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ABSTRACT_ Using a linear minimum variance unbiased estimation orocedure for 
the estimation of spatially distributed random variables (called "kriging" by 
geostatisticians) we solve the following problems: 1) estimate the average 
areal rainfall over a catchment area from measurements in a few rain-gauges, 
and 2) find the measurement locations that will give the most accurate estima­
te of this areal rainfall. Furthermore we show that the estimated areal rain­
fall depends only on the location of the rain-gauges, and that one can find 
the measurement locations leading to the smallest estimation error variance. 
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1. INTRODUCTION. 

The estimation of the average areal rainfall 
over a catchment area is an important steo in 
many hydrological applications. For example, 
the average rainfall over a river basin is the 
main input to any rainfall-riverflow model [1 J. 

Following previous contributions [2,3], we 
propose a probabilistic method for the estima­
tion of the average areal rainfall. The rain­
fall over a basin is modelled as a 2-dimension­
al random field. This approach allows us to 
take into account, in a rigorous and systematic 
way, the seasonal and spatial variability of 
the rainfall process. 

The paper is organized as follows. In section 
2 we introduce the notations, we define the a­
verage areal rainfall, and we show how to com­
pute an optimal (unbiased, minimum variance) 
estimation of this average rainfall. The opti­
mal estimator requires the knowledge of the co­
variance function or, alternatively, of the va­
riogram of the rainfall process as a function 
of space. We argue that the variogram is nrefe­
rable. The estimation of a model for this vari­
ogram turns out to be the most difficult and 
critical part of the spatial extrapolation pro­
cedure. Sections 3 and 4 are concerned with 
this problem and are the main contribution of 
our paper: we propose estimators for trye va­
riogram under different sets of assumptions on 
the rainfall process, and we study the influ­
ence of seasonal variations and the rainfall 
intensity on the estimators of the variogram. 
This leads to a systematic procedure for a 
practical implementation of the areal rainfall 
estimation. This is the subject of section 4, 
where we also present an application of our 
procedure to real data. Finally, in section 5 
we show how the optimal extrapolation method 
developed earlier can also be used to opti-
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mally select the location of rainfall gauges 
in the catchment area. 

2. OPTIMAL ESTIMATION OF THE AREAL 
AVERAGE RAINFALL. 

The ~ainfall ~andom field. 

The "rainfall function" is denoted p(k,z). 
It is the volume per unit area of precipita­
ted water at the point z during the time pe­
riod of index k. p(k,z~ is thus a real-va­
lued function on (N x R ) with k t: N : the 2 
discrete time coordinate, and z = (x,y) ~ R : 
the continuous cartesian space coordinate. 
For a fixed k, the function p(k,z) is view­
ed as a realisation of a 2-dimensional random 
field (RF) denoted P(k,z). The mean and the 
variance of this random field are assumed to 
be space-stationary (i.e. independent of z) 
and are written: 

m (k) 
P 
i (k) 
p 

E LP(k,z)] 

2 
E[{P(k,z) - m (k,z)} ] 

P 

( 1 ) 

(2) 

For a fixed k, one defines the spatial cova­
riance of the RF : 

C(k,i,j) = E[ {P(k,z.)-m (k) }{P(k,z.)-m (k)}] 
1 P J P 

(3) 
with (z.,z.) a pair of points in R2. One also 
defineslth~ spatial variogram (which is the 
name given by geostatisticians [4] to the se­
mi-variance of increments of the RF) 

1 2 
Y(k,i,j) = -2 E[ {P(k,z.)-P(k,z.)}] (5) 

1 J 
It is easy to show that : 

y(k,i,j) = i(k) - C(k,i,j) (6) 
P 

The measurement stations 
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Consider a ca t chmZnt area (it i s most often a 
river basin) :i eR with!'l rainfall measurement 
stations numbered 1 to N. For the time period 
k, the measurements are thus specific numeri­
cal values of the function p(k,z) : p(k,zl)' 
p(k,z2) ' ... , p(k ,ZN) ' 

As a matter of illustration, we present later 
in the paper two application~ : the Semois 
river basin (fig. 1, 1230 km ) with 17 sta-

1. 
4. 

Fig.l. Semois River. 

tions and a time period of 1 day, and the 
Dyle river basin with 16 stations and a time 
period of six hours. 

The average areal rainfalZ 

A discretisation square grid of M nodes is 
superimposed to the catchment area u . The M 
nodes are numbered N+l tu N+M. The average 
rainfall for the period k is defined as the 
average rainfall, taken over all the grid 
nodes, for the time period k 

M 
A(k) = M l: p(k,zN') (7) 

j = 1 +J 

Note that A(k) is a space-average, not a time­
average; it is a discrete I-D stochastic pro­
cess with variance 

M M 
a~ (k) = ~ l: l: c(k,N+i, N+j) 

M i=l j=l 

where 

o A (k) 

a~(k) - 0A(k) (8) 

M 

1: 
j=l 

y (k,N+i,N+j) (9) 

Clearly a~ (k) is smaller than a~ (k), since 

0A(k) is positive. Expression (7) is the de­
f~nition of the average areal rainfall; it is 
not compu tabl e, however, since the rainfall 
is in general unknown at the M grid nodes. 
Therefore we now seek a minimum variance un­
biased linear estimate of A(k), obtained 
from the set of N rainfall observations 
( P(k,zl)i .... ,P(k,zN) } during the time period 
k. The estimator will thus have the following 
form: 

A(k) 
N 

l: \ p(k,zi) 
i= 1 

(10) 

Following the classical linear mln~mum-vari­
ance estimation theory, it is easy to show 
that the A. 's are the solution of the follo­
wing linea? system (the "krig ing" system in 
the esoteric geostatistics language [51 ) : 

N 
- ) "(k i j) + . . 

. 1 '. j' " -
(k , i, :Hj ) 

J= j = 1 

i 1, ... ,N ( 1 1 ) 

where ~ is a Lagran~e coefficien c. The es ti­
mation variance c ~(k) is written: 

- 5
A

(k) + ;; 

N N 
+ 2 - ~ 

i;; 1 j:; 1 ( 12) 

wher e u and th e I . . are the solutions of the 
linear system ( liT. 

3. IDENTIFICATION OF A VARIOGRA~l 

MODEL. 

The optimal A. are computed bv the linea r 
1 . 

system ( 11 ) from the knowledge of the vario-
gram y(k,i,j). The oPtimal t . can also be 
expressed as functions of th e1covarian ce 
fun c tions C(k,i,j) in s t ead of th e variogram . 
We pre f e r the variogram formulation for two 
main reas ons : 
a) the variogram y (i,j,k) of the random 

field can be identified from the availa­
ble data without any preliminary know­
ledge or estimation of the mean m of the 
rainfall process. p 

b) the class of admissible RF models is wi -
der with 
exaPlple, 
for such 
nite but 

the variogram formulation. For 
2- D Wiener models can be used : 
models the variance a~ is infi­
the variogram exists . 

In practice the variogram is not given and 
must be inferred from the data. We now study 
the estimation of the variogram under diffe­
rent sets of assumptions . 

Assume that the RF P(k,z) is e rgodic and 
stationary in time and space. Then 
a) y (k, i. j) is independent of k : 

y (k, i,j) = y (i,j) 
b) y (i,j) depends onlv on the Euc1idean 

distance d . . be t ween z. and z. 
~J ~ J 

y( i,j) = y( dij ) 
Now assume t hat, in a catchment area, there 
are K time periods with a rainfall event . 
From the observations in the rain-gauges 
located at points z. and z. , the following 
unbiased estimate of '{ (d.~) is obtained : 

y (d .. ) 
~J 

~J 

K 
2K ~ {p(k,z.) - p(k,z.) 1

2
(1] 

k=l ~ J 

Such an estimate has been computed for 
every pair of rain-gauges in the Semois 
ri ve r basin (7 years of dailv observations) 
and in the Dyle river basin (3 years of six 
hourlv observations) . The r esults are gra­
phicailv presented on figs 2 and 3. 
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fig.2 . Dy le rive r: Experimental and theore­
tical variograms. 

5. • 

2.5 

20 &0 
Fig.3. Semois river: Experimental and theo­

retical variograms. 

It appears clearly that, even with several 
thousands of observations at each maesure­
J.!1ent po"int, the experimental variogram 
Y (d .. ) takes the form of a somewhat exten­
ded Eluster op points. Therefore the iden­
tification of a theoretical variogram model, 
which conforms with the experimental cluster, 
is required in order to compute the y(k,i,j) 
needed in (11)-(12). Based upon many expe­
rimental results such as those of figs 2 
and 3, and in line with common practice in 
the geostatistical litterature, we adopt the 
following very simple model : 

:; 
y(d .. )=Cid~. 

lJ lJ 

By a least squares 
were obtained (for 
t e rs) : 
Semois river Ci 

Dyle river a 

(I4) 

fit, the following values 
d .. expressed in kilome­

lJ 

l. 12 S 
0.204 i3 

0.51 
0.56 

The time-stationary assumption of the RF is 
most probably unrealistic because : 
- it does not take into account the potential 

seasonal trends of the phenomenon; 
- it yields a unique estimation standard 

deviation 0 ~ of the average areal rainfall 
(see (12» for all rainfall events, what-
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ever the meteorological conditions a 
rainfall intensity. This is not Verytld the 
sible. plau-

In order to refine the analysis we the 
assume a piecewise stationary seasonalrefore 
(on a monthly basis) for the RF. More p tre?d 
sely we assume that the variance 0~ (if r : c1-
exists) and the variogram y (k, i,j) ar It 

tionary and ergodic in space and time ~ s~a­
a month but not necessarily from one ID Urlng 
to anothei. Otlth 

Typiclll exa"lples of monthly ex~eri"1ent 
variograms are presented on figs 4 and al 

For graphical clarity, the clusters of 5 
points have been approximated by a br k 
line which is obtained by dividin8 th~ en 
axis into a number of classes and by d ii . . - cornpn tlng the mean of y(d .. ) for all point -

lJ S d . . 
lJ 

s 10 15 20 
Fi8·4 and 5,Exrerimental monthly va . 

rl.o;;rams. 

which belong to the same class. 

These figures clearly show the seasonal 
haviour of the spatial variability of be­
rainfall process: the variogram Y(d .. ~he 
nears much larger in the Summer thanlln 
tumn. Au-

Note that the scales of figs. 4 and 5 
different. are 

Similar trends have been observed all 
every year for which we had data. Therthrou~h 
we have divided all the available rain;fore 
data into 12 classes, one for each mo all 
for example, the data of November 1975nth ; 

and 
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and November 76 are taken in the same class 
and processed together. We have then compu­
ted a theoretical variogram of the form 
ad~. for each month by least-squares fitting, 
as 1J described above. 

Typical results are shown on fig. 6 and 7, 
and in Table I. The results c learly show the 
seasonal patterns of the variograms. 

MAY 

". 
___ --P'u 

I~~~==::::~ ____ -------NO~ 
d~ ~=---2rO-----'~0------,TO-------'k~ 

Fip..6. Semois river:Estimated theoretical 
monthly variograms. 

SUL'I 

-t.O ___ -MAy 

~~;;==::::::::::::FEa J. NOli 

~~ ____ -r ________ r-~d~ 
k~ ~o 20 

Fig.7. Dyle river:Estimated theoretical 
monthly variograms. 

Semois Dyle 

a 8 a 8 

January 0.29 0.63 0.067 0.44 
February 0.55 0.54 0.063 0.59 
March 0.45 0.62 0.072 0.60 
April 0.69 0.47 0.221 0.29 
May J. 02 0.59 0.362 0.52 
June 3.14 0.40 0.673 0.30 
July 3. 17 0.51 0.368 0.54 
August 2.22 0.51 0.505 O. SI 
September J. 06 0.53 0.144 0.54 
October 0.41 0.74 0.042 0.56 
November 0.25 0.62 0.105 0.49 
December 0.64 0.53 0.090 0.61 

Global J. 12 0.51 0.206 0.56 

Table I. 

InfZuence of the mi'1fa Zl i'1tensity 

One might wonder whether the seasonal varia­
tions in the var i ogram are not greatly am­
plifi ed by the differences between the mean 
rainfall intensity in Summer and Winter.More 
specifically, are the large r values of the 
variogram in the Summer not caused by the 
higher intensity of the rainfall s during that 
season r a ther than by a truly larger spatial 
variability? In ord er to answer that ques­
ti on we comput e the seasonal variation of the 
experimental rainfall variance for different 
intensity ranges. We define the rainfall in­
tensity during period k as the average ra i n­
fall taken over the N measurement station s 
during that period 

N 
l:p(k,z.) 

N i; I 1 
Cl 5) 

We also define the experimental variance : 
N 

&2(k);..!. l: [ p(k,z.) - D (k)]2 
P N i; I 1 P 

( 16) 

Fig. 8 represent s the histogram of the inten­
sities for the Dyle river basin over the 3 
year period mentioned earlier. The wide range 

9 

Fig.8 . Histogram of 
rainfall intensities 
in the Dyle river basin. 

12. 

of intensities obse rved in fig. 8 cer tainl y 
increas es the relevance of ou r question. In 
order to study the r ela ti on between the rain­
fall intensities and the s tandard deviation 
of these rainfalls in different seasons, we 
have partitioned all the available data into 
4 seasons and a reasonable number of inten­
si t y ranges. Fig. 9 shows the normalized 
standard deviation of the rainfall & l A 

p \J 

versus the rainfa ll int ensi t y D ror eath of 
the four seasons, with a log~ri~hmic scale 
for C . The Fall and Winter cu rves are so 
closePthat they have been drawn t oge th er . 
The figure shows that, even when rainfalls 
of same intensity levels are considered, a 
seasonal trend is still c learly oresent in 
& . It also shows that the normalized 

p 
standard deviation (and therefore also the 
variogram) is a function of the r a infall 
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Fall-Winter 
2.. 

loo 
L-____ ,, ____ -. ______ .-______ --.~p 

-1.0 -10.& 

Fig.9. Seasonal behavior of the RF. 

intensity. This is not surprising, but it 
suggests that choosing a unique variogram 
model within a given season would lead to a 
systematic underevaluation of o~ for high­
intensity rainfalls, and an overevaluation 
for low-intensity rainfalls. 

4. PRACTICAL IMPLEMENTATION OF THE 
AVERAGE AREAL RAINFALL ESTIMATOR. 

The optimal estimation of the average areal 
rainfall estimator during period k involves 
the following steps : 
I) estimate the parameters a and S of a va­

riogram model of the form 

Y(k,d) ; a(k) dS(k) ( 17) 

2) compute the coefficients (k,i,j) for all 
grid points and all measure points 

3) compute Ai' i;I, ... ,N and ~ by solving the 
kriging system (11) 

4) compute A(k) by (10) and o ~(k) by (12). 

Steps 2), 3) and 4) of this procedure pose 
no particular problem (see section 2). As for 
the variogram model, we have demonstrated in 
section 3 the interest of relating the time 
nonstationarity of the raondom field not only 
to the season but also to the rainfall inten­
sity . 

Variogr~"? e s t imtion : procedu re 1. 

It follows from Table I that the monthly 
variograms differ much more in the coeffi­
cient a than in S. Following this observa­
tion, the first procedure for the estimation 
of the variogram is as follows : 
a) estimate a unique coefficient B by a 

least-squares fit over all available data 
points (see section 3) 

b) for each period k, estimate a(k) by a 
least-squares fit to the cluster of points 
corresponding to that particular period. 
We have shown in [6J that it is actually 

better to use a weighted least-SQuares 
procedure for the estimation of a, where 
the weighting matrix takes into account 
the p,eometrical distribution -of the mea­
surement stations. See [6J for more 
details. 

Using this first orocedure a nonstationary 
variogram of the following form is obtained. 

y (k,d) ; a (k) y*(d), with 

The nonstationaritv is concentrated in the 
scaling factor a(k), whicn can be interore­
ted as a measure of the spatial variability 
of the random field during period k. 

For the Semois river basin, apolication of 
procedure I leads to S ; 0.51 (see Table I), 
and the nonstationary variogram has the form 

y(k,d) ; a(k)dO. 51 . 

Datum 26/1 26/ 4 18/6 16 / 8 

0< 209 .1 20 8.1 63 9 .1 830.2 

" p.1' 320 . 4 182 . 0 306 . 2 139 . 1 

~.ck) 3 18 . 8 194. 6 308.6 12 7.4 

6ECk) 9 .9 9 .9 17.3 19 .7 

q..r.C .... ) lAC'.:) 0 . 03 0. 0 5 0 .0 6 0 .15 

Table 2. 

Table 2 shows the results of the estimation 
of ~(k) for a few days chosen in Xhe year 
1971. (Rainfall data O. I mm/day) 

Va r i opram estiMation procedu re 2. 

The theorical variogram is now written as 

y (k,d) ; a (k) y *(d), 

with y*(d) ; y d B 
o 

The coefficients y , B and a (k) are deter­
mined as follows .0 

a) compute the parameters a and B of a 
global variogram of the form y (d) ; ad S 
by least-squares fit over all available 
data. This determines 3. 

b) compute the global exoerimental variance 
a~ using all available data. 
This determines y ; a 1& 2 . 

-. 0 0 
c) now for each period k compute the rain-

fall intensity using (IS). 
d) from the graphs relating &~ /G p to Gp' 

comoute the value of a~(k) corresponding 
to the value C (k) computed in c) using 
the aporopriat~ seasonal curve (see 
fig. 9). This determines a (k) ; a~(k) and 
finally 

y (k,d) ; a (k) y d B 
o 

a ~(k) B 
~ a d (20) 

o 
p 

Notice that this variogram is nonstationary, 
and that the nonstationary scaling factor 
a (k) takes into account both the seasonal 
variations and the effects of the intensity 
through the use of the seasonal graph 



1576 B. Lorent et a l . 

(= /~ -~ ) with = computed bv (15) . 
" P " p ~ p 0 

The motivation for this procedure will be 
best illustrated bv applying it to the Dvle 
river data. Recall (see Table I) that we have 
identified a mean global variogram y(d) = 
0.206 dO. 56 . The experimental variance := 
over the 3 years of' available measuremen~s 
is &2 = I. 264. Therefore, in accordance \"ith 
(6),Pone can write 

" (d) (2 1. a) 

(d) = &2 for d > 26 km (21 . b) 
p 

with '/(d) = 0.1614 dO . 56 . In practice only 
(2 I. a) is of interest since no two measure­
ment stations are separated by more than 
26 km . It makes sense, therefore, to take 
into account the nonstationarities due to 
seasonal and intensity variations through 
the scaling factor a (k) bv writing Y (k ,d) 
a(k)y ~ (d) = a(k) 0.1614- dO. 56 . Hence 
o = 0.1614, 8 = 0.56 , and :!(k) = &~(k) , 

determined by steps c) and d) above. 

In the 2 procedures the vaiiogram takes 
the form y (k, d) = a (k) y (d), where;). (k) 
is time varying and determined in "real 
time" fo r each time period k, while Y*(d) 
is time-invariant. This has the followin g 
important implications : 
a) the coefficients Ai in ( 10) are inde­

pendent of k; they depend only upon the 
geome tri cal location of the rain-gauges 
and can be computed once and for al l. 

b) the variance of the estimate can be 
wri tt en 

2 * 2 0E (k) = et (k) (oE) (22) 
* , , d whe r e 0E ~s ~ndependent of k an can 

also be computed once and for all. 

0 (u;/ 0 (U;)l n 0 (~:f n 0 ( ~E*)l. n n 

18 I. 86 13 0.64 7 0.44 I I 0.40 

12 I. 3 I 17 0.58 14 0.43 4 0.39 

19 0.93 15 0.53 6 0.42 2 0.39 

8 0.79 3 0.50 10 0.41 I 0.39 

9 0.71 16 0.47 5 0.41 

Table 3. 

5. OPTIMAL SELECTIO~ OF RAI~FALL GALGES 
LOCATIONS . 

One practi cally important problem is that of 
determining, among a set of possible rain­
fall measurement locations, those that are 
most representative, in the sense that they 
wi ll lead to the smallest estimation error 
variance for the estimation of t he average 
areal rainfall. 

Now recall that the normalized standard de­
viation error, o~, depends only upon the 10-

cation of the rainfall gauges and upon t he 
structure of the normalize~ variogram , *(d .. ), 
and is ind ependent of the rainfa lls or ' theifJ 
intensities. It i s therefore easy , using the 
methods described in this paper, to select 
among the available measurement *tations the 
one that lead~ t o , the smal~est ~ E. Next one 
can add to th1S f1r st stat10n a second sta­
tion which , combined wi t h the first one, . . * . . leads to a m1n1mum ~ E aga1n . Th1S procedure 
can be cont inued, adaing more sta tions and 
monitoring the de c r ease of th e normalized .. * ,. standard devlat10n ' E of the es t~mat10n error, 
until the obtained precision 1S judged sa­
tisfa c tory . 

This method has been applied to the Semois 
rive r basin in order to chooz e t he "mos t 
representative" locations among 17 existing 
measurement s tations and two potential sup­
plementary lo cations (numbered 18 and 19 on 
Fig. I). The r esult of this successive se­
lection procedure is illustrat ed in table 3. 
Notice that the last 7 stations chozen 
(Nrs 6, 10 , 5, 11,4,2, I) by our successi­
ve selection procedure are obviously super­
fluous, since including them in the optimal 
estimator doei not result in any signi fi cant 
decrease of 0E. With only th e"b est " 3 sta­
tions (18, 12, 19) the coefficients of the 
optimal est imator are \ 18=0.356, '12 =0.327, 
\ 19=0.317, and 0:=0.97 as compared with 

* 0E=0.65 when 17 stations are used. 
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