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1. INTRODUCTION

We are concerned with continuous time models of genetic
networks when “time delays are included to allow for the
time required for transcription, translation, and transport”
(Smolen et al. [2000]). The network dynamics are therefore
represented by delay-differential equations whose solutions
evolve in the positive orthant. It is well known that these
systems may have multiple steady-states or equilibria. A
critical issue is to determine the stability of these equi-
libria. The purpose of this paper is to give a concise, but
instrumental, presentation of a general method which can
be used for the stability analysis of the steady-states of ge-
netic regulatory networks represented by delay-differential
equations. Two complementary ways are investigated: a
frequency domain approach which applies to linearized
models and gives necessary and sufficient conditions for the
local steady-state stability, a Lyapunov approach derived
from the viewpoint of hyperbolic PDE systems which gives
sufficient conditions for global stability. These methods are
illustrated with the example of the “toggle switch”.

� GB and JMC are partially supported by the ERC advanced grant
266907 (CPDENL) of the 7th Research Framework Programme
(FP7). GB is also partially supported by the Belgian Programme
on Interuniversity Attraction Poles (IAP VII/19).

2. MATHEMATICAL MODEL

We consider a genetic regulatory network which involves
n genes interconnected through activator or repressor
proteins. As illustrated in Fig.1, the expression of the i-
th gene in the network (i = 1, . . . , n) is represented by
the following standard delay-differential system (see e.g.
Bernot et al. [2013]):

dMi(t)
dt

= bi + hi(Pk(t − τk)) − δiMi(t),

dPi(t)
dt

= αiMi(t − τn+i) − βiPi(t),
(1)

where, at time t, Mi(t) is the density of mRNA molecules
and Pi the density of proteins expressed by the i-th
gene. The constants bi and αi denote respectively the
basal transcription rate and the specific translation rate.
The constants βi and δi are the natural degradation rate
coefficients. The constant delays τi and τn+i are the times
needed for transcription and translation respectively. The
function hi describes the feedback control of the expression
of the i-th gene by a protein which is produced by another
or the same gene in the network. More precisely, the
function hi(Pk) means that the transcription of the i-th
gene may be activated or repressed by the density Pk of
the protein expressed by the k-th gene of the network (with
the possibility that k �= i or k = i). It may therefore be
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Fig. 1. Scheme of genetic transcription and translation
with activation or repression.

either an activation Hill function of the form

hi(Pk) =
υiP

mi

k

kmi
i + P mi

k

, (2)

or an inhibition Hill function of the form

hi(Pk) = υik
mi
i

kmi
i + P mi

k

, (3)

where υi, ki and mi are constant parameters with υi

the maximal transcription rate, ki the half-saturation
coefficient and mi the so-called Hill coefficient.
A steady-state of the system is a constant solution M∗

i , P ∗
i ,

i = 1, . . . , n, of the dynamical system (1) i.e. a solution of
the algebraic system

bi + hi(P ∗
k ) − δiM

∗
i = 0,

αiM
∗
i − βiP

∗
i = 0.

(4)

Let us define the deviations of Pi and Mi with respect to
a steady-state M∗

i , P ∗
i :

mi(t) = Mi(t) − M∗
i , pi(t) = Pi(t) − P ∗

i . (5)
With these coordinates, the model (1) is alternatively
written under the form

dmi(t)
dt

= gi(pk(t − τk))pk(t − τk) − δimi(t),

dpi(t)
dt

= αimi(t − τn+i) − βipi(t),
(6)

where the function gi is defined such that
gi(p)p = hi(P ∗ + p) − hi(P ∗). (7)

The linearization, around zero, of the system (6) is then
given by

dmi(t)
dt

= gi(0)pk(t − τk) − δimi(t),

dpi(t)
dt

= αimi(t − τn+i) − βipi(t).
(8)

In the next section we study the stability of the linear
system (8) in the frequency domain.

3. FREQUENCY DOMAIN STABILITY

We introduce the following vector notations:

m =




m1
...

mn


 , p =




p1
...

pn


 , (9)

Using the Laplace transform, the linear system (8) is
written in the frequency domain as

m = (sIn + D)−1F (s)p,

p = (sIn + B)−1AE(s)m,
(10)

with the following matrix definitions:
A = diag{α1, . . . , αn} ,

B = diag{β1, . . . , βn} ,

D = diag{δ1, . . . , δn} ,

E(s) = diag
{

e−sτn+1 , . . . , e−sτ2n
}

,

F (s) = matrix with entry [F (s)]ik = gi(0)e−sτk if k ∼ i

and 0 otherwise.

The notation “diag” means that the matrix is diagonal.
The notation k ∼ i means that the protein expressed by
the k-th gene is an activator or a repressor of the i-th gene
transcription.
The system (10) is a feedback system as shown in Fig.2.
The poles of the system are the roots of the characteristic

(sIn +D)�1F (s)

(sIn +B)�1AE(s)

p(s) m(s)

Fig. 2. The linearized model of a genetic network viewed
as a feedback system.

equation

det
[
I − (sIn + B)−1AE(s)(sIn + D)−1F (s)

]
= 0. (11)

The following theorem gives the condition for the system
stability.

Theorem 1. The linear system (8) is exponentially stable
if and only if the poles of the system have strictly negative
real parts and are bounded away from zero.
This theorem directly follows, as a special case, from [Hale
and Verduyn-Lunel, 2002, Section 3] and [Michiels and
Niculescu, 2007, Section 1.2]).
In the next section, as an example of how this theorem can
be used, we consider the model of a “toggle switch”.

4. EXAMPLE: THE TOGGLE SWITCH

A toggle switch (Fig. 3) is a system of two genes that
repress each other (see e.g. Smits et al. [2008], Veening
et al. [2008] and the references therein). In the case of
the toggle switch, the general model (1) is specialized as
follows:

dM1(t)
dt

= b1 + h1(P2(t − τ2)) − δ1M1(t),

dP1(t)
dt

= α1M1(t − τ3) − β1P1(t),
(12)
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Fig. 3. Toggle switch.

dM2(t)
dt

= b2 + h2(P1(t − τ1)) − δ2M2(t),

dP2(t)
dt

= α2M2(t − τ4) − β2P2(t),
(13)

with

h1(P2) = υ1km1
1

km1
1 + P m1

2
,

h2(P1) = υ2km2
2

km2
2 + P m2

1
.

(14)

Depending on the numerical values of the constant co-
efficients and parameters, the system may have 1, 2 or
3 steady-states. The linearization around any of these
steady-states is written

dm1(t)
dt

= g1(0)p2(t − τ2) − δ1m1(t),

dp1(t)
dt

= α1m1(t − τ3) − β1p1(t),

dm2(t)
dt

= g2(0)p1(t − τ1) − δ2m2(t),

dp2(t)
dt

= α2m2(t − τ4) − β2p2(t).

(15)

Then, using formula (11), it is a matter of a few compu-
tations to show that the characteristic equation is
s4 + a3s3 + a2s2 + a1s1 + a0︸ ︷︷ ︸

ψ(s)

− α1α2g1(0)g2(0)︸ ︷︷ ︸
χ

e−sτ = 0

with
τ = τ1 + τ2 + τ3 + τ4,

a0 = β1β2δ1δ2,

a1 = (β1 + β2)δ1δ2 + β1β2(δ1 + δ2),
a2 = β1β2 + δ1δ2 + (β1 + β2)(δ1 + δ2),
a3 = β1 + β2 + δ1 + δ2.

In order to analyze the stability of the poles in function of
the time-delay τ , we follow the procedure of Walton and
Marshall [1987].
The first step is to examine the stability when τ = 0. In
that case, it follows from a straightforward application of
the Routh-Hurwitz criterion that the poles are stable if
and only if

a0 − α1α2g1(0)g2(0) > 0, (16)
a1a2a3 > a2

1 + a2
3(a0 − α1α2g1(0)g2(0)). (17)

In the second step, we compute the following polynomial
in ω2:

W (ω2) = ψ(jω)ψ(−jω) − χ2

= ω8 + b3ω6 + b2ω4 + b1ω2 + b0

with
b0 = a2

0 − χ2,

b1 = a2
1 − 2a0a2,

b2 = a2
2 − 2(a0 + a1a3),

b3 = 2a2 + a3.

Then, if conditions (16) and (17) are satisfied and if W (ω2)
has no positive real roots, the system (15) is stable for all
τ � 0. In contrast, if W (ω2) has positive real roots, there is
a maximum value of τ beyond which the system becomes
unstable.

5. LYAPUNOV STABILITY

Since a genetic regulatory network is inherently a non-
linear system having, possibly, multiple steady-states, the
frequency domain approach, based on linearization, has
a fundamental limitation: it gives conditions that ensure
only the local stability of the steady-states. By this, it is
meant that if the initial conditions are slightly perturbed,
then the system returns to the equilibrium. In order to
determine larger domains of convergence (and even to
guarantee global stability in the case where the genetic
network has a single steady-state), it is more appropriate
(and less easy !) to use the Lyapunov approach. For this
purpose, we introduce the auxiliary independent variable
z ∈ [0, 1], and we consider that the protein and mRNA
densities pi = Pi − P ∗

i and mi = Mi − M∗
i now depend on

the two variables t and z and satisfy the partial differential
equations

∂tpi(t, z) + 1
τi

∂zpi(t, z) = 0,

∂tmi(t, z) + 1
τn+i

∂zmi(t, z) = 0,

(18)

under the boundary conditions
dmi(t, 0)

dt
= gi(pk(t, 1))pk(t, 1) − δimi(t, 0),

dpi(t, 0)
dt

= αimi(t, 1) − βipi(t, 0),
(19)

The model (18)-(19) is identical to the delay-differential
model (6) which has been used above since the transport
equations (18) are, by definition, equivalent to

pi(t, 1) = pi(t − τi, 0), mi(t, 1) = mi(t − τn+i, 0). (20)
We introduce the following candidate Lyapunov function

V =
∫ 1

0

[
n∑

i=1
qiτip

2
i (t, z)e−µτiz

+
n∑

i=1
qn+iτn+im

2
i (t, z)e−µτn+iz

]
dz

+ 1
2

n∑
i=1

wip
2
i (t, 0) + 1

2

n∑
i=1

wn+im
2
i (t, 0), (21)

with positive parameters µ, qi, qn+i, wi, wn+i to be deter-
mined. With matrix notations, this function is rewritten
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V =
∫ 1

0

[
pT (t, z)Q1T1E1(µ, z)p(t, z)

+ mT (t, z)Q2T2E2(µ, z)m(t, z)
]
dz

+ 1
2

[
pT (t, 0)W1p(t, 0) + mT (t, 0)W2m(t, 0)

]
, (22)

with
Q1 = diag{qi, i = 1, . . . , n} ,

Q2 = diag{qn+i, i = 1, . . . , n} ,

T1 = diag{τi, i = 1, . . . , n} ,

T2 = diag{τn+i, i = 1, . . . , n} ,

E1(µ, z) = diag
{

e−µτiz, i = 1, . . . , n
}

,

E2(µ, z) = diag
{

e−µτn+iz, i = 1, . . . , n
}

,

W1 = diag{wi, i = 1, . . . , n} ,

W2 = diag{wn+i, i = 1, . . . , n} .

Using integration by parts, it can be shown that the time
derivative of V , along the system solutions, is

dV

dt
= −µV − XT M(µ, p(t, 1))X, (23)

with the vector X and the matrix M(µ, p) defined as

XT =
(
pT (t, 0) mT (t, 0) pT (t, 1) mT (t, 1)

)T (24)

M(µ, p) =


W1B − Q1 0 0 −W1A
0 W2D − Q2 −W2G(p) 0
0 0 Q1E1(µ, 1) 0
0 0 0 Q2E2(µ, 1)


 (25)

We have the following theorem.

Theorem 2. There exists µ > 0 sufficiently small such
that V is a strict exponentially decreasing Lyapunov func-
tion along the solutions the system (18)-(19) with p ∈ Rn

+
if there exist qi > 0, qn+i > 0, wi > 0, wn+i > 0 such that
the matrix M(0, p) is positive definite for all p ∈ Rn

+.
In the next section, we use again the toggle switch as an
example of how this theorem can be used.

6. EXAMPLE: THE TOGGLE SWITCH

For the toggle switch example, the general model (18)-(19)
is specialized as follows:

∂tp1(t, z) + 1
τ1

∂zp1(t, z) = 0,

∂tp2(t, z) + 1
τ2

∂zp2(t, z) = 0,

∂tm1(t, z) + 1
τ3

∂zm1(t, z) = 0

∂tm2(t, z) + 1
τ4

∂zm2(t, z) = 0,

dm1(t, 0)
dt

= g1(p2(t, 1))p2(t, 1) − δ1m1(t, 0),

dp1(t, 0)
dt

= α1m1(t, 1) − β1p1(t, 0),

dm2(t, 0)
dt

= g2(p1(t, 1))p1(t, 1) − δ2m2(t, 0),

dp2(t, 0)
dt

= α2m2(t, 1) − β2p2(t, 0).

For this system, the matrix M(0, p) is

M(0, p) =
(

M11 M12

0 M22

)
, (26)

with

M11 =




w3β1 − q1 0 0 0
0 w4β2 − q2 0 0
0 0 w1δ1 − q3 0
0 0 0 w2δ2 − q4


 ,

M12 =




0 0 −w3α1 0
0 0 0 −w4α2
0 −w1g1(p2) 0 0

−w2g2(p1) 0 0 0


 ,

M22 =




q1 0 0 0
0 q2 0 0
0 0 q3 0
0 0 0 q4


 .

This matrix is positive definite if and only if the lead-
ing principal minors of the symmetric matrix M(0, p) +
MT (0, p) are all positive. This leads to the following
inequalities:

0 < w3β1 − q1
0 < w4β2 − q2
0 < w1δ1 − q3
0 < w2δ2 − q4

0 < (w1δ1 − q3)q2 − (1/4)w2
1g2

1(p2)
0 < (w2δ2 − q4)q1 − (1/4)w2

2g2
2(p1)

0 < (w3β1 − q1)q3 − (1/4)w2
3α2

1

0 < (w4β2 − q2)q4 − (1/4)w2
4α2

1.

Hence, the system is stable for any τi if there exist positive
values of qi and wi such that these inequalities are satisfied.

7. FINAL REMARKS

In this paper, we have presented two ways for analyzing the
stability of steady-states in genetic regulatory networks
represented by delay-differential equations: a frequency do-
main approach and a Lyapunov approach. The two meth-
ods are complementary. The advantage of the frequency
domain method is to give necessary and sufficient condi-
tions but the stability is local. In contrast, the Lyapunov
method may give global stability results but the stability
conditions are only sufficient and can be conservative in
some instances.

In this paper, for simplicity, we have restricted the presen-
tation to networks where each gene can be controlled by
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V =
∫ 1

0

[
pT (t, z)Q1T1E1(µ, z)p(t, z)

+ mT (t, z)Q2T2E2(µ, z)m(t, z)
]
dz

+ 1
2

[
pT (t, 0)W1p(t, 0) + mT (t, 0)W2m(t, 0)

]
, (22)

with
Q1 = diag{qi, i = 1, . . . , n} ,

Q2 = diag{qn+i, i = 1, . . . , n} ,

T1 = diag{τi, i = 1, . . . , n} ,

T2 = diag{τn+i, i = 1, . . . , n} ,

E1(µ, z) = diag
{

e−µτiz, i = 1, . . . , n
}

,

E2(µ, z) = diag
{

e−µτn+iz, i = 1, . . . , n
}

,

W1 = diag{wi, i = 1, . . . , n} ,

W2 = diag{wn+i, i = 1, . . . , n} .

Using integration by parts, it can be shown that the time
derivative of V , along the system solutions, is

dV

dt
= −µV − XT M(µ, p(t, 1))X, (23)

with the vector X and the matrix M(µ, p) defined as

XT =
(
pT (t, 0) mT (t, 0) pT (t, 1) mT (t, 1)

)T (24)

M(µ, p) =


W1B − Q1 0 0 −W1A
0 W2D − Q2 −W2G(p) 0
0 0 Q1E1(µ, 1) 0
0 0 0 Q2E2(µ, 1)


 (25)

We have the following theorem.

Theorem 2. There exists µ > 0 sufficiently small such
that V is a strict exponentially decreasing Lyapunov func-
tion along the solutions the system (18)-(19) with p ∈ Rn

+
if there exist qi > 0, qn+i > 0, wi > 0, wn+i > 0 such that
the matrix M(0, p) is positive definite for all p ∈ Rn

+.
In the next section, we use again the toggle switch as an
example of how this theorem can be used.

6. EXAMPLE: THE TOGGLE SWITCH

For the toggle switch example, the general model (18)-(19)
is specialized as follows:

∂tp1(t, z) + 1
τ1

∂zp1(t, z) = 0,

∂tp2(t, z) + 1
τ2

∂zp2(t, z) = 0,

∂tm1(t, z) + 1
τ3

∂zm1(t, z) = 0

∂tm2(t, z) + 1
τ4

∂zm2(t, z) = 0,

dm1(t, 0)
dt

= g1(p2(t, 1))p2(t, 1) − δ1m1(t, 0),

dp1(t, 0)
dt

= α1m1(t, 1) − β1p1(t, 0),

dm2(t, 0)
dt

= g2(p1(t, 1))p1(t, 1) − δ2m2(t, 0),

dp2(t, 0)
dt

= α2m2(t, 1) − β2p2(t, 0).

For this system, the matrix M(0, p) is

M(0, p) =
(

M11 M12

0 M22

)
, (26)

with

M11 =




w3β1 − q1 0 0 0
0 w4β2 − q2 0 0
0 0 w1δ1 − q3 0
0 0 0 w2δ2 − q4


 ,

M12 =




0 0 −w3α1 0
0 0 0 −w4α2
0 −w1g1(p2) 0 0

−w2g2(p1) 0 0 0


 ,

M22 =




q1 0 0 0
0 q2 0 0
0 0 q3 0
0 0 0 q4


 .

This matrix is positive definite if and only if the lead-
ing principal minors of the symmetric matrix M(0, p) +
MT (0, p) are all positive. This leads to the following
inequalities:

0 < w3β1 − q1
0 < w4β2 − q2
0 < w1δ1 − q3
0 < w2δ2 − q4

0 < (w1δ1 − q3)q2 − (1/4)w2
1g2

1(p2)
0 < (w2δ2 − q4)q1 − (1/4)w2

2g2
2(p1)

0 < (w3β1 − q1)q3 − (1/4)w2
3α2

1

0 < (w4β2 − q2)q4 − (1/4)w2
4α2

1.

Hence, the system is stable for any τi if there exist positive
values of qi and wi such that these inequalities are satisfied.

7. FINAL REMARKS

In this paper, we have presented two ways for analyzing the
stability of steady-states in genetic regulatory networks
represented by delay-differential equations: a frequency do-
main approach and a Lyapunov approach. The two meth-
ods are complementary. The advantage of the frequency
domain method is to give necessary and sufficient condi-
tions but the stability is local. In contrast, the Lyapunov
method may give global stability results but the stability
conditions are only sufficient and can be conservative in
some instances.

In this paper, for simplicity, we have restricted the presen-
tation to networks where each gene can be controlled by
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one protein at most. The analysis can easily be extended
to situations where a gene can be controlled by several
proteins simultaneously. In fact, both Theorems 1 and 2
hold exactly as they are, provided the definitions of the
matrices F (s) and G(p) are adequately extended.

The Lyapunov method of this paper is derived from the
viewpoint of hyperbolic systems and easy to implement
(see Bastin and Coron [2014] for more details). An alter-
native approach, based on Lyapunov-Krasovskii function-
nals, has been used in other papers with a special emphasis
on the robustness issue, see e.g. Wang et al. [2008], Ren
and Cao [2008].

An application to the genetic network of the basic mech-
anism for the competence development in Streptococcus
thermophilus (see Haustenne et al. [2015] and Fontaine
et al. [2013]) is in progress.
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