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Abstract — We consider the optimization of fed-batch fer-
mentation processes involving one limiting substrate for bio-
mass growth and product synthesis, with respect to the volu-
metric feed rate of this substrate. Until now classification of
these processes —and thus also the determination of the cor-
responding optimal feed rate strategy— has been based only
on the gualitative behavior of the specific rates for growth
and production as functions of substrate concentration. In
this paper we illustrate that the optimal control sequence
largely depends on other model characteristics as well, such
as the value of the product degradation constant. A detailed
optimization study for all possible combinations of the spe-
cific rates for growth and production reveals that the typical
biphasic behavior of processes with growth/production de-
coupling disappears if product degradation is rot modeled.
In this sense numerical optimization can prove very useful in
solving the model structure discrimination problem.

FED-BATCH FERMENTATION PROCESSES
WITH PRODUCT FORMATION

Mathematical model

Consider a biotechnological process in a stirred tank reac-
tor operated in fed-batch described by the following set of

equations: .

% = —0X + Csinu

X o ux

dt (1)
dP

5% = =X - kP
LA
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with S [g] the amount of substrate, X [g DW] the amount of
biomass, P [g] the amount of product, V [L] the volume of
the liquid phase, Cs,in [g/L] the substrate concentration in
the volumetric feed rate u [L/h}, o [g/g DW h] the specific
substrate consumption rate, g [1/h] the specific growth rate,
7 [g/g DW h) the specific production rate, and k [1/h] the
product degradation constant. There is no dynamic equa-
tion for dissolved oxygen, as dissolved oxygen is considered
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non-limiting by maintaining a sufficiently high aeration level.
The three specific rates o, u, and 7 are interrelated by the
following linear law:

1 1
o= +m+ x 2
YX/Su Yp/s @

with Yx/s [g¢ DW/g] the biomass on substrate yield coeffi-
dent, Yp/s [g/g] the product on substrate yield coefficient,
and m [g/g DW b) the specific maintenance demand. No-
tice that the mathematical model (1)-(2) can describe any
metabolism for maintenance of living biomass.

Fed-batch fermentation processes have been found to be
most effective in overcoming such effects as substrate inhi-
bition, catabolite repression, and glucose effects. In other
words, whenever the specific rates of growth () and/or pro-
duction (=) are non-monotonic functions of the limiting sub-
strate concentration, a fed-batch operation may be superior
and it is then necessary to determine the optimal feed rate
of substrate.

Optimization of P(ty)
The optimization problem we consider in this paper can be
stated as follows. Determine the optimal volumetric feed
rate u*(t) which minimizes the following performance index:
min  J[u] £ -P() @)
u(t), t €[0,4]

ie., maximizes the final product amount P(t;), subject to:

1. to =0, ty is free

2. X(0)= Xo, P(0)=0

3. 5(0) is free; V(0) = Vi, + S(0)/Cs,in with V. the ini-
tial volume without substrate. Note that substrate is
added as a solution with concentration Cs,in.

4. V(t5) = Vmax, ie., the final volume is fixed. Observe
that this physical constraint is equivalent to fixing the
total amount of substrate available o (see the differ-
ential equation for V'):

s
5(0) +/ Cs,in u(t) dt=a
o

5. 0 < u(t) € Umax, Le., the feeding pump capacity is
limited.
The yieldY is defined as the ratio of the final product amount
P(t;) to the total substrate amount o added. If we fix a,
then minimizing performance index (3) is equivalent to maz-
imizing the yield Y.
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Figure 1: Monotonic and non-monotonic specific rates

Optimal control solution

A detailed analysis of this problem, by using Pontryagin’s
Minimum Principle, can be found in [1). Initial work along
the same lines has been reported in [2]. The optimal con-
trol profile u*(t) consists of intervals of feeding at the maxi-
mum rate u(t) = Umax and at the minimum rate u(t) = 0,
and so-called singular intervals during which the maripu-
lated variable follows a very specific, time-varying pattern
u(t) = uging(t). The determination of the optimal control
sequence [Unax, 0, Using) and the corresponding switching
times basically depends on the gualitative behavior of the
specific rates g and = as functions of substrate concentration
Cs = 5/V [1],[2]. We can distinguish between the following
cases.

m Case I: monotonic u and non-monotonic =
This type is most common, in which cell growth follows
a monotonic kinetics (left plot of Figure 1) while prod-
uct formation is inhibited or repressed (right plot of
Figure 1). Typical examples are production of amino-
acids and pharmaceaticals.

mn Case II: non-monotonic 4 and monotonic x
In this case, u behaves as shown in the right plot of
Figure 1, while » behaves as in the left plot. Exam-
ples include glutamic acid fermentation on ethanol and
vitamin B;; fermentation.

» Case III: non-monotonic p and non-monotonsic x
In this least common case, both u and = behave as
shown in the right plot of Figure 1. An example is
ethanol fermentation from fructose.

» Case IV: monotonic u and monotonic v
To complete the analysis this case must be considered
as well. Both y and x behave as shown in the left plot
of Figure 1.

If the synthesis of the product of interest P is directly asso-
dated to biomass growth, i.e., if

a
r=Ypix p

with Yp;x [g/g DW] the product on biomass yield coeffi-
dent, then P is a so-called primary metabolite and product
formation is of the growth associated type. Observe that this
special case can occur within Case III and Case IV.

On the other hand, secondary metabolites are compounds
produced through special enzymatic reactions that appar-
ently have no direct relation to growth of biomass: the en-
zyme catalyzed production is not associated to the microbial
growth. These processes are characterized by a decoupling

between growth and product formation. The first phase is -

characterized by rapid cell growth with almost no product
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parameters

YX/S 0.47 Ypis 1.2

m 0.029 | Csin 500

snstsal conditions

Xo 10.5 So to be optsmized
P, (] Vo T+ So/Cs,in

to 0 a 1500

Table 1: Model parameters and initial conditions

synthesis, while during the production phase the product of
interest is formed with only limited growth.

Until new classification of these processes —and thus also
the determination of the corresponding optimal feed rate
strategy— has been based on the qualitative behavior of the
specific rates u and x only (see, e.g., [1] and [2]). In this
paper we illustrate that the optimal control sequence largely
depends on other model characteristics as well, such as

1. the value of the product degradation constant k [egs.
6]

2. the value of the specific maintenance demand m [see
the linear law (2)] and the type of metabolism (exoge-
nous, endogenous, or mixed exogenous/endogenous).

For now we only focus on the first item, i.e., on the pos-
sible influence of the product degradation constant k on the
optimal control sequence, while the metabolism mechanism
is always assumed to be of the exogenous type (often called
maintenance metabolism). This means that maintenance re-
quirements are completely fulfilled by consumption of the
substrate source S.

A more detailed analysis, together with a description of
the influence of the specific maintenance demand m (and
the corresponding endogenous fraction) upon optimization
results, can be found in Reference [3].

During all simulations the model parameters and initial
conditions summarized in Table 1 have been used.

We assume that the specific rates 4 and x are functions of
substrate concentration Cs only. When modeling a mono-
tonic specific growth rate, a Monod type model has been
used:

Cs

a
= —e 4
S b, (4)
or, equivalently, for the specific production rate:
a Cs
= My e 5
i ¥ K M,z + Cs ( )

with pgm [1/h] and 7m [g/g DW h] the maximum specific rate
for growth and production respectively, and K. [g/L] and
Ka» [g/L] the Monod saturation constant for substrate lim-
itation of growth and production respectively. This Monod
type kinetics reaches its maximum value for substrate con-
centration Cs going to co. When modeling a non-monotonic
specific rate, the following Haldane type expressions have
been used:

= - ©®
R Kuu+Cs+CL/Kru

- Cs ™
Kmz+Cs+C;/Kix

with K1, [g/L] and K7, [g/L] the substrate inhibition con-
stant for growth and production respectively. Observe that
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Figure 2: Case I - optimai control profiles

for Haldane type kinetics, um does not represent the maxi-
mum value. Instead, the maximum value is given by

1

max(g) = pm ————————
"1+ 2y/Kunl K.

and occurs at the substrate concentration Cs,,

Csu = VEuyp Kiu

and analogous expressions for max(x) and Cs, .

CASE I: MONOTONIC y AND
NON-MONOTONIC 7
Optimal control strategy

Apl_alica.tion of the Minimum Principle leads to the following
optimal control sequence (see also Figure 2):

1. The first phase [0, 2] is the growth phase. Since y is
monotonically increasing, the substrate available for
biomass growth, denoted with Sgrowtr, must be added
as fast as possible in order to ensure rapid biomass
accumulation. Therefore, during the interval [0,1,]
the feed rate is at its maximum value, ie., [u*(t) =
Usmax), whereafter a batch phase follows [u*(f) =
0,ty < t < t2]. As a limiting case, all substrate for
growth Sgrowtn can be added all at once at time £ = 0,
thus ensuring the highest possible specific growth rate
u for all t € [0, 22], with a low production rate.

2. During the second phase, the production phase, a sin-
gular control [using(t),t2 < t < t3] forces the process
to produce the product as fast as possible. At any
time, there is a balance between glucose feeding and
glucose demand for production and possibly mainte-
nance, thus ensuring the lowest possible growth rate.
Wher V(t3) = V3, the fermentation continues in batch
[2*() = 0,13 < t < t4] until the net product formation
rate dP/dt equals zero at t = t;.

The singular control is given by:

d’CxV

m-*»k F(5,X,PV) (8)

Using =

where F is a complicated function of S, X, P, and V. Anex-
cellent approximation results when neglecting product degra-
dation in calculating u [1]:

_ aCxV
Uheur = m (9)
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Figure 3: Case I - optimal values for k — 0

This heuristic controller keeps substrate concentration Cg
constant at some value Cg, which plays the role of a set-point.
From a mathematical point of view, this can be justified by
the following Theorem for the performance measure under
consideration (3) [1}:

Theorem 1 Physical interpretation of singular control

If o, p, and x are functions of Cs only, with continuous
second derivatives
Then during singular control:

1. Cs remains constant & k=0,
2. Cs satisfies:

d «
ics (5 =0

Observe that in the case where product degradation k equals
zero, the heuristic controller coincides exactly with the op-
timal control sequence.

In summary, the optimal control problem reduces to the
two dimensional optimization of (i) the switching time ti,
or more generally, the fraction Sgrowtn of the total substrate
amount available a, and (ii) the switching time t;, or in
the case of heuristic control, the set-point C3 for substrate
concentration during production.

Optimal control for k£ — 0

The optimal values of Sgrowta and Cs, and the corresponding
values for Cx(ts) and Cp(ts) are shown in Figure 3 for de-
creasing values of the product degradation constant k. The
following observations can be made.

1. When k decreases, the amount of substrate consumed
during growth Sgrowtn decreases too. In the limit,
when & = 0, we have Sgrowtr = 0. This means that
there is no growth phase at all, i.e., the characteris-
tic biphasic behavior has disappeared completely. In
other words, it is then better to start production right
from the beginning by singular feeding than to con-
sume part of the substrate available for biomass build-
up.

2. When k — 0, the set-point for substrate concentration
during production Cg reaches the value Cg r/o, ie.,
the value which maximizes the ratio /o (Theorem 1).
This also illustrates that the heuristic control coincides
with the optimal control if k = 0.
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Figure 4: Case II - optimal control profiles

CASE II: NON-MONOTONIC g AND
MONOTONIC 7

Optimal control strategy
The following optimal control sequence is obtained:

1. The first phase is the growth phase. Since y is non-
monotonic, a singular control [u*(t) = using(t)] is re-
quired to ensure rapid biomass accumulation. If the
initial substrate amount Sp is free, the optimal choice
is such that Cs(0) = So/V, satisfies the singular arc
conditions.

2. In order to start the production phase, substrate con-
centration must be as high as possible since  is mono-
tonically increasing. Therefore, the feed rate must
be set to its maximum level [u*(t) = Umax] until
the remaining substrate available for production (a —
Sgrowtn) has been added (V = V), whereafter a batch
phase [u*(t) = 0] follows until the net product forma-
tion rate dP/dt equals zero at t = t;. As a limit-
ing case, all remaining substrate for production (o —
Sgrowtn) is added all at once at the beginning of the
production phase (Dirac impulse) (Figure 4), thus en-
suring the highest possible specific production rate .

As in Case I, the singular control (8) -which now occurs
during the growth phase- can be replaced by an easier to
implement heuristic controller (9) which keeps substrate con-
centration constant at some prespecifieg set-point C5. Since

5(0) < Sgrowth

the following boundaries on the admissible values of C§ can
be easily deduced

Sgrowth
Ca,-'n Ve +Sgrowth

In summary, the optimal control problem reduces to a two
dimensional optimization problem, in this case of (i) the
fraction Sgrowen of the total substrate amount available a,
and (ii) the set-point C§ for substrate concentration during
growth.

Optimal control for £k — 0

The optimal values of Sgrowsh and Cs, and the correspond-
ing values for Cx(¢s) and Cp(ts) are shown in Figure 5
for decreasing values of the product degradation constant
k. Similar observations as in Case I can be made.

1. When k decreases, Sgrowth decreases too. In the limit,
when k = 0, we have Sgrowth = 0. This means that
there is no growth phase at all, i.e., the characteristic
biphasic behavior has disappeared completely. It is then
better to start production right from the beginning by
feeding all substrate available o as fast as possible.

0L C5<Csin

3
k{1 k)

Figure 5: Case II - optimal values for k — 0
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Figure 6: Case III - optimal control profiles

2. As a result, when k¥ — 0, there is no need for a set-
point for substrate concentration during growth Cs.
This corresponds to the fact that there are no real
positive roots which satisfy d(x/a)/dCs =0 [3].

CASE III: NON-MONOTONIC y AND
NON-MONOTONIC T

Optimal control strategy

Since both x and x are non-monotonic functions of substrate
concentration, the optimal control sequence basically con-
sists of two singular phases (Figure 6). They are linked to-
gether by a (short) interval of feeding at the maximum or the
minimum rate, depending on whether or not substrate con-
centration during production is higher than during growth.
Again, both singular controls can be replaced by heuristic
controllers of the form (9), which keep substrate at the de-
sired set-points C3, and Cs, for growth and production
respectively. Similar boundaries on these set-points as in
Case II can be deduced.

In summary, the optimal control problem reduces to the
three dimensional optimization of (i) the fraction Sgrowstn of
the total substrate amount available a, (ii) the set-point Cs ,
for substrate concentration during growth, and (iii) the set-
point C% . for substrate concentration during production.

Optimal control for k — 0

During simulations g and 7 have been modeled by Haldane
type kinetics (6) and (7). Depending on the relative position
of 4 and = as functions of Cs, 10 different cases can be con-
sidered. The optimal values of Sgrowtn, C35,4, and C§,x, and
the corresponding value for Cp(ts) are shown in Table 2 for

1950
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Cs.# Csx Hm KM.# Ky ] Xm KM,# Kl.fr Csy Cs» Hbm KM,» Kl.y Tm KM,vr Kl,x
Case 1: K1u=Krx Case T: Cs,u=Csn
T 01] 21 10. 01045 01 01 T. 1] 21 10. 01045 02 5
o Sgrowth - Sgrowth -
Cs,=C:.  0.04997 C:,=Ci,  0.11805
Cr(ty) 121.81103 Cr(ty) 113.70693
Case 2: Ki1,.=Krn Case 8: Csu=Csx
0.1 1. 1045 0.1 0.1 T T. [0.45 0.2 5] 2.1 10, 0.1
. Sgrowth - Sorowth -
Cs,=Cs. 2.00450 C;,=Cs, 1.00000
S ——
Cp(ty) 85.15067 Cp(ty) 18.81301 ——
Case 3: Kyy=Kur Case 9: n=Yp/x 4 J
1. 0.1 1 2.1 0.1 10. | 0.45 0.1 0.1 1. 1. [ 2.1 10. 0.1 ] 0.45 10, 0.1
Sgrowth - Sgrow'h e
C:,=C:, 0.01584 Cs,=Cs, 1.00000
Cp(ty) 13.09258 Cr(t;) 12.37242
Case 4: Kuy=Knr Case 10: 7=Yp/x 1
0.1 1. 70.45 0.1 10. 1. 1.70.45 10. 0.1 T 21 10 0.1
Sgrowth - Sgrowth -
Cs,=Cs, 580166 C:,=Cs.  1.00000
Cp(ty) 172.69611 Cr(ty) 94.89737
Case 5: max(p) = max(x) Table 2: Case III - optimal values for £ — 0
T 0.1 ] 2.1 10.  0.1] 0.3 0.1 0.1 PH e
Sgrowth - . - —_
Cs,=C3%,  0.04997 Cs.u(=C5,n) = Cs,nje = Cs,u(= Csix)
independent of the value of k (see also [3]). The same result
| Cr(ty) 10486236 holds true for Case 8, but only for k = 0. For Case 7, the set-
Case 6: point C5,,(= C3,x) = Cs,u(= Cs,x) corresponds to a local
mini of x/o.
0.1 1.1 0.3 0.1 0.1
Serowth _ CASE IV: MONOTONIC g AND MONOTONIC 7©
Cs =, Cs 1.79584 Since both x4 and 7 are monotonically increasing functions
s " and therefore have similar behavior around their maximum
Cp(ty) 95.61239 ] values, this can be considered as a degenerate case of growth
associated production. Therefore, the optimal control se-
product degradation constant k equal to zero. Remember

that Cs,. and Cs,» denote the substrate concentrations at
which g and x reach their maximum value respectively. The
following observations can be made.

1. For all cases of Table 2 there is no growth phase. This
is rather obvious for Case 9 and Case 10 -growth as-
sociated production—, independent of the value of k.
In all other cases the characteristic biphasic behavior
disappears completely when k — 0.

2. When k — 0, both set-points C5,, and Cs , converge
to Cs,»/» Which maximizes /¢ (Theorem 1). In Case
9 and Case 10 (growth associated production), we have

1951

quence would be to feed all substrate available as fast as
possible —in the limit this corresponds to a batch process-,
while growth and production occur at the same time (one
phase).

We have investigated all possible relative positions of g
and 7, modeled by Monod type models (4) and (5) respec-
tively. The results for product degradation k — 0 are shown
in Table 3. The following observations can be made.

1. In most cases, the above line of reasoning is correct,
i.e., the optimal mode of operation is batch, all sub-
strate available being added at time ¢t = 0. In addition,
this result is éndependent of the value of k [3].
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Cp(tf) 57.14030

Case | pm Knmpu Tm Kn x Case | pm Ky, Tm Ky,» I
pm < Xm KM,y < KM,R Pbm = Tm
1 | 0.1 1. 0.15 5. 7 { 0.1 1. 0.1 5.
. Sgrou:th - //——— Syrowth - ﬁ;t/—
Sur Usm - (,- Csu Cs,r - /

Cr(ty) 42.65956

Cr(ts) 34.64377

= Yp/xi
4 | 0.1 1. 0.15
-sgrou:th -
S, YSm -

JRHCDA (L0

Cp(ty) 61.10292

Bm > %m KM,y < KM,;r
S J0.15 1. 0.1 5.
.Sgrou:th - F’
CS,p’ CS.w - s
/

Crp(ty) 53.94851

bm < Tmn KM,u > KM,!I’
8 ] 01 5. 0.15 T,

Ve

Sgrowth - ;
Cs.=0Cs5, 113192 f’—

Cp(ty) 88.63113

2. However, Case 2, Case 6, and Case 8, are exceptions

on this rule. As in the other cases, growth and pro-
duction occur at the same time, i.e., there is only one
phase whatever the value of k. However, all substrate
must be added following a singular control of the form
(8). Again, this singular control law can be success-
fully replaced by a heuristic control law (9) which
keeps substrate concentration constant at some pre-
specified set-point Cs. For product degradation k go-
ing to zero, this set-point converges to the value Cs » /o
which maximizes /o (Theorem 1).

Analysis of the roots of d(x/0)/dCs = 0 leads to the
following criterion for optimal singular control:
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bm > Xm KM,u > KM,R bm = Tm
— -
| 0.15 S. 0.1 8§ | 0.1 o. 0.1 1.
. Sgrou:th " Sgrowth - '_./
Csu=Cs. 0.88734 C:,=Cs, 0.13192 ]
Cp(ty) 60.59035 Cr(t;) 70.69693 |
x=Yp/xp u=x
3 1015 1. 0.1 9 | 0.1 5. 0.1 1.
. S,,-,wu. - Sgrowth -
S,u1 C;‘,x - C.;',;n C;',n -

Cp(ty) 45.93593

Table 3: Case IV - optimal values for ¥ — 0
: B —_—_——

Yx/s +1)

HBm

CONCLUSION
We have investigated the optimization of fed-batch fermen-
tation processes involving one limiting substrate for biomass
growth and product synthesis, with respect to the volumetric
feed rate of this substrate.

Until now classification of these processes —and thus also
the determination of the corresponding optimal feed rate
strategy- has been based only on the qualitative behavior
of the specific rates for growth and production as functions
of substrate concentration. In this paper we have illustrated
that the optimal control sequence largely depends on other
model characteristics as well, such as the value of the prod-
uct degradation constant.

A detailed optimization study for all possible combina-
tions of the specific rates for growth and production re-
veals that the typical biphasic behavior of processes with
growth/production decoupling disappears if product degrada-
tion is not modeled. In this sense numerical optimization can
prove very useful in solving the model structure discrimina-
tion problem.

A more detailed analysis of the results mentioned, to-
gether with a description of the influence of the specific
maintenance demand m (and the corresponding endogenous
fraction) upon optimization results, can be found in {3].
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