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Abstmct - We consider the optimization of fed-batch fer- 
mentation processes involving one limiting substrate for bio- 
mass growth and product synthesis, with respect to the volu- 
metric feed rate of this substrate. Until now dassification of 
these processes -and thus also the determination of the cor- 
responding optimal feed rate strategy- has been based only 
on the qualitative behavior of the spedfic rates for growth 
and production as functions of substrate concentration. In 
this paper we illustrate that the optimal control sequence 
largely depends on other model characteristics as well, such 
as the value of the product degradation constant. A detailed 
optimization study for all possible combinations of the spe- 
&c rates for growth and production reveals that the typical 
biphasic behavior of processes with growth/production de- 
coupling disappears if product degradation is not modeled. 
In this sense numerical optimization can prove very useful in 
solving the model structure discrimination problem. 

FED-BATCH FERMENTATION PROCESSES 
WITH PRODUCT FORMATION 

Mathematical model 
Consider a biotechnological process in a stirred tank reac- 
tor operated in fed-batch described by the following set of 
equations: 
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with S [g] the amount of substrate, X [g D the amount of 
biomass, P [g] the amount of product, V a the volume of 
the liquid phase, Csj, [g/L] the substrate concentration in 
the volumetric feed rate U [L/h], U [g/g DW h] the specific 
substrate consumption rate, p [I/h] the specific growth rate, 
T [g/g DW h] the specific production rate, and k [l/h] the 
product degradation constant. There is no dynamic equa- 
tion for dissolved oxygen, as dissolved oxygen is considered 
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non-limiting by maintaining a sufliciently high aeration level. 
The three specific rates u, I(, and x are interrelated by the 
following linear law: 

with YXIS [g DW/d the biomass on substrate yield coefi- 
aent, Ypls [g/g] the product on substrate yield coefficient, 
and m [g/g DW h] the s p d c  maintenance demand. N e  
tice that the mathematical model (1)-(2) can describe any 
metabolism for maintenance of living biomass. 

Fed-batch fermentation processes have been found to  be 
most effective in overcoming such effects as substrate inhi- 
bition, catabolite repression, and glucose effects. In other 
words, whenever the specific rates of growth ( p )  and/or pr* 
duction (T) are non-monotonic fnnctions of the limiting sub- 
strate concentration, a fed-batch operation may be superior 
and it is then necessary to determine the optimal feed mte 
of substmte. 
Optimization of P ( t j )  
The optimization problem we consider in this paper can be 
stated as follows. Determine the optimal volumetric feed 
rate ~ ' ( t )  which " i z e s  the following performance index: 

ie., maximizes the final product amount P ( t f ) ,  subject to: 
1. t o  = 0 ,  t f  is free 
2. X ( 0 )  = xo, P(0) = 0 
3. S(0) is free; V(0) = V. + S(O)/Cs,,, with V. the ini- 

tial volume without substrate. Note that substrate is 
added as a solution with concentration Cs,in. 

4. V(t , )  = VMAX, i.e., the final volume is fixed. Observe 
that this physical constraint is equivalent to  f k h g  the 
total amount of substrate available a (see the Mer -  
entia equation for V): 

S(O) + J" CS,in u(t)  d t  = o 
0 

5. 0 5 u(t)  5 UMAX, i.e., the feeding pump capacity is 

The yieZdy is delbed as the ratio of the final product amount 
P ( t f )  tp the total substrate amount a added. If we fix a, 
then " i z i n g  performance index (3) is equivalent to maz- 
imiting the yield y .  

limited. 
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Figure 1: Monotonic and non-monotonic specific rates 

Optimal control solution 
A detailed analysis of this problem, by using Pontryagin's 
Minimum Prinaple, can be found in 1 . Initial work along 
the same lines has been reported in 121. The optimal con- 
trol profile ~ ' ( t )  consists of intervals of feeding at the maxi- 
mum rate u(t)  = UMU and at the miuimnm rate ~ ( t )  = 0, 
and sc+called singular intervals during which the manipu- 
lated variable follows a very spedfic, timevarying pattem 
u(t)  = uSing(t). The determination of the optimal control 
sequence [UMU, 0, using] and the corresponding switching 
times basically depends on the qualitative behavior of the 
s p d c  rates p and x as h c t i o n s  of substrate concentration 
Cs i S/V [1],[2]. We can distinguish between the following 
cases. 

Case I: monotonic p and non-monotonic A 

This type is most common, in which cell growth follows 
a monotonic kinetics (left plot of Figure 1) while prod- 
uct formation is inhibited or repressed (right plot of 
F w e  1). Typical examples are production of amino- 
acids and pharmaceuticals. 

In this c w ,  p behaves as shown in the right plot of 
Figure 1, while r behaves as in the left plot. Exam- 
ples include glutamic acid fermentation on ethanol and 
vitamin BIP fermentation. 

In this least common case, both p and A behave as 
shown in the right plot of Figure 1. An example is 
ethanol fermentation from fructose. 
Case IV: monotonic p and monotonic A 
To complete the analysis this case must be considered 
as well. Both p and x behave as shown in the left plot 
of Figure 1. 

If the synthesis of the product of interest P is directly asso- 
dated to biomass growth, i.e., if 

Case II: non-monotonic p and monotonic A 

Case III: non-monotonic p and non-monotonic A 

A 
* = y P l x  P 

with Yplx [p/g DW] the product on biomass yield coeffi- 
dent, then P is a so-called primary metabolite and product 
formation is of the growth associated type. Observe that this 
special case can occur within Case I11 and Case IV. 
On the other hand, secondary metabolites are compounds 
produced through special enzymatic reactions that appar- 
ently have no direct relation to growth of biomass: the en- 
zyme catalyzed production is not associated to the microbial 
growth. These processes are characterized by a decoupling 
between growth and product formation. The first phase is 
characterized by rapid cell growth with almost no product 

7 + SOjCS,in I 2 1500 
Po 0 
t n  0 

Table 1: Model parameters and initial conditions 

synthesis, while during the production phase the product of 
interest is formed with only limited growth. 

Until ncw dassification of these processes -and thus also 
the determination of the corresponding optimal feed rate 
strategy- has been based on the qualitative behavior of the 
s p d c  rates p and x only (see, e.g., [l] and [2]). In this 
paper we illustrate that the optimal control sequence largely 
depends on other model chamcteristics as well, such as 

1. the value of the product degradation constant k [eqs. 

2. the value of the s p d c  maintenance demand m [see 
the linear law (2)] and the type of metabolism (exoge 
nons, endogenous, or mixed exogenous/endogenous). 

For now we only focus on the first item, i.e., on the pos- 
sible influence of the pruduct degmdation constant k on the 
optimal control sequence, while the metabolism mechanism 
is always assumed to be of the exogenous type (often called 
maintenance metabolism). This means that maintenance re- 
quirements are completely fnliilled by consumption of the 
substrate source S. 

A more detailed analysis, together with a description of 
the influence of the s p d c  maintenance demand m (and 
the corresponding endogenous fmction) upon optimization 
results, can be found in Reference [3]. 

During all simulations the model parameters and initial 
conditions summarized in Table 1 have been used. 

We assume that the spedtic rates p and x are functions of 
substrate concentration CS only. When modeling a mono- 
tonic specific growth rate, a Monod type model has been 
nsed: 

(111 

(4) 
A cs 

KM,# + Cs CL = Bm 

or, equivalently, for the spedfic production rate: 

( 5 )  
A cs 

A = Am 
KM,= + Cs 

with pm [l/h] and zm [g/g DW h] the maximum spedfic rate 
for growth and production respectively, and KM,,  [g/L] and 
KM,,, [g/L] the Monod saturation constant for substrate lim- 
itation of growth and production respectively. This Monod 
type kinetics reaches its maximum value for substrate con- 
centration Cs going to  00. When modeling a non-monotonic 
specific rate, the following Haldane type expressions have 
been used: 

with KI, ,  [g/L] and Kr,- [g/L] the substrate inhibition con- 
stant for growth and production respectively. Observe that 

1948 

Authorized licensed use limited to: Georges Bastin. Downloaded on April 22,2022 at 12:41:10 UTC from IEEE Xplore.  Restrictions apply. 



Figure 2: Case I - optimal control profiles 

for Haldane type kiuetics, pm does not represent the maxi- 
mum d u e .  Instead, the maximum value is given by 

1 

1+2dZzFTP "(P) = pm 

and occurs at the substrate concentratisn Cs,, 

cs , ,  Jm 
and analogous expressions for ma(* )  and Cs,=. 

CASE I: MONOTONIC p AND 
NON-MONOTONIC T 

Optimal control strategy 
Application of the Minimum Principle leads to the following 
optimal control sequence (see also Figure 2): 

. The first phase l0,tzl is the orowth Dhase. Since B is 
monotonidly &&e&g, t h i  substiate available' for 
biomass growth, denoted with S g r w t h ,  must be added 
as fast as possible in order to ensure rapid biomass 
accumulation. Therefore, during the interval [O, t l ]  
the feed rate is at its maximum d u e ,  i.e., [u ' ( t )  = 
U M A X ] ,  whereafter a batch phase follows [u ' ( t )  = 
0, ti < t < tz] .  As a limiting case; all substrate for 
growth Sgr-th can be added all at once at time t = 0, 
thus ensuring the highest possible specific growth rate 
p for all t E [0, t2], with a low production rate. 
During the second phase, the production phase, a sin- 
gular control [Uaing(t),tZ < t < t 3 ]  forces the process 
to produce the product as fast as possible. At any 
time, there is a balance between glucose feeding and 
glucose demand for production and possibly mainte- 
nance, thus ensuring the lowest possible growth rate. 
When V(t3) = Vj, the fermentation continues in batch 
[u'(t) = 0 ,  t 3  < t < t j ]  until the net product formation 
rate dPldt  equals zero at t = t f .  

10' 10- loJ 

Figure 3: Case I - optimal values for k - 0 
This heuristic controller keeps substrate concentration Cs 
constant at some value C;, which plays the role of a set-point. 
From a mathematical pomt of view, this can be justified by 
the following Theorem for the performance measure under 
consideration (3) [l]:  
Theorem 1 Physical interpretation of singular control 

second derivatives 
Then during singular control: 

1. CS remains constant e k = 0 ,  
2. CS satisfies: 

d r  
dCs U 
-(-) = 0 

I I 

Observe that in the case where product degradation k equals 
zero, the heuristic controller coincides exactly with the op- 
timal control sequence. 

In summary, the optimal control problem reduces to the 
two dimensional optimization of ( i )  the switching time t l ,  
or more genemlly, the fruction S g r w t h  of the total substrate 
amount available a, and (ii)  the switching time t 2 ,  or in 
the case of heuristic control, the set-point C$ for substrate 
concentration during production. 

Optimal control for k + 0 
The optimal dues of S g r w t h  and C:, and the corresponding 
values for Cx(t j )  and Cp(t j )  are shown in Figure 3 for de- 
creasing values of the product degradation constant k. The 
following observations can be made. 

1. When k decreases, the amount of substrate consumed 
during growth Sgrwth decreases too. In the h i t ,  
when k = 0, we have Sgrwth = 0. This means that . -  
there is no growth pha& at all, i.e., the characterk- 
tic biphasic behavior has disappeared completely. In 
other words, it is then better to start production right 
from the beginning by singular feeding than to con- 
sume part of the substrate available for biomass build- 
UP* 

2. When k -, 0, the set-point for substrate concentration 
during production C; reaches the value C S , ~ ~ ~ ,  i.e., 
the value which maximizes the ratio * / U  (Theorem 1). 
This also illustrates that the heuristic control coincides 
with the optimal control if k = 0. 

The singular control is given by: 

+ k 3(S,  x, P, V )  (8) 

where 3 is a compkcated function of S, X ,  P, and V .  An ex- 
d e n t  approximation results when neglecting product degra- 
dation in calculating U [I]: 

o c x v  
Cs,in - CS 

Uaing = 

(9) 
UCX v 

CS,in - CS Uhcur = 
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Figure 4: Case I1 - optimal control profiles 

CASE 11: NON-MONOTONIC p AND 
MONOTONIC ?r 

Optimal control strategy 
The following optimal control sequence is obtained: 

1. The fust phase is the growth phase. Since p &.non- 
monotonic, a singular control [ ~ ' ( t )  = ~ r , n g ( t ) ]  1s re- 
qnired to ensure rapid biomass accumulation. If the 
initial substrate amount S o  is h e ,  the optimal choice 
is such that Cs(0) f SO/VO satisfies the singular arc 
conditions. 

2. In order to start the production phase, substrate con- 
centration must be as high as possible since x is monct 
tonically increasing. Therefore, the feed rate must 
be set to  its maximum level [ ~ ' ( t )  = UMAX] until 
the remaining substrate available for production (U - 
Sgrwth) has been added (V = Vj), whereafter a batch 
phase [u'(t) = 01 follows until the net product forma- 
tion rate dP/dt equals zero at t = t j .  As a limit- 
ing case, all remaining substrate for production (U - 
Sgrwth) is added all at once at the beginning of the 
production phase (Dirac impube) (Figure 4), thus en- 
suring the highest possible s p d c  production rate *. 

As in Case I, the singular control (8) -which now occurs 
dnring the growth phase- can be replaced by an easier to 
implement henristic controller (9) which keeps substrate con- 
centration constant at some prespede$ set-point C5. Since 

s(0) 5 Sgrauth 

the following boundaries on the admissible values of C; can 
be easily deduced 

Sgrwth c' 
CS"n Ca.in v. + Sgrowth 

In summary, the optimal control problem reduces to B two 
dimensional optimization problem, in this case of (i) the 
fraction Sgrwrh of the total substrate amount available U, 
and (ii) the set-point Cz for substrate concentration during 
growth. 
Optimal control for IC -+ 0 
The optimal values of Sgrwth and C;, and the correspond- 
ing d u e s  for Cx(t j )  and C p ( t j )  are shown in Fignre 5 
for decreasing values of the product degradation constant 
k. Similar observations as in Case I can be made. 

1. when k decreases, Sgrwth decreases too. In the limit, 
when k = 0, we have Sgrwth = 0. This m e w  that 
there is no growth phase at all, i.e., the characteristic 
biphasic behavior has disappeared completely. It is then 
better to  start production right from the beginning by 
feeding all substrate a d a b l e  a as fast as possible. 

Figure 5:  Case I1 - optimal values for k -+ 0 

Figure 6: Case I11 - optimal control profiles 

2. As a result, when k 0, there is no need for a set- 
point for substrate concentration dnring growth Cg. 
This corresponds to the fact that there are no real 
positive roots which satisfy d(x/a)/dCs = 0 [3] .  

CASE 111: NON-MONOTONIC p AND 
NON-MONOTONIC ?r 

Since both p and x are non-monotonic functions of substrate 
concentration, the optimal control sequence basically con- 
sists of two singular phases (Figare 6). They are linked to- 
gether by a (short) interval of feeding at the maximum or the 
minimum rate, depending on whether or not substrate con- 
centration dnring production is higher than dnring growth. 
Again, both singular controls can be replaced by heuristic 
controllers of the form (9), which keep substrate at the de- 
sired set-points Cg,, and C& for growth and production 
respectively. Similar boundanes on these set-points as in 
Case I1 can be deduced. 

In summary, the optimal control problem reduces to the 
three dimensional optimization of (i) the fmction Sgrwth Of 
the total substrate amount availableu, (ii) the set-point C;,, 
for substrate concenhntion during gmwth, and (iii) the set- 
point C& for substrate concentmtion during production. 
Optimal control for IC -+ 0 
During simulations p and x have been modeled by Haldane 
type kinetics (6) and (7). Depending on the relative position 
of p and r as functions of CS, 10 Merent  cases can be con- 
sidered. The optimal values of Sg+wth,  C:,,, and Cg,,, and 
the corresponding value for Cp(tj) are shown in Table 2 for 

Optimal control strategy 
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CS,, CS,, I pm KM,, KI,,  

caae 2: Kx,, = KI, ,  
0.1 . .  0.1 0.1 I 2.1 10. 0.1 

I 

r m  KM,, K I , ~  

Cp(tf) 85.15067 

Case 3: KM,,  = K M ~ ~  
1. 0.1 I 2.1 0.1 10. I 0.45 0.1 0.1 

- r l  Sgrourlh 
Ci,, = C:,, 0.01584 

Cp(t,) 13.09258 

Case 4: KM,, = KM,,  
0.1 1. I 0.45 0.1 0.1 I 2.1 0.1 10. 

Case 7: cs., = Cs., 

1. 1. I 2.1 10. 0.1 I 0.45 0.2 5. 

- /,----. ..-- U Sgrowth 
Cl,, = C:,, 0.11805 

Cp(tf) 113.70693 

Caae 8: Cs+ = cs,, 
1. . .  0.2 5. I 2.1 10. 0.1 

I I 

C S , ~  Cs., I pm K M . ~  KI,, 1 r m  KM,, K1.r 

Case 1: KI,, = KI,, 
' 1. 0.1 I 2.1 10. 0.1 I 0.45 0.1 0.1 

Sgrawth 
c;,, = C;,, 0.04997 

Cp(2f) 172.69611 I 
caee 5: ma+) = max(r) 

1. 0.1 I 2 10. 0 .1 .1 1 0.3 0.1 0.1 
! I 

C p ( t f )  104.86236 

Case 6: max(p) = ma(*)  

0.1 1. I 0.3 0.1 0.1 I 2.1 10. 0.1 
I 

Cp(t1) 95.61239 
product degradation constant k equal to zero. Remember 
that Cs,, and CS,, denote the substrate concentrations at 
which p and r reach their maximum value respectively. The 
following observations can be made. 

1. For all cases of Table 2 there is no growth phase. This 
is rather obvious for Case 9 and Case 10 -growth as- 
sociated production-, independent of the value of k. 
In all other cases the characteristic biphasic behavior 
disappears completely when k * 0. 

2. When k -+ 0, both set-points C.&, and Cs,, converge 
to C,,/, which maximizes */a (Theorem 1). In Case 
9 and Case 10 (growth associated production), we have 

Cp(tf) 18.81301 
1 Case 9: ?r =yp/x cc 

1. 1. I 2.1 10. 0.1 1 0.45 10. 0.1 
I 

C p ( t f )  12.37242 

Case 10: r = YP/X IJ 

1. 1. I 0.45 10. 0 .1 I 2.1 10. 0 .1 
I 

- I  Sgrwth 
c;,, = c;,, 1.00000 

Table 2: Case 111 - optimal values for k 4 0 
- : p  - - - - : A  

independent of the value of k (see also [3]). The same result 
holds true for Case 8, but only for k = 0. For Case 7, the set- 
point C;,,,(= C&) = Cs,,,(= Cs,,) corresponds to a local 
minimum of */a. 

CASE IV: MONOTONIC p AND MONOTONIC T 
Since both p and ?r are monotonically increasing functions 
and therefore have similar behavior around their maximum 
values, this can be considered as a degenerate case of growth 
associated production. Therefore, the optimal control se- 
quence would be to feed all substrate available as fast as 
possible -in the limit this corresponds to a batch process-, 
while growth and production occur at  the same time (one 
phase). 

We have investigated all possible relative positions of p 
and r, modeled by Monod type models (4) and (5) respec- 
tively. The results for product degradation k + 0 are shown 
in Table 3. The following observations can be made. 

1. In most cases, the above line of reasoning is correct, 
i.e., the optimal mode of operation is batch, all sub 
strate available being added at time t = 0. In addition, 
this result is independent of the value of k [3]. 
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1 I 0.1 1. I 0.15 5. 
I 

2 I 0.15 5. 

C;,, = C;,, 0.88734 

Cp(tj) 60.59035 

- S g r w t h  

.* 1 1. m 
4 I O  .1 1. I 0.15 1. 

3 I 0.15 1. 

c;,,, cs,, 
- 
- S g r w t h  

Cp(tf) 34.64377 

Cp(tf) 61.10292 

Pm > *m KM,,  < K M . ~  
5 I 0.15 1. I 0.1 5. 

0.1 1. 

6 I 0.1 5. 

S g r w t h  - 
C:,, = C& 1.13192 

C p ( t f )  88.63113 

2. However, Case 2, Case 6, and Case 8, are exceptions 
on this rule. As in the other cases, growth and pro- 
duction occur at the same time, i.e., there is only one 
phase whatever the value of k. However, all substrate 
must be added following a singular control of the form 
(8). Again, this singular control law can be s u c c w  
fully replaced by a heuristic control law (9) which 
keeps substrate concentration constant at some pre- 
specified set-point C;. For product degradation k go- 
ing to zero, this set-point converges to the value C S , , / ~  
which maximizes x / u  (Theorem 1). 
Analysis of the roots of d(x/o)/dCs = 0 leads to the 
following criterion for optimal singular control: 

0.15 1. 

9 I 0.1 5. 1 0.1 1. 
I 

I I  I Cp(tt) 45.93593 I U I 

Table 3: Case IV - optimal values for IC + 0 
- : p  - - - : r  

KM, ,  > K i d m -  Pm + 1) 

We have investigated the optimization of fed-batch fermen- 
tation processes involving one limiting substrate for biomass 
growth and product synthesis, with respect to the volumetric 
feed rate of this substrate. 

Until now classification of these processes -and thus as0 
the determination of the corresponding optimal feed rate 
strategy- has been based only on the qualitative behavior 
of the specific rates for growth and production as functions 
of substrate concentration. In this paper we have illustrated 
that the optimal wrrtrol sequence largely depends on other 
model characteristics as well, such as the value of the prod- 
uct degradation constant. 

A detailed optimization study for all possible combma- 
tions of the specific rates for growth and production re- 
veals that the typical biphasic behavior of processes with 
growth/pruduction decoupling disappears if product degmda- 
tion is not modeled. In this sense numerical optimization can 
prove very useful in solving the model structure discrimina- 
tion problem. 

A more detailed analysis of the results mentioned, to- 
gether with a description of the influence of the specific 
maintenance demand m (and the corresponding endogenow 
fraction) upon optimization results, can be found in [3]. 
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