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ABSTRACT. Using a linear minimum variance unbiased estimation procedure for
the estimation of spatially distributed random variables (called "kriging" by

geostatisticians) we solve the following problems :

1) estimate the average

areal rainfall over a catchment area from measurements in a few rain-gauges,
and 2) find the measurement locations that will give the most accurate estima-
te of this areal rainfall. Furthermore we show that the estimated areal rain-
fall depends only on the location of the rain-gauges, and that one can find
the measurement locations leading to the smallest estimation error variance.
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1. INTRODUCTION.

The estimation of the average areal rainfall
over a catchment area is an important step in
many hydrological applications. For example,
the average rainfall over a river basin is the
main input to any rainfall-riverflow model [1].

Following previous contributions [2,3], we
propose a probabilistic method for the estima-
tion of the average areal rainfall. The rain-
fall over a basin is modelled as a 2-dimension-
al random field. This approach allows us to
take into account, in a rigorous and systematic
way, the seasonal and spatial variability of
the rainfall process.

The paper is organized as follows. In section

2 we introduce the notations, we define the a-
verage areal rainfall, and we show how to com-
pute an optimal (unbiased, minimum variance)
estimation of this average rainfall. The opti-
mal estimator requires the knowledge of the co-
variance function or, alternatively, of the va-
riogram of the rainfall process as a function
of space. We argue that the variogram is prefe-
rable. The estimation of a model for this vari-
ogram turns out to be the most difficult and
critical part of the spatial extrapolation pro-
cedure. Sections 3 and 4 are concerned with
this problem and are the main contribution of
our paper : we propose estimators for the va-
riogram under different sets of assumptions on
the rainfall process, and we study the influ-
ence of seasonal variations and the rainfall
intensity on the estimators of the variogram.
This leads to a systematic procedure for a
practical implementation of the areal rainfall
estimation. This is the subject of section 4,
where we also present an application of our
procedure to real data. Finally, in section 5
we show how the optimal extrapolation method
developed earlier can also be used to opti-
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mally select the location of rainfall gauges
in the catchment area.

2. OPTIMAL ESTIMATION OF THE AREAL
AVERAGE RAINFALL.

The rainfall random field.

The "rainfall function" is denoted pn(k,z).
It is the volume per unit area of precipita-
ted water at the point z during the time pe-
riod of index k. p(k,zg is thus a real-va-
lued function on (N x R®) with k& N : the 9
discrete time coordinate, and z = (x,y) & R":
the continuous cartesian space coordinate.
For a fixed k, the function p(k,z) is view-
ed as a realisation of a 2-dimensional random
field (RF) denoted P(k,z). The mean and the
variance of this random field are assumed to
be space-stationary (i.e. independent of z)
and are written :

mp(k) E [P(k,2)] (1

n

ci(k) E[(P(k,2) - mP<k.z)}21 2)

For a fixed k, one defines the spatial cova-
riance of the RF :

Clk,i,j) = E[{ P(k,zi)-mp(k)}{P(k,zj)—mp(k)}]

(3)
with (z.,z.) a pair of points in R™. One also
defines'thd spatial variogram (which is the
name given by geostatisticians [4] to the se-
mi-variance of increments of the RF) :

Y0e,i,5) = 5 El P(k.zi)—P(k,zj}}Z] (5)
It is easy to show that :
Y(koi,) = B0 = Clk,iLi) (6)

The measurement stations
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Consider a catchmgnt area (it is most often a
river basin) 1 &R~ with N rainfall measurement
stations numbered | to N. For the time period
k, the measurements are thus specific numeri-
cal values of the function p(k,z) : p(k,zl),
Plks2,)5 «ots plk, 7).

As a matter of illustration, we present later
in the paper two application the Semois
river basin (fig. 1, 1230 km™) with 17 sta-

Semois River.

Fig. 1.

tions and a time period of | day, and the
Dyle river basin with 16 stations and a time
period of six hours.

The average areal rainfall

A discretisation square grid of M nodes is
superimposed to the catchment area ¢ . The M
nodes are numbered N+! toc N+M. The average
rainfall for the period k is defined as the
average rainfall, taken over all the grid
nodes, for the time period k :

M

z k, : 7
POt &)

Note that A(k) is a space-average, not a time-
average; it is a discrete 1-D stochastic pro-
cess with variance :

aAfk) = E

;MM
g2(k) = — I I c(k,N+i,N+j)
A 2 ;
M™ 1= j=1
= z - A&
o5 (k) 6, (k) (8)
where
y M M
.sA(k) == I I v (k,N+i,N+j) (9)
MT i=1 j=1

Clearly ci(k) is smaller than agtk), since

(k) is positive. Expression (7) is the de-
finition of the average areal rainfall; it is
not computable, however, since the rainfall
is in general unknown at the M grid nodes.
Therefore we now seek a minimum variance un-
biased linear estimate of A(k), obtained
from the set of N rainfall observations
{p(k,z ),....,p(k z,.)} during the time period
k. The estimator W1&1 thus have the following
form :

. N

Alk) = £

; Ri p(k,zi) (10)

1

Following the classical linear minimum-vari-
ance estimation theory, it is easy to show
that the X,'s are the solution of the follo-
wing linear system (the "kriging" system in
the esoteric geostatistics language [5]) :

.! (k’i)x*j )

—
=
N

teie

S

+
1]

i = Ly oweaanN crn

where | is a Lagrange coefficient. The esti-
mation variance rk(k) is written :
P i o R 2
hE(k) A(k) + U
N N
* 2228, 3, y1,N4]
izlj=1 g1 Lt N) (12)

where u and the ». are the solutions of the

linear svstem (11

3. IDENTIFICATION OF A VARIOGRAM
MODEL.

The optimal . are computed bv the linear
system (11) from the knowledge of the vario-
gram <y (k,i,j). The optimal . can also be
expressed as functions of the'covariance
functions C(k,i,j) instead of the variogram.
We prefer the variogram formulation for two
main reasons

a) the variogram v (i,j,k) of the random
field can be identified from the availa-
ble data without any preliminary know-
ledge or estimation of the mean m of the
rainfall process.

b) the class of admissible RF models is wi-
der with the variogram formulation. For
example, 2-D Wiener models can be used
for such models the variance o2 is infi-
nite but the variogram exists.

In practice the variogram is not given and
must be inferred from the data. We now study
the estimation of the variogram under diffe-
rent sets of assumptions.

First set of asswiiicn

Assume that the RF P(k,z) is ergodic and
stationary in time and space. Then
a) v (k,i,j) is independent of k
¥ (kyi:j) = Y(irj)
b) ¥ (i,j) depends onlv on the Euclidean
distance dij between z; and zj 2

y(i,j) = T(dij)
Now assume that, in a catchment area, there
are K time periods with a rainfall event.
From the observations in the rain-gauges
located at points z. and z , the following
unbiased estimate o (d ) is obtained :

- K

o (dij) Mo

{plk,z.) - plk, 25 12219
k 1

Such an estimate has been computed for
every pair of rain-gauges in the Semois
river basin (7 vears of dailv observations)
and in the Dyle river basin (3 vears of six
hourly observations). The results are gra-
phicallv presented on figs 2 and 3.
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Fig.2. Dvle river: Experimental and theore-
tical variograms.
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Fig.3. Semois river: Experimental and theo-

retical variograms.

It appears clearly that, even with several
thousands of observations at each maesure-
ment point, the experimental variogram
vy (d..) takes the form of a somewhat exten-
ded tluster op points. Therefore the iden-
tification of a theoretical variogram model,
which conforms with the experimental cluster,
is required in order to compute the y(k,1i,j)
needed in (11)-(12). Based upon many expe-
rimental results such as those of figs 2
and 3, and in line with common practice in
the geostatistical litterature, we adopt the
following very simple model

Y(dij) = a dij (14)
By a least squares fit, the following values
were obtained (for dij expressed in kilome-

ters)

Semois river : a = 1.12 g = 0.51
Dyle river :a = 0.204 £ = 0.56
Seccvd g2z cf z8sumpTisns

The time-stationary assumption of the RF is

most probablv unrealistic because

- it does not take into account the potential
seasonal trends of the phenomenon;

- it yields a unique estimation standard
deviation o4 of the average areal rainfall
(see (12)) Eor all rainfall events, what-

Average Areal Rainfall
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ever the meteorological conditions
rainfall intensity. This is not ver
sible.

and the
plau-

In order to refine the analvsis we the
assume a piecewise stationary seasong al
(on a monthly basis) for the RF. More
sely we assume that the variance o2 (if
exists) and the variogram vy (k,1,]
tionary and ergodic in space and tim
a month but not necessarily from one
to another.

Tefore
trend

€ during
Month

Typical examples of monthly ewpertmEnt
variograms are presented on figs 4 ang
For granhical clarity, the clusters of
points have been approximated by a brok
line which is obtained by dividing the
axis into a number of classes and by co ié
ting the mean of y(d ) for all Pﬂlnt 8
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Fig.4 and 5,Experimental monthly varj
Ograms.

which belong to the same class.

These figures clearly show the seasong)
haviour of the spatial var1ab111ty of thbe-
rainfall process : the variogram y(d )
nears much larger in the Summer than! 1n
tumn. hut
Note that the scales of figs. 4 and 3
different. e
Similar trends have been observed al]
every year for which we had data. The,
we have divided all the available raip
data into 12 classes, one for each Moy,
for example, the data of November 1975
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and November 76 are taken in the same class
and processed together. We have then compu=
ted a theoretical variogram of the form

«df, for each month by least-squares fitting,
as ~described above.

Typical results are shown on fig. 6 and 7,
and in Table l. The results clearly show the
seasonal patterns of the variograms.
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Fig.6. Semois river:Estimated theoretical
monthly variograms.
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Fig.7. Dyle river:Estimated theoretical
monthly variograms.

Semois Dyle

o B o B
January |0.29 0.63| 0.067 0.44
February |0.55 0.54| 0.063 0.59
March 0.45 0.62| 0.072 0.60
April 0.69 0.47]0.221 0.29
May 1.02 0.59| 0.362 0.52
June 3.14 0,40 0.673 0.30
July 3.17 0.51] 0.368 0.54
August 2.22 0.51]| 0.505 ©0.51
September| 1.06 0.53| 0.144 0.54
October |[0.41 0.74) 0.042 0.56
November [0.25 0.62) 0.105 0.49
December |0.64 0.53| 0.090 0.61
Global 1.12 0.51) 0.206 0.56
Table 1.

i +1 y 1 . ’
inj.uence 9] tne rainjaii Mtengitry

One might wonder whether the seasonal varia-
tions in the variogram are not greatly am-
plified by the differences between the mean
rainfall intensity in Summer and Winter.More
specifically, are the larger values of the
variogram in the Summer not caused by the
higher intensity of the rainfalls during that
season rather than by a truly larger spatial
variability ? In order to answer that ques-—
tion we compute the seasonal variation of the
experimental rainfall variance for different
intensity ranges. We define the rainfall in-
tensity during period k as the average rain-
fall taken over the N measurement stations
during that period :

N
" 1
up(k} =3 izlp(k,zi) (15)
We also define the experimental variance :
y B 2
4-2 —_— -~
82(k) =g I Ip(k,zi) up(k)] (16)

i=1

Fig. 8 represents the histogram of the inten-
sities for the Dyle river basin over the 3
year period mentioned earlier. The wide range

L
Fig.8. Histogram of
rainfall intensities

200 in the Dyle river basin.

Indd
mm/¢h

3 3 9 12

of intensities observed in fig. 8 certainly
increases the relevance of our question. In
order to study the relation between the rain-
fall intensities and the standard deviation
of these rainfalls in different seasons, we
have partitioned all the available data into
4 seasons and a reasonable number of inten-
sity ranges. Fig. 9 shows the normalized
standard deviation of the rainfall 5P/ﬁ

versus the rainfall intensity §i for each of
the four seasons, with a logariEhmic scale
for § . The Fall and Winter curves are so
closePthat thev have been drawn together.
The figure shows that, even when rainfalls
of same intensity levels are considered, a
seasonal trend is still clearly present in

-

Up . It also shows that the normalized

standard deviation (and therefore also the
variogram) is a function of the rainfall
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Fig.9. Seasonal behavior of the RF.

intensity. This is not surprising, but it
suggests that choosing a unique variogram
model within a given season would lead to a
systematic underevaluation of o2 for high-
intensity rainfalls, and an oveTrevaluation
for low-intensity rainfalls.

4. PRACTICAL IMPLEMENTATION OF THE
AVERAGE AREAL RAINFALL ESTIMATOR.

The optimal estimation of the average areal

rainfall estimator during period k involves

the following steps

1) estimate the parameters o and R of a va-
riogram model of the form

Y(k,d) = ak) aB® (17)

2) compute the coefficients (k,i,j) for all
grid points and all measure points

3) compute l i=l,...,N and p by solving the
kriging system (1)

4) compute A(k) by (10) and Uz(k) by (12).

Steps 2), 3) and 4) of this procedure pose

no particular problem (see section 2). As for

the variogram model, we have demonstrated in

section 3 the interest of relating the time
nonstationarity of the raondom field not only
to the season but also to the rainfall inten-
sity.

Variogram estimation : procedure 1.

It follows from Table | that the monthly

variograms differ much more in the coeffi-

cient a than in 2. Following this observa-
tion, the first procedure for the estimation
of the variogram is as follows

a) estimate a unique coefficient 2 by a
least-squares fit over all available data
points (see section 3)

b) for each period k, estimate a(k) by a
least-squares fit to the cluster of points
corresponding to that particular period.
We have shown in [ 6] that it is actually

better to use a weighted least-sauares
procedure for the estimation of a, where
the weighting matrix takes into account
the geometrical distribution-of the mea-
surement stations. See [ 6] for more
details.

Using this first procedure a nonstationary
variogram of the following form is obtained.

Y’(d)=dB
(18)

The nonstationarity 1S concentrated in the
scaling factor a(k), whicn can be interpre-
ted as a measure of the spatial variability
of the random field during period k.

v(k,d) = a(k) y*(d), with

For the Semois river basin, application of
procedure | leads to & = 0.5]1 (see Table 1),
and the nonstationary variogram has the form

y,d) = a(a??!,
Datum |26/1 | 26/4 |18/6 | 16/8
& 209.1 | 208.1 | 639.1 | 830.2
fe 320.4 | 1682.0 | 306.2 | 139.1
Ay | 318.8| 194.5 | 308.5 | 127.4
Tz (%) 9.9 | 8.9 |17.3 | 19.7
G;UQ/SLO 0.03| o.0s| o0.08| 0.15

Table 2.

Table 2 shows the results of the estimation
of A(k) for a few davs chosen in the year
1971. (Rainfall data : 0.1 mm/day)

Varioaram estimation : procedure 2.

The theorical variogram is now written as

y (k,d) = a(k) v (d),
with y*(d) = Yodﬁ

The coefficients v , 8 and a(k) are deter-

mined as follows

a) compute the parameters a and £ of a
global variogram of the form +y(d) = ad
by least-squares fit over all available
data. This determines 2.

b) compute the global experimental variance
32 using all available data
Tﬁ1s determines v _ = a/32.

¢) now for each period k co%pute the rain-
fall intensity using (15)

d) from the graphs relating 32/{_ to {
compute the value of 52(k) corresponding
to the value £ (k) computed in c) using
the appropriate seasonal curve (see
fig. 9). This determines a(k) = 5%(k} and
finallwv

B

52 (k)
v (k,d) = a(k)y d” —Ez— «d®  (20)
s

Notice that this variogram is nonstationmary,
and that the nonstationary scaling factor
a(k) takes into account both the seasonal
variations and the effects of the intensity
through the use of the seasonal graph
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(?n/;p-;p) with o computed bv (153).

The motivation for this procedure will be
best illustrated by applving it to the Dvle
river data. Recall (see Table 1) that we have
identifieg a mean global variogram ;(d) =
0.206 d%:2%, The experimental variance ~:
over the 3 vears of available measurements

is 52 = 1,264, Therefore, in accordance with
(6), one can write

w(d) = 52 %(d) for d < 26 km (21.a)

]
o

T (d) for d > 26 km

0.56

(21.b)

with yl(d) = 0.1614 d In practice only
(21.a) is of interest since no two measure-
ment stations are separated by more than

26 km. It makes sense, therefore, to take
into account the nonstationarities due to
seasonal and intensity variations through
the sca%ing factor «(k) by writing v (k,d) =

a(k)y (d) = a(k) 0.1614 d9-%0, Hence
¥, = 0.1614, 8 =0.56, and (k) = a;(k),

determined by steps c) and d) above.
Comment

In the 2 procedures the va;iogram takes
the form +(k,d) = a(k) - (d), where x2(k)
is time varying and determined in "real
time" for each time period k, while vy~ (d)
is time-invariant. This has the following
important implications
a) the coefficients X. in (10) are inde-
pendent of k; theyldepend only upon the
geometrical location of the rain-gauges
and can be computed once and for all.
b) the variance of the estimate can be
written

o2 (k) = alk) (og)z (22)

where o> is independent of k and can
also be computed once and for all.

e @) |ne (@] 00 (@) (6

1.86 |13 0.64 7 0.44 111 0.40
12 1.31 |17 0.58| 14 0.43 4 0.39
19 0.93 |15 0.53 6 0.42 2 0.39

8 0.79 3 0.50]| 10 0.4l 1 0.39
9 0.71 |16 0.47 5 0.41
Table 3.

5. OPTIMAL SELECTION OF RAINFALL GAUGES
LOCATIONS.

One practically important problem is that of
determining, among a set of possible rain-
fall measurement locations, those that are
most representative, in the sense that they
will lead to the smallest estimation error
variance for the estimation of the average
areal rainfall.

Now recall that the normalized standard de-
viation error, g depends only upon the lo-

cation of the rainfall gauges and upon the
structure of the normalized variogram - (di.),
and is independent of the rainfalls or theit?
intensities. It is therefore easv, using the
methods described in this paper, to select
among the available measurement gtations the
one that leads to the smallest -_. Next one
can add to this first station a second sta-
tion which, combined with the first one,

leads to a minimum - again. This procedure
can be continued, adging more stations and
monitoring the decrease of the normalized
standard deviation -_ of the estimation error,
until the obtained precision is judged sa-
tisfactorv.

This method has been applied to the Semois
river basin in order to chooze the "most
representative' locations among |7 existing
measurement stations and two potential sup-—
plementary locations (numbered 18 and 19 on
Fig. 1). The result of this successive se-
lection procedure is illustrated in table 3.
Notice that the last 7 stations chozen

(Nrs 6, 10, 5, 11, 4, 2, 1) by our successi-
ve selection procedure are obviously super-
fluous, since including them in the optimal
estimator doei not result in anv significant
decrease of o.. With only the'"best" 3 sta-
tions (18, 12, 19) the coefficients of the
optimal estimato; are . _,=0,356, ,=0.327,
119=0.31?, and cE=0.9? as compared with
cE=0-65 when 17 stations are used.
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