to provide for such a reference value; it is noted 
(zskft • In fact any linear estimator using such a dense network could have 
been selected since they yield equivalent results (lebel, 1984). 

Because the density of the telemetered network is fairly low compared to 
that of the entire network, three other intermediate density networks were 
considered in figure 4. The network density is defined as the area (1450 
km^) of a circle containing the main watershed, divided by the number of 
gages located inside this circle. 

Theoretical variances of estimation error 

The scaled variances of estimation error computed using expression (7b), 
provide overall comparison criteria, irrespective of the magnitude of a 
given event. The results of these computations are summarized in table 1 
and illustrated in figure 5. It can be seen that: 

(1) Whatever the method considered, the estimation error variance 
increases in a fairly regular way as the network density decreases. 
It tops at 81% of the scaled field variance when the Thiessen 
estimate is used with the telemetered network on the smallest 
watershed. 
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11 RECORDING RAINGAGE NETWORK. ' Â G 111 km2 14 RECORDING RAINGAGE NETWORK AG 14S km2 

FIG. 4 Telemetered network and networks of intermediate density. Ag is the 
area per gage 

(2) By contrast, one can observe the large differences that always exist 
between kriging and the other estimates, especially when it comes to 
low density networks. 

Nevertheless the conclusion that kriging is more accurate (in a way that 
can be evaluated with table 1) holds only if the theoretical variance (as

u)
2 

computed from the variogram model is a realistic measure of the actual 
estimation variance (whatever the estimator considered). This is the reason 
why we believe that an experimental validation analysis based on the "true" 
reference values defined above is needed to check the validity of the 
results of table 1. 

Experimental validation 

Experimental validation was carried out in two ways: 
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Table 1 : Scaled variance of hourly areal rainfall estimation error 

Number of stations 

(Ag km?)* 

GARDON A St ANDRE (53 km2 ) 

Kriging 

Thiessen 

GARDON A St JEAN (N°1 -165 km2) 

Kriging 

Thiessen 

GARDON DE MIALET (237 km2) 

Kriging 

Thiessen 

GARDON DE St JEAN (n°2 - 265 km2) 

Kriging 

Thiessen 

GARDON D'ANDUZE (545 km2) 

Kriging 

Thiessen 

17 

(112) 

.152 

.194 

.040 

.047 

028 

.035 

.033 

.039 

.015 

.020 

14 

(145) 

.221 

.327 

.054 

.067 

.040 

.063 

.039 

.049 

.020 

.031 

11 

(207) 

.230 

.327 

.063 

.078 

.113 

.153 

.042 

.054 

.039 

.055 

Telemetered 

(242) 

.563 

.814 

.148 

.210 

.185 

.289 

.080 

.110 

.074 

.108 

* Ag is the gage area in square kilometers 

(1) by computing correlations between the "true" reference values (z3^) and 
the low density network estimates zs^, on a sample of hourly rain events, 
and (2) by counting the number of times that the reference value belongs to 
the theoretical confidence interval (C.I) of the estimate. Computation of 
correlation coefficients allows a posteriori assessment of the 
cofluctuation of tested estimations and reference values. 

It is worth nothing that these "true" values are independent of the 
variogram model used to compute the estimation error variance since Thiessen 
estimates were taken as the reference. 

The data set used for the computation of the correlation coefficients 
between the reference values and the various areal estimates was enlarged to 
include 200 hourly events, i.e. 97 events not used in the variogram model 
inference were taken into account. The Thiessen estimations using the dense 
network were computed for the 200 events, making up five reference data sets 
(one for each subwatershed). Thiessen and kriging values were computed 
using four other networks of decreasing densities thus making up twelve data 
sets for each subwatershed to be compared to the corresponding reference 
data set. 

The variation of correlation coefficients (table 2) with the network 
density and the watershed area is very similar to the variation of the 
scaled estimation variances (table 1). The interest of this test is that it 
applies to the actual rainfall process Z^ and not to the scaled field Z*^. 

An experimental procedure was then derived to test both the accuracy of 
the estimators and the reliability of the theoretical variances of 
estimation error. This procedure is as follows: 
(a) Computation of (0s

u)^ and the sampling variance of the ktlri field a(k) 
allows computation of the theoretical unsealed variance of the estimation 
error (a3^)^ using expression (6). For each subwatershed, the value of 
(os

u)2 is given in table 1, while the value a(k) is the same for every 
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FIG. 5 Scaled variance of estimation error as a function of the network 
density and the surface area 

watershed since it is a characteristic statistical parameter of the field 
a(k) is computed with the dense network in order to provide an accurate as 
possible estimation of the true variability of the field. 

(b) Once this has been done, the theoretical confidence interval of the 
estimation is expressed as: 

s . s 
(z r ± c.a 
k k 

(8) 

where c is a constant whose value defines the amplitude of the confidence 
interval and as -̂ is the theoretical unsealed standard deviation of 
estimation error. 
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Table 2 : Correlation coefficients between reference areal rainfalls computed with 

the dense network of 34 stations and various estimates (200 events). 

Number of stations 

GARDON A St ANDRE (53 km2) 

Kriging 

Thiessen 

GARDON AStJEAN(N°1-165km 2 ) 

Kriging 

Thiessen 

GARDON DE MIALET (237 km*) 

Kriging 

Thiessen 

GARDON DE St JEAN (n°2 - 265 km2) 

Kriging 

Thiessen 

GARDON D'ANDUZE (545 km*) 

Kriging 

Thiessen 

17 

(112)* 

.98 

.96 

.96 

.92 

.99 

.98 

.99 

.98 

.98 

.97 

14 

(145) 

.96 

.84 

.94 

.91 

.96 

.93 

.96 

.93 

.96 

.94 

11 

(207) 

.91 

.84 

.93 

.86 

.87 

.76 

.87 

.76 

.93 

.91 

Telemetered 

(242) 

.49 

.14 

.78 

.64 

.85 

.76 

.85 

.76 

.87 

.83 

•Area per gage (km2) 

(c) Next it is determined whether or not the reference value zs£ belongs to 
the theoretical confidence interval. 

If the distribution of errors is assumed to be Gaussian, zs^ should 
belong to the confidence interval 68 times out of a hundred for c = 1, and 
95 times out of a hundred for c = 2. 

The test was performed using the reference data sets of 200 hourly events 
set up to compute the correlation coefficients above. The scores of table 3 
are the average over the 200 events for each watershed and each network. It 
can be seen that, except for the smallest watershed, the proportion of 
"true" values belonging to the theoretical one standard deviation confidence 
interval remains around the expected value of 0.68. Concerning the two 
standard deviation intervals, the experimental proportions of "hits" are 
very close to the expected theoretical value of 0.95. As a consequence, the 
curves of Figure 5 may be deemed relevant in assessing the performance of 
one of the network considered herein, with respect to the area of the 
watershed and the network density. 

COMMENTS AND CONCLUSIONS 

The experimental confirmation of the theoretical values of the estimation 
error variance proves the robustness of the climatological approach and of 
the variogram inference process. Among the few variogram models available, 
the spherical model is a convenient tool for it provides a value of the 
decorrelation distance. In the Cevennes region, the relation between this 



Thierry Lebel & G. Bastin 78 

Table 3 : Percentage of reference values belonging to the theoretical confidence interval 
computed with expression (8). 
a: one standard deviation interval 
b : two " 

Kriging 

17 

14 

11 

tel. 

Thiessen 

17 

14 

11 

tel . 

St ANDRE 

(53 km=) 

a 

.88 

.82 

.85 

82 

.87 

.79 

.79 

.81 

b 

1.00 

.96 

.96 

.98 

.98 

.94 

.96 

.97 

StJEANn- l 

(165 km2) 

a 

.60 

.58 

.65 

.68 

.67 

.66 

.68 

.69 

b 

.79 

.69 

.87 

.90 

.87 

.91 

.86 

.94 

St JEAN n°2 

(265 km') 

a 

.72 

.69 

.69 

.70 

.80 

.77 

.72 

.79 

b 

.88 

.90 

.91 

,95 

94 

92 

.92 

,96 

MIALET 

(237 km?) 

a 

81 

67 

70 

69 

.78 

.70 

.56 

.65 

b 

.96 

.92 

.96 

.95 

.96 

.92 

.95 

.96 

ANDUZE 

(545 km*) 

a 

.69 

.68 

.72 

73 

.75 

.71 

.63 

.70 

b 

.97 

.93 

.94 

.96 

.96 

.92 

.95 

.97 

'Theoretical percentages, assuming a Gaussian distribution of errors are : a : .682 
b : 9 5 4 

distance and the time step of rainfall accumulation seems to be well 
approximated by a power type function. This allows computation of the range 
(decorrelation distance) for any time step between one hour (25 km) and 24 
hours (65 km). Since the procedure of theoretical estimation error variance 
computation was validated experimentally on hourly data, extension of the 
method to other time steps appeared founded. The Kriging scaled variances 
were computed for six time steps (1,2,4,6,12,24 hours) with the variogram 
model inferred from experimental variograms (see values of the range in 
figure 3). An accuracy measure of the Kriging interpolation process was 
thus available for various network densities, watershed areas, and time 
steps of rainfall accumulation. This information is summarized in figure 6. 
For clarity, only a few values are marked in the chart, but other values are 
easy to infer because the distance between the parallel straight lines is 
relatively small. 

Using the chart of fig. 6, it is possible to evaluate whether or not the 
density of any network meets a desired accuracy with respect to a given time 
step and a given watershed area. This is of interest in assessing existing 
networks as well as in designing a future network. Furthermore, values of 
the estimation error variance may be derived for time steps at which no data 
were collected, providing that a good estimation of the correlation range is 
possible. 

This is of particular interest since the time step desired is often 
dependent on the watershed response to the rainfall input. In many cases, 
no data are available at that time step, but the chart allows an a priori 
assessment of the expected variance of estimation error, before any further 
study or investment are considered. Although the general patterns of this 
chart are similar to those given by Huff (1970) in Illinois and Woodley et 
al (1975) in Florida, it would be of course unwise to extrapolate the 
results to other areas. 
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100 200 300 

FIG. 6 Theoretical scaled estimation variance of areal rainfall as a 
function of watershed area, gage area, and time step 

Concerning the accuracy of areal rainfall estimation with the telemetered 
network, note that the scaled Kriging variance of estimation error remains 
lower that ten per cent for watersheds of areas greater than 100 km**. This 
indicates that ground based networks provide a sufficiently accurate 
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estimation for hourly areal rainfall in this region, since for smaller 
watersheds one would probably have to work at a time step smaller than one 
hour. However, it must be kept in mind that this region is very well 
instrumented, and conversely this approach has proved that in many other 
French regions an accurate real-time estimation of areal rainfall is still 
impossible with currently available data. Given the results of this paper, 
the increase in accuracy that can be expected from the uses of 
meteorological radar, compared with relatively dense telemetered networks, 
should be studied carefully to help hydrologists decide which solution is 
best suited to a given problem. 
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