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Abstract. The concept of elementary flux vector is valuable in a number of applications of metabolic
engineering. For instance, in metabolic flux analysis, each admissible flux vector can be expressed as
a non-negative linear combination of a small number of elementary flux vectors. However a critical
issue concerns the number of elementary flux vectors which may be huge because it combinatorially
increases with the size of the metabolic network. In this paper we present a fast algorithm that randomly
computes admissible flux vectors having a minimal decomposition without explicitely enumerating
all the elementary flux vectors of the network. The method is illustrated with an experimental case-
study on CHO cells where the network has 65329 elementary flux vectors while the admissible flux
distributions are expressed as a combination of 22 elementary vectors only.

1 Metabolic networks and elementary flux vectors
The intracellular metabolism of living cells is usually represented by a metabolic network under the form of a
directed hypergraph that encodes a set of biochemical reactions taking place within the cell. In this hypergraph,
the nodes represent the metabolites and the edges represent the metabolic fluxes.

According to the quasi steady-state paradigm of metabolic flux analysis (MFA) (e.g. [10]), it is assumed that the
fluxes are balanced at each internal node. This means that the net sum of production and consumption fluxes,
weighted by their stoichiometric coefficients, is zero for each internal metabolite of the network. This is expressed
by the algebraic relation:

Nv = 0 v > 0 (1)

where v = (v1,v2, . . . ,vm)T is the m-dimensional column vector of fluxes and N = [ni j] is the n×m stoichiometric
matrix of the metabolic network (m is the number of fluxes and n the number of internal nodes of the network).
More precisely, a flux v j denotes the rate of reaction j and a non-zero ni j is the stoichiometric coefficient of the
metabolite i in reaction j.

For a given metabolic network, the set S of possible flux distributions is the set of vectors v that satisfy the linear
system (1). This set S is the pointed polyhedral cone resulting from the intersection of the kernel of N with the
nonnegative orthant. This implies that there exists a set of elementary flux vectors ei ([11]) which are the edges
(or extremal rays) of the polyhedral cone and such that any flux distribution v can be expressed as a non-negative
linear combination of the vectors ei which form therefore a unique convex basis (see e.g. [12]) of the flux space S:

v = w1e1 +w2e2 + · · ·+wqeq wi > 0. (2)

The m× q non-negative matrix E with column vectors ei obviously satisfies NE = 0 and (2) can be written in
matrix form as

v = Ew with w , (w1,w2, . . . ,wq)T . (3)

2 Metabolic flux analysis
Metabolic flux analysis (MFA) is the exercise of calculating the admissible flux distributions v that satisfy the
steady state balance equation Nv = 0 together with an additional set of linear constraints added by using experi-
mental measurements. Here we consider the case where the measurements are collected in a vector vm which is a
linear function of the unknown flux distribution v and is expressed as

vm = Pv (4)

where P is a given p×m full-rank matrix. In addition, it is assumed that Pei 6= 0 ∀i or, in other terms, that the
elementary flux vectors ei do not belong to the kernel of the matrix P. Then, from equations (1)-(4), we have the
following fundamental equation of metabolic flux analysis

Σ

(
v
1

)
= 0 with Σ ,

(
N 0
P −vm

)
and v > 0. (5)



Figure 1: Illustration of the flux spaces S and F .

For a given metabolic network and a given set of measurements, the solution of the MFA problem is defined as
the set F of admissible flux distributions i.e. the set of non-negative vectors v that satisfy the homogeneous linear
system (5). Each admissible v must be such that the non-negative vector (vT 1)T belongs to the kernel of the matrix
Σ. Hence, as emphasized in [7, Chapter 4]-[8], the set F is a polytope in the positive orthant Rm

+. This means that
any admissible flux distribution v can be expressed as a convex combination of a set of non-negative basis vectors
fi which are the vertices of this polytope and form therefore a unique convex basis of the flux space F . In other
words, the solution of the MFA problem is the admissible flux space F defined as

F ,
{

v : v = ∑
i

αifi, αi > 0, ∑
i

αi = 1
}
. (6)

The admissible flux space F is a subset of the possible flux space S. In geometric terms, the polytope F defines
a subcone of the pointed cone S as illustrated in Fig.1.

3 Minimal decomposition of v ∈F in terms of elementary vectors ei
For any admissible flux vector v in the polytope F satisfying equation (5), it must be emphasized that the decom-
position of v in the convex basis {ei} is not unique. Our aim is to determine minimal decompositions which can
be useful in pratical applications of MFA. Using (3), system (5) is equivalent to the system:(

NE
PE

)
w =

(
0

vm

)
w > 0. (7)

We observe that the first equation NEw = 0 is trivially satisfied independently of w since by definition NE = 0.
Hence, system (7) may be reduced to the second equation:

PEw = vm w > 0.

or equivalently: (
PE −vm

)(
w
1

)
= 0 w > 0. (8)

In this form, it is clear that the set of admissible weighting vectors w that satisfy (8) again constitutes a convex
polytope that we denote H . Therefore there exists a set of appropriate edge vectors hi such that any arbitrary
convex combination of the form:

w = ∑
i

βihi βi > 0 ∑
i

βi = 1 (9)

is necessarily an admissible w satisfying (8). The convex basis vectors hi have a critical property : the number of
non-zero entries is equal to the size p of the vector vm i.e. the number of measurements (see [3] and Section 3.5 in
[7]). From a metabolic viewpoint, each vector hi is a particular solution w of (8) corresponding to an admissible
flux distribution v:

v = Ehi v ∈F (10)

In this expression, the non-zero entries of the vector hi are interpreted as the weights of the respective contributions
of the corresponding elementary flux vectors ei in the computation of the flux distribution v.

An important issue concerns the number of distinct extremal rays or vertices that are generated when computing
the cone S or the polytopes F and H . This number may become very large because it combinatorially increases
with the size of the underlying metabolic network. The Double Description (DD) method ([6]) is the simplest
known algorithm for enumerating the extremal rays of a polyhedral cone (see [3] for a review). In the context
of metabolic networks it has received various dedicated improvements that are documented in the literature (see
e.g. [9], [4] and [5]). In practical applications of MFA, the enumeration of all extremal rays is not necessarily a



critical objective. In many applications it is sufficient to know only one minimal decomposition of some vectors
v ∈F in terms of elementary vectors ei. It clearly follows from our analysis that such a minimal decomposition
involves ` terms with p 6 ` 6 (m−n). Furthermore, according to (10) there necessarily exist admissible v having
a decomposition that involves only p terms. Computing this decomposition may be very expensive at first sight
since the dimension of E is not bounded by a polynomial in the sizes of N and P.

In this paper we present a fast algorithm that randomly computes vectors v ∈F having such a minimal decom-
position from the sole knowledge of the stoichiometric matrices N, P and the measurement vector vm but without
explicitely enumerating the extremal rays of the cone S (i.e. the columns of the huge matrix E) and therefore
without solving the system (8).

4 The algorithm
Let us first consider the following simple problem: We are given a vector v that belongs to a cone S, and we would
like to express this vector as a linear combination of a few extremal rays of S.

Let us denote a = uT v the sum of the entries in v (u denotes the vector whose all entries are equal to one). In
the following we will consider without loss of generality the slightly different problem where we are looking for
extremal rays ei such that uT ei = a. Geometrically speaking, we cut the cone with a plane passing through v such
that the intersection is a bounded polytope whose vertices correspond to extremal rays of the initial cone S. We are
thus given a (bounded) polytope, and a vector v in this polytope and we want to express this vector v as a convex
combination of vertices of the polytope.

The algorithm essentially relies on two observations: first, we do not need to know all the extremal rays, what we
only need is a (small) subset, to express v as a convex combination of them. Second, all the constraints defining the
different cones are linear, and so we can make use of Linear Programming (e.g. [2]). More precisely, the problem
of finding a vertex of the polytope defined by the equations

Mx = 0, uT x = a, x > 0

can be done in time polynomial in the number of constraints and the dimension. Indeed, consider the following
linear program :

min dT x
s.t.
Mx = 0, (11)
x > 0,

uT x = a.

If d is not parallel to a constraint of the program (11), then, the solution is a vertex of the corresponding polytope
(see for instance [2]). So in practice, if d is a random direction, an extremal ray is found with probability one.

Let us now present our algorithm which proceeds iteratively by projecting v on faces Pi of the polytope P
described by the constraints of the program (11). Since the dimension of the faces Pi strictly decreases at each
step, the algorithm takes at most k−1 steps, where k is the dimension of the cone S.

Take any extremal ray e1 of the cone S (for instance by solving the linear program (11)); then the vector v can be
written as the convex combination of e1 and of a vector v1, which belongs to a face P1 of S: v = γ1e1 +(1−γ1)v1.
These quantities vi,γi are easy to compute, as v1 is the solution x∗ of the Linear Program

max µ

s.t.
Mx = 0, (12)
x > 0,

uT x = a,

v+ µ(v− e1) = x.

The geometric meaning of this linear program is as follows: starting fom the vector v one tries to find a point
x which is diametrically opposite to e1 and as far as possible from v. Clearly this point will be on a face of the
polytope (because if it is not, it is possible to go further). Here µ represents the distance from v to x.

Now Pi is a new polyhedron, and we still can express vi as a convex combination of a vertex of Pi (which is
also a vertex of S) and a point vi+1 that belongs to a face Pi+1 of Pi (which is also a face of S, but of dimension



strictly smaller than dimPi). Thus, after k′ ≤ k−1 steps, the dimension of Pk′ is equal to 0, which means that vk′

is actually a vertex of P which we denote ek′+1. Thus, vk′−1 = γk′ek′ +(1− γk′)ek′+1. Finally we can write:

v = v0

= γ1e1 +(1− γ1)(γ2e2 +(1− γ2)(. . .(γk′ek′ +(1− γk′)ek′+1)))

=
k′+1

∑
1

wiei,

with ∑wi = 1. Finally, as the dimension of the cone S is equal to k = m− n, we obtain at most m− n extremal
vectors ei. We have thus found the decomposition in polynomial time, which is a dramatic improvement compared
to the naive brute force approach that requires the enumeration of all vectors ei.

We now would like to express a vector v in F (that is a vector compatible with the measurements in vm) as a
linear combination of extremal rays of S. Moreover we would like to minimize the number of extremal rays in this
expression. Equation (9) and the remark below ensure us that there is such a vector v that can be expressed as a
combination of only p extremal rays ei of S. To see this, consider the expression (8) of the polytope H , which
describes the set of admissible values of w. It can be defined by only p equalities, so that dim(w)− p inequality
constraints can be activated to define an extremal ray hi of H . In conclusion, there are admissible vectors w (the
extremal rays of H ), that only contain at most p nonzero values. However, if one does not want to compute the
matrix E of extremal rays of S, this is not an easy task a priori to find such a minimal representation. Indeed, the
dimension of w is exponential in the size of the problem.

In order to compute such a "good" vector v and its corresponding decomposition, we introduce yet another cone
K ⊂ Rp. This cone is the projection of S by the matrix P :

K = {y = Pv : v > 0,Nv = 0}.

The idea of the algorithm is as follows: We know that the vector vm is in K , and we will express this vector
as a convex combination of p vectors, which are the projection of extremal rays ei under the matrix P. We
start from an extremal ray e1 of the cone F (for instance by applying the Linear Program (11)); then the vector
vm = y0 can be written as the convex combination of Pe1 and a vector y1, which belongs to a face P1 of K :
vm = α1Pe1 +(1−α1)y1. This vector v1 is easy to find with a line search in the cone K as in Program (12). Now,
at each step, find an extremal ray ei of K which is mapped to a face Pi−1 of K . Then yi−1 can be expressed as
a convex combination of Pei and a vector yi that belongs to a face Pi of Pi−1. Since the dimension of Pi strictly
decreases at each step, after t ≤ p steps the point yt is actually an extremal ray of K , and is thus the projection of
an extremal ray e(t+1) of S. Finally we have the relations:

vm =
t

∑
1

λiPei = P(
t

∑
1

λiei), (13)

and thus the vector

v =
t

∑
1

λiei

is a convex combination of at most p extremal vectors of S that satisfies (5).

5 Case study
As a matter of illustration and motivation to the methodology presented above, we consider the example of chinese
hamster ovary (CHO) cells cultivated in batch mode in stirred flasks in a serum-free medium ([1]). During the
growth phase, we assume that the cell metabolism is described by the metabolic network presented in Appendix A.
The network involves the Glycolysis pathway, the Pentose-Phosphate pathway, the Krebs cycle, the amino-acid
metabolism, the urea cycle as well as the nucleotide, protein and lipid synthesis (see [13] for further motivation
and details).

For this network we have m = 82 fluxes and n = 53 internal metabolites, and there are 65329 elementary flux
vectors ei (i.e the polyhedral cone S has 65329 edges).

Moreover, there are p = 22 extra-cellular species whose degradation or accumulation rates in the culture medium
are measured and collected in the vector vm given in Table 1.

The algorithm of Section 4 is then implemented with these data. We present a trial where the resulting admissible
flux vector v is given in Table 2. It can be checked to satisfy (5) and to be is fully consistent with the experimental



Glucose -0,187130 Glutamine -0,050246
Threonine -0,001184 Lysine -0,002125
Valine -0,001956 Isoleucine -0,001528
Leucine -0,002601 Phenylalanine -0,000998
Methionine -0,000724 Asparagine -0,001278
Arginine -0,002142 Proline -0,002142
Histidine -0,003298 Tyrosine -0,007610
Aspartate -0,000318 Cysteine -0,000923
Glycine 0,002230 Serine -0,000923
Glutamate -0,009548 Ammonia 0,045712
Lactate 0,344510 Alanine 0,008808

Table 1: Vector of measurements vm (mM/(h × 109 cells)), with a “-" sign for degradation and a “+" sign for accumula-
tion.

data of Table 1. Furthermore, the algorithm provides the minimal decomposition of v as a non-negative linear
combination of the 22 elementary flux vectors ei given in Tables 3 and 4.

Let us insist that the obtained vector v is obviously just one possible solution among many others with a minimal
decomposition. If the algorithm is re-run with the same initial data, it will find other solutions with a minimal
decomposition because it makes use of random searching directions. Complementary results on the metabolic flux
analysis of CHO cells can be found in the companion paper [13].
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Appendix A. Metabolic network.

Glycolisis
v1: Glu + ATP→ G6P + ADP
v2: G6P + ATP→ DHAP + G3P + ADP
v3: DHAP→ G3P
v4: G3P + OxP + Pi + ADP→ (3)PG + RdP + ATP
v5: (3)PG + ADP→ Pyr + ATP

Krebs Cycle
v6:Pyr + OxP→ AcCoA + CO2 + RdP
v7:AcCoA + Oxal→ Cit
v8:Cit + OxP→ αKG + CO2 + RdP
v9:αKG + OxP→ SucCoA + CO2 + RdP
v10:SucCoA + ADP + Pi → Succ + ATP
v11:Succ→ Fum
v12:Fum→Mal
v13:Mal + OxP→ Oxal + RdP

Pyruvate Fates
v14:Pyr + RdP→ Lact + OxP
v15:Pyr + Glu→ Ala + αKG

Pentose Phosphate Pathway
v16: G6P+ 2 OxP→ R5P+ 2 RdP+CO2
v17: 3 R5P→ 2.5 G6P+ 0.5 Pi

Anaplerotic Reaction
v18: Mal+ OxP→ Pyr+ CO2+RdP

Amino Acid Metabolism
v19:Glu + OxP→ αKG + NH+

4 + RdP
v20:Oxal + Glu→ Asp + αKG
v21: Gln→ Glu + NH+

4
v22: Thr+OxP→ Gly+AcCoA+RdP
v23: Gly+ OxP→ CO2 + NH+

4 +RdP
v24: (3)PG + OxP + Glu→ Ser + αKG +RdP +Pi
v25: Ser→ Gly
v26: Ser→ Pyr + NH+

4
v27: Thr→ αKb + NH+

4
v28: αKb + OxP→ PropCoA + RdP +CO2
v29: PropCoA + CO2 +ATP→ SucCoA +ADP + Pi
v30: Lys + 2 αKG + OxP→ αKa + 2 Glu +RdP v31: αKa + 2 OxP→ AcetoAcCoA + 2 RdP+ 2 CO2
v32: AcetoAcCoA→ 2 AcCoA
v33: Val + αKG→ αKv + Glu
v34: αKv + 3 OxP→ PropCoA + 2 CO2 + 3 RdP
v35: Ile + αKG→ (3)Methyl(2)oxovalerate+Glu
v36: (3)Methyl(2)oxovalerate+ 2 OxP→ AcCoA + PropCoA + CO2 + 2 RdP
v37: Leu + αKG→ αKi + Glu
v38: αKi + OxP + ATP→ AcCoA + AcetoAc + RdP + ADP +Pi
v39: AcetoAc + SucCoA→ AcetoAcCoA + Succ
v40: Phe + RdP→ Tyr + OxP
v41: Tyr + αKG→ Fum + Glu + AcetoAc +CO2
v42: Met + ATP→ HomoCys +AMP + Pi
v43: HomoCys + Ser→ αKb + Cys + NH+

4
v44: Cys→ Pyr + NH+

4
v45: Asn→ Asp + NH+

4
v46: Arg→ Ornitine + Urea
v47: Ornitine + αKG→ GluγSA + Glu
v48: Pro→ GluγSA
v49: GluγSA + OxP→ Glu +RdP
v50: His→ Glu + NH+

4
v51: Aspext → Asp
v52: Cysext → Cys



v53: Gly→ Glyext
v54: Serext → Ser
v55: Gluext → Glu
v56: Tyrext → Tyr
v57: Ala→ Alaext

Protein Synthesis
v58:0.023 His +0.053Ile +0.091 Leu + 0.059 Lys + 0.023Met + 0.039Phe + 0.059Thr + 0.014Trp
+ 0.066Val + 0.051Arg + 0.019 Cys + 0.042 Gln+ 0.072 Gly+ 0.052 Pro+ 0.032Tyr+ 0.78Ala
+0.043 Asn + 0.053Asp+0.063Glu + 0.068 Ser + 3 ATP→ Protein + AMP+ Ppi + 2 ADP + 2Pi

Nucleotide Synthesis
v59: R5P + ATP→ PRPP + AMP
v60: PRPP+ 2 Gln +Asp +Gly +4 ATP+ CO2 → IMP + 2 Glu + Fum + 4 ADP+4 Pi+ Ppi
v61: IMP +Asp + 3ATP→ ATPRN +Fum + 3ADP + Pi
v62: IMP +Gln + 3ATP + OxP→ GTPRN + Glu + 2ADP + AMP + Ppi + RdP
v63: CO2 + NH+

4 + Asp +2 ATP + OxP→ Orotate + RdP + 2ADP + 2Pi
v64: Orotate + PRPP + ATP→ UTPRN +CO2 + 2ADP + Ppi
v65: UTPRN + Gln + ATP→ CTPRN + Glu + ADP + Pi
v66: 0.285 ATPRN + 0.285 UTPRN + 0.215 GTPRN + 0.215 CTPRN → RNA
v67: ATPRN → dATP
v68: GTPRN → dGTP
v69: UTPRN → dTTP
v70: CTPRN → dCTP
v71: 0.285 dATP + 0.285 dTTP + 0.215 dGTP + 0.215 dCTP→ DNA

Lipid Synthesis
v72: DHAP +RdP→ Glyc3P + OxP
v73: Glyc3P + 18 AcCoA + 21 ATP + 33 RdP→ PA + 16 (ADP +Pi) + 33 OxP + 5 (AMP + Ppi)
v74: PA→ (1,2)DG +Pi
v75: Eth + (1,2)DG + 2 ATP→ PE + ADP+ Pi + AMP + Ppi
v76: Chol + 1,2)DG + 2 ATP→ PC + ADP+ Pi + AMP + Ppi
v77: PE + Ser→ PS + Eth
v78: 8 AcCoA + 8 ATP + 15 RdP + Ser→ Sphg + 7(ADP + Pi) +15 OxP + CO2 + AMP + Ppi
v79: Sphg + 8 AcCoA + 8 ATP + 14 RdP→ Cer + 7(ADP + Pi) +14 OxP + AMP + Ppi
v80: Cer + PC→ SM + (1,2)DG
v81: 6 AcetoAcCoA + 6 AcCoA + 18 ATP+ 14 RdP→ Cholesterol + 14 OxP+ 18 ADP + 4 Ppi
+ 6Pi + 6 CO2
v82: 0.5 PC + 0.2 PE + 0.075 PS + 0.075 SM+0.15 Cholesterol→Membrane Lipid

v1 0.18713 v21 0.01570 v41 0.00849 v61 0.00687 v81 0.00025
v2 0.14891 v22 0.00000 v42 0.00068 v62 0.00518 v82 0.00167
v3 0.14762 v23 0.00000 v43 0.00068 v63 0.01205
v4 0.29653 v24 0.04879 v44 0.00157 v64 0.01205
v5 0.24774 v25 0.01440 v45 0.00120 v65 0.00518
v6 0.00000 v26 0.03426 v46 0.00205 v66 0.00000
v7 0.00000 v27 0.00108 v47 0.00205 v67 0.00687
v8 0.00000 v28 0.00176 v48 0.00205 v68 0.00518
v9 0.06698 v29 0.00504 v49 0.00410 v69 0.00687
v10 0.06109 v30 0.00202 v50 0.00326 v70 0.00518
v11 0.07202 v31 0.00202 v51 0.00023 v71 0.02411
v12 0.09943 v32 0.01145 v52 0.00089 v72 0.00129
v13 0.02953 v33 0.00184 v53 0.00235 v73 0.00129
v14 0.34451 v34 0.00184 v54 0.00013 v74 0.00129
v15 0.00894 v35 0.00144 v55 0.00944 v75 0.00046
v16 0.10879 v36 0.00144 v56 0.00755 v76 0.00096
v17 0.02823 v37 0.00244 v57 0.00881 v77 0.00013
v18 0.06988 v38 0.00244 v58 0.00173 v78 0.00013
v19 0.00000 v39 0.01093 v59 0.02411 v79 0.00013
v20 0.02955 v40 0.00093 v60 0.01205 v80 0.00013

Table 2: A vector v of admissible metabolic flux rates (mM/(h × 109 cells)) consistent with the metabolic network and
the experimental data of Table 1.
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Table 3: Elementary vectors ei (first 41 entries) of the minimal decomposition of the flux vector v of Table 2. The integer
entries are exact stoichiometric coefficients. The other entries are truncated to the 2nd decimal.
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Table 4: Elementary vectors ei (last 41 entries) of the minimal decomposition of the flux vector v of Table 2. The integer
entries are exact stoichiometric coefficients. The other entries are truncated to the 2nd decimal.


