
Dynamic Metabolic Flux Analysis Using a Convex
Analysis Approach: Application to Hybridoma Cell
Cultures in Perfusion

Sofia Fernandes de Sousa,1 Georges Bastin,2 Mario Jolicoeur,3 Alain Vande Wouwer4

1Automatic Control Laboratory, University of Mons, 31 Boulevard Dolez, Mons 7000, Belgium;

telephone: þ32-065-374-128; fax: þ32 65 37 41 36; e-mail: sofia.afonsofernandes@umons.ac.be
2Department of Mathematical Engineering, ICTEAM, Catholic University of Louvain,

Louvain-La-Neuve, Belgium
3Department of Chemical Engineering, Laboratory in Applied Metabolic Engineering,

Polytechnic University of Montreal, Montr�eal, Canada
4Automatic Control Laboratory, University of Mons, 7000 Mons, Belgium

ABSTRACT: In recent years, dynamic metabolic flux analysis
(DMFA) has been developed in order to evaluate the dynamic
evolution of the metabolic fluxes. Most of the proposed approaches are
dedicated to exactly determined or overdetermined systems. When an
underdetermined system is considered, the literature suggests the use
of dynamic flux balance analysis (DFBA). However the main challenge
of this approach is to determine an appropriate objective function,
which remains valid over the whole culture. In this work, we propose
an alternative dynamic metabolic flux analysis based on convex
analysis, DMFCA, which allows the determination of bounded
intervals for the fluxes using the available knowledge of the metabolic
network and information provided by the time evolution of
extracellular component concentrations. Smoothing splines and
mass balance differential equations are used to estimate the time
evolution of the uptake and excretion rates from this experimental
data. The main advantage of the proposed procedure is that it does not
require additional constraints or objective functions, and provides
relatively narrow intervals for the intracellular metabolic fluxes.
DMFCA is applied to experimental data from hybridoma HB58 cell
perfusion cultures, in order to investigate the influence of the operating
mode (batch and perfusion) on the metabolic flux distribution.
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Introduction

In the last decades, monoclonal antibodies (mAbs) have been
increasingly used for medical research, diagnosis and therapy. The

majority of the mAbs approved and under trials is produced by
mammalian cells, such as chinese hamster ovary (CHO) and
hybridoma cells, because of their capacity for proper protein
folding, assembly and post-translational modification that result in
full-active product (Chu and Robinson, 2001; Li et al., 2010;
Reichert, 2012; Wurm, 2004). Knowledge of intracellular fluxes is of
critical importance in the process of investigating and understand-
ing cell metabolism. However, the experimental determination of
metabolic fluxes in mammalian cells is a very complex task due to
the high number of reactions and their highly bifurcated structure.
All these problems introduce the need for a tool to determine the
metabolic fluxes in the cell based on available and measurable data,
giving rise to metabolic flux analysis (MFA) methods. Measurable
data are usually obtained from extracellular measurements, such as,
cell density, substrate and product concentrations.
Metabolic flux analysis (MFA) has been the subject of intense

research for two decades. It is a useful tool to estimate in vivo
metabolic fluxes in, among others, mammalian cell cultures.
Determining in vivo fluxes provides quantitative information on the
degree of engagement of various metabolic pathways in the overall
cellular metabolism. The classical MFA method is used to study
systems at metabolic steady state, meaning that intracellular fluxes
do not change in time. This assumption is supported by the
observation that intracellular dynamics are much faster than
extracellular dynamics. Therefore, it makes sense to neglect the fast
dynamics and consider that intracellular fluxes are in pseudo steady
state (Stephanopoulos et al., 1998). This assumption is usually
applied during the early exponential growth in batch cultures and in
steady-state continuous cultures (Niklas and Heinzle, 2011).
When the environmental conditions of a culture change,

dynamics should be considered to investigate cellular metabolism.
To this end, the development of dynamic metabolic flux analysis
(DMFA) techniques has been addressed (Leighty and Antoniewicz,
2011; Lequeux et al., 2010; Llaneras et al., 2012; Niklas et al., 2010;
Vercammen et al., 2014). For instance, Lequeux et al. (2010)
extended MFA based on the transformation of time series of
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concentration measurements into flux values. This transformation is
based on differentiation of those time series. To avoid measurement
noise amplification, a polynomial filtering was applied prior to the
differentiation. This extended MFA technique was illustrated with E.
coli cultures in which the limiting compound in the medium was
changed from nitrogen to glucose and vice-versa. In the work of
Niklas et al. (2010), dynamic changes in growth and metabolism of
the new human cell line AGE1.HN were studied applying data
smoothing on extracellular measurements using splines. Then,
derivativeswere calculated based on this smoothed data and dynamic
intracellular fluxes were calculated using a classical MFA method.
Leighty and Antoniewicz (2011) developed a new method for DMFA,
where flux dynamics are described by piecewise linear flux functions.
Since this method does not depend on taking derivatives, data
smoothing and/or estimation of the average of the extracellular rates
is not required. This method was illustrated with a fed-batch
fermentation of E. coli, but is presented by the authors as a generic
method (e.g., useful formicrobial,mammalian andplant cells). In the
work of Llaneras et al. (2012), dynamic extracellular concentration
measurements are taken into account into a possibilistic MFA
strategy by approximating the derivatives of the concentrations. This
approach provides solution intervals, where the ranges of possible
solutions are obtained by solving a set of minimum-maximum linear
programming problems. Vercammen et al. (2014) presented a new
methodology based on B-spline representation of the fluxes. These
fluxes are estimated using dynamic optimization methods and tools,
that is, orthogonal collocation, interior-point optimization and
automatic differentiation. Furthermore, Akaike model discrimina-
tion criterion (AIC) (Burnham and Anderson, 2004) is used to
estimate the free fluxes parameters and to determine the position of
B-splines knots.

The advantage of DMFA compared to stationary MFA is that it
provides information on metabolic transient, which cannot be
observed using classical MFA. However, since DMFA is still based on
stoichiometric metabolite balancing within an assumed metabolic
model, DMFA carries the same limitations as MFA for resolving
parallel pathways, cyclic pathways, and reversible reactions (Antonie-
wicz, 2015). Also, due to the complexity of the metabolic networks,
measurable and available extracellular data is usually insufficient,
leading to an underdetermined system of algebraic equations, whereby
a unique solution cannot be computed. Therefore additional
information is required to complement the extracellular flux data.
Dynamic flux balance analysis (DFBA) was introduced by Mahadevan
et al. (2002) to simulate the batch growth of E. coli on glucose. It was
also further used to study the metabolism of mammalian cells (Gao
et al., 2007; Nolan and Lee, 2011). The main challenge of DFBA is to
determine an appropriate objective function (e.g., maximization of
biomass production, ATP production, minimization of substrate
utilization, etc.), which remains valid over the whole culture. Both
DMFA and DFBA approaches combine metabolic network analysis
based on pseudo steady-state assumption for intracellular metabolism
with dynamicmodels for extracellularmetabolites. The pseudo steady-
state assumption in this situation is valid if the time-scale of the
extracellular dynamics is longer than the time-scale for intracellular
dynamics (Antoniewicz, 2013).

Isotopic tracer approaches for non-steady state flux analysis have
also been introduced (Antoniewicz et al., 2007; N€oh et al., 2007;

Young et al., 2008; Zamboni, 2011). However, this latter approach is
cost and time expensive.

Besides DMFA, DFBA and isotopic tracer approaches, research
has also developed towards detailed metabolic networks including
information on the kinetics (Dorka et al., 2008; Ghorbaniaghdam
et al., 2014), but those dynamic models require more experimental
data for their validation. The identification of a priori unknown
reaction kinetics is a critical task due to the model nonlinearity,
relatively large number of parameters, and scarcity of informative
experimental data.

In the present study, an alternative DMFA method is proposed,
which is suitable for underdetermined systems, and does not
require the definition of ad-hoc objective functions. The method is
based on convex analysis, and builds upon the methodology
introduced in (Provost and Bastin, 2004) and further exploited in
(Zamorano et al., 2010). In these latter works, CHO batch cultures
are considered and the cell life is divided into three phases:
exponential growth, transition and death. In each of these phases,
the specific uptake and production rates are assumed constant and
are determined using linear regression. In this study, this
assumption is waived, and mass balance differential equations
for the extracellular concentrations, together with cubic spline
smoothing, are used to assess the time evolution of the uptake and
excretion rates. This information is then processed by convex
analysis assuming that the intracellular species are in pseudo-
steady state with respect to the time evolution of the extracellular
concentrations (slow-fast approximation).

Dynamic Metabolic Flux Convex Analysis (DMFCA) allows
determining bounded intervals for each intracellular flux, and
makes the most of the available information (metabolic network
and available extracellular measurements) without introducing
additional constraints or objective function. In this work, DMFCA is
applied to experimental data collected from hybridoma cultures
operated in batch and perfusion modes, in order to get some insight
into the changes in the metabolic fluxes between these two
operating modes.

This paper is organized as follows. The next section provides
information on the experimental databank, that is, data collected from
cultures of hybridoma cell line HB58 in 2L bioreactor operated in batch
and perfusion modes. The considered metabolic reaction network is
also introduced, along with its main characteristics, including
condition number, redundancy, and degrees of freedom. The DMFA
problem is formulated, including extracellular dynamic mass balance
equation, spline smoothing of the experimental data, and determina-
tion of bounded intervals for the intracellular fluxes using convex
analysis. Then, the specific experimental application is discussed, with
focus on themetabolic changes that can be observed between the initial
batch phase and the subsequent perfusion phase.

Materials and Methods

Cell Line and Media

This study is illustrated with experimental data from hybridoma cell
line HB58 (ATCC), which produces antibodies type IgG1, anti-CD54,
specific for mouse kappa light chain. These experiments have been
performed at the State Key Laboratory of Bioreactor Engineering,
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East China University of Science and Technology (ECUST), Shanghai
(Niu et al., 2013).
Serum-free medium chemically defined with 1:1 mixture of

DMEM and F12 (Gibco) was used and supplemented with 10mg of
bovine insulin, 10mg of transferring-selenite (Fe-saturated),
500mmol of ethanolamine and other property additives. The
culture medium was supplemented with 15mM of glucose,
11.5 mM of glutamine and other amino acids (see Table SI of
Supplementary Material).

Bioreactor Operation Mode

Perfusion cultures were conducted in a 2-L stirred bioreactor
(B. Braun Biostat BDCU) and were settled in a working volume of
1.8 L. Culture started in batch mode and was inoculated to reach an
initial concentration between 0.2–0.5� 109 cells/L. Temperature
was kept at 36.8�C; the gases air: CO2, O2, and N2 were mixed to
maintain DO at 40% air saturation and bicarbonate solution
(0.75mol/L Na2CO3 and 0.5 mol/L NaHCO3) was used for pH
control around 7.0� 0.2. Data acquisition and process control were
performed using the supervisory software MFCS/Win 3.0. Perfusion
phase started at 56.5 h with a constant dilution rate (D) of
0.0197 h�1. Cells were retained by a spin-filter (20mm) and the
stirring speed was kept at 200 rpm.

Analysis Methods

Experimental data contain the time evolution of the extracellular
concentrations of glucose, lactate, ammonia, eighteen amino acids
(except proline and cysteine), biomass, and antibody (IgG1). Cells
were counted with hemocytometer using the trypan blue exclusion
method. The antibody concentration in the supernatant of HB58
culture was analyzed by a sandwich ELISA method with specific
binding antibodies. The chemical formulas for biomass and antibody
were determined to be CH1.988O0.4890N0.2589 and CH1.54O0.3146N0.2645,
respectively.
Glucose, lactate and ammonia concentrations were determined

using YSI 7100 biochemical analyzer (Yellow Springs Instruments).
The eighteen amino acids were analyzed by reverse-phase High
Performance Liquid Chromatography (HPLC) with a UV-visible
detector.

Metabolic Network Model

The metabolic network considered in this work contains r¼ 70
biochemical reactions, m¼ 44 internal metabolites and p¼ 22
extracellular metabolites present in the culture medium, which
are either substrates or products. It was constructed based on
essentially two metabolic networks previously considered: the
one of Provost (2006) containing 68 biochemical reactions and
the one of Riveros (2012) involving 100 reactions. It embraces
the major reactions of central metabolism such as glycolysis,
Tricarboxylic Cycle Acid (TCA), amino acids metabolism and
biomass and antibody synthesis (see Table I). In contrast
with most bacteria and plants, which can synthesize the 20
common amino acids, mammals can only synthesize half of
them. Mammalian cells cannot synthesize the so-called essential

amino acids, which have to be provided in the culture medium.
The nonessential amino acids are those that the cell is able to
synthesize and the conditionally essential amino acids are those
that the cell is able to synthesize under particular circum-
stances. Following this classification, only catabolic pathways
are considered for essential amino acids, while both catabolic
and anabolic pathways are taken into account for nonessential
amino acids. Furthermore, biomass and antibody synthesis
are also incorporated into the model and the stoichiometric
coefficients are taken from (Niu et al., 2013). Biomass synthesis
is described from its precursor building blocks by considering
G6P (precursor required for the synthesis of lipids, ribose
and deoxyribose in nucleotides) and amino acids (to proteins).
Since R5P is not used in this work to describe cell growth
rate, the pentose phosphate pathway is not included, thus
simplifying the metabolic network. Concerning the nucleotide
synthesis, the authors followed the same strategy as in (Gambhir
et al., 2003) and then adapted in (Niu et al., 2013), where
nucleotide synthesis is lumped into the biomass synthesis.
It should be stressed that there is no exact metabolic network
to represent cellular metabolism: a candidate metabolic network
is based on available metabolic knowledge and built in a way
that allows describing the consumption and production of
extracellular metabolites in a satisfactory manner. However,
special care has to be exercised to preserve the stoichiometry
while lumping and/or combining reactions.
Note that convex analysis provides positive intervals (solutions);

therefore the flux direction of the biochemical reactions is fixed a
priori in agreement with the metabolic state of the cells.

Condition Number

The condition number C allows to determine whether the metabolic
network is well or ill-conditioned as follows:

CðNT
i Þ ¼ kNT

i kkðNT
i Þ#k ð1Þ

where k k indicates any matrix norm and NT
i

� �#
is the pseudo-

inverse of the stoichiometric matrix N44�70
i (see Equation 6).

To evaluate Equation (1), singular value decomposition can be
used. The largest singular values are found for both NT

i and its
pseudo-inverse NT

i

� �#
and the two values are multiplied

(Stephanopoulos et al., 1998). A requirement for a well-conditioned
stoichiometric matrix is that the condition number be between 1
and 100. If the condition number is greater than 100 the
stoichiometric matrix is said ill-conditioned, and it may be
necessary to modify the model. In our case, the condition number
is 13.87; consequently, the representation of the metabolism is well-
conditioned.

Extracellular Flux Determination

Extracellular fluxes of twenty-two metabolites can be determined
based on the measurements of the time evolution of biomass,
antibody, glucose, lactate, ammonia and eighteen amino acids,
except proline, and cysteine.

Fernandes de Sousa et al.: Dynamic Metabolic Flux Convex Analysis of Hybridoma Cell Cultures 3

Biotechnology and Bioengineering



Table I. Metabolic reactions for the metabolism of Hybridoma cells.

Flux Metabolic reaction

Glycolysis
v1 Glcext þ ATP ! G6Pþ ADP
v2 G6P$F6P
v3 F6PþATP!DHAPþG3PþADP
v4 DHAP$G3P
v5 G3PþNADþþADP$3PGþNADHþATP
v6 3PGþ ADP ! Pyrþ ATP

Tricarboxylic acid cycle
v7 PyrþNADþþCoASH!AcCoAþCO2þNADH
v8 AcCoAþ Oxalþ H2O ! Citþ CoASH
v9 CitþNADðPÞþ!aKGþCO2þNADðPÞH
v10 aKGþCoASHþNADþ!SucCoAþCO2þNADH
v11 SucCoAþ GDPþ Pi $ Succþ GTPþ CoASH
v12 SuccþFAD$FumþFADH2

v13 Fum $ Mal
v14 MalþNADðPÞþ$OxalþNADH

Pyruvate fates
v15 Pyrþ NADH $ Lacext þ NADþ

v16 PyrþGlu$AlaþaKG
Anaplerotic reaction

v17 Malþ NADðPÞþ $ Pyrþ CO2 þ NADðPÞH
Amino acids metabolism

v18 GluþNADðPÞþ$aKGþNHþ
4 þNADðPÞH

v19 Oxalþ Glu $ Aspþ aKG
v20 Gln!GluþNHþ

4

v21 ThrþNADþþCoASH!GlyþNADHþAcCoA
v22 Serþ THF $ Glyþ CH2Oþ 5; 10� CH2 � THF
v23 3PGþGluþNADþ!SerþaKGþNADH
v24 GlyþTHFþNADþ!CO2þNHþ

4 þ5; 10�CH2�THFþNADH
v25 Ser ! Pyrþ NHþ

4

v26 Thr!aKbþNHþ
4

v27 aKbþ CoASHþ NADþ ! PropCoAþ NADHþ CO2

v28 PropCoAþHCO�
3 þATP!SucCoAþADPþPi

v29 Trp!Alaþ2CO2þaKa
v30 Lysþ 2aKGþ 3NADðPÞ þ FADþ ! aKaþ 2Gluþ 3NADPHþ FADH2

v31 aKaþCoASHþ2NADþ!AcetoAcCoAþ2NADHþ2CO2

v32 AcetoAcCoAþCoASH ! 2AcCoA
v33 ValþaKGþCoASHþ3NADþþFADþ!PropCoAþGluþCO2þ3NADHþFADH2

v34 IleþaKGþ2CoASHþ2NADþþFADþ!AcCoAþGluþCO2þ2NADHþ
FADH2þPropCoA

v35 LeuþaKGþCoASHþNADþþHCO�
3 þATPþFADþ ! AcCoAþAcetoAcþGluþ
CO2þNADHþADPþFADH2

v36 AcetoAcþ SucCoA ! AcetoAcCoAþ Succ
v37 Pheþ NADH ! Tyrþ NADþ

v38 Tyrþ aKG ! Fumþ AcetoAcþ Gluþ CO2

v39 MetþSerþTHFþATP!CysþaKbþNHþ
4 þCH2Oþ5; 10�CH2�THFþAMP

v40 Cys ! Pyrþ NHþ
4

v41 Asn$AspþNHþ
4

v42 Arg!Ornþurea
v43 OrnþaKG$GlugSAþGlu
v44 GlugSAþ NADðPÞþ ! Gluþ NADðPÞH
v45 Hisþ THF ! Gluþ NHþ

4 þ 5; 10� CH2 � THF
v46 OrnþCarbP!Cln
v47 C⁢lnþ Aspþ ATP ! ArgSuccþ AMP
v48 ArgSucc ! Argþ Fum

(Continued)
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The computation of these extracellular fluxes is based on mass
balance differential equations, involving cellular growth (m), substrate
uptake (vs) and product secretion (vp), as described by:

dX

dt
¼ m� Dað ÞX ð2Þ

dS

dt
¼ �DS� ysX þ DSin ð3Þ

dP

dt
¼ �DPþ ypX þ DPin ð4Þ

where X, S, P, Sin, Pin, and a denote biomass, substrate, product,
influent substrate and product and biomass retention factor (in
perfusion mode), respectively. The retention factor is given by
Equation (5), where Xs represents the measured cell concentration
inside the spin filter.

a ¼ 1� Xs

X
ð5Þ

Note that during batch cultures the dilution rate D is obviously
equal to zero, so that Equations (2), (3), and (4) are simplified.

To evaluate the time derivatives appearing on the left-hand side
of Equations (2–4), the experimental data are first smoothed off
using smoothing B-splines (one for the batch phase and another
one for the perfusion phase) (see Fig. 1).

Dynamic Metabolic Flux Analysis: Intracellular Flux
determination

The goal of DMFA is to compute a set of admissible flux
distributions continuously over time v(t), using a pseudo-steady
state assumption (no accumulation of internal metabolites):

N44�70
i 0

N22�70
m �v22�1

m ðtÞ

 !
� vðtÞ70�1

1

 !
¼ 0 ð6Þ

where Ni is the stoichiometric matrix deduced from the metabolic
network, Nm is the matrix connecting the fluxes to the available
measurements and vm represents the specific uptake and excretion
rates of the measured extracellular species.
The metabolic network considered in this study involves 70

metabolic fluxes andm¼ 44 internal metabolites. The system is not
redundant (rank Nið Þ ¼ m ¼ 44), and with the information
provided by 22 extracellular measurements, it is underdetermined
with a degree of freedom of 4.

TABLE I. (Continued)

Flux Metabolic reaction

Biomass synthesis
v49

0:0156Alaþ0:0082Argþ0:0287Aspþ0:0167G6Pþ0:0245Glnþ0:0039Gluþ
0:0038Hisþ0:0099Ileþ0:0156Leuþ0:0119Lysþ0:0039Metþ0:0065Pheþ

0:016Serþ0:0094Thrþ0:004Tyrþ0:0113Val ! Biomass
Antibody synthesis
v50 0:01101Alaþ0:00503Argþ0:00723Asnþ0:00818Aspþ0:01045Glnþ0:0107Gluþ0:0145Glyþ

0:0035Hisþ0:005Ileþ0:0142Leuþ0:0145Lysþ0:00283Metþ0:00723Pheþ0:02676Serþ
0:001604Thrþ0:00849Tyrþ0:0189Val!AntibodyðIgGÞ

Transport reactions
v51 Aspext ! Asp
v52 Gly!Glyext
v53 Serext ! Ser
v54 Glu!Gluext
v55 Tyrext ! Tyr
v56 Ala ! Alaext
v57 Argext!Arg
v58 Asnext ! Asn
v59 G⁢lnext ! G⁢ln
v60 Hisext!His
v61 Ileext ! Ile
v62 Leuext ! Leu
v63 Lysext!Lys
v64 Metext!Met
v65 Pheext!Phe
v66 Thrext!Thr
v67 Trpexp!Trp

v68 Valext ! Val
v69 NHþ

4 ! NHþ
4ext

V70 CO2 ! CO2ext
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The set of solutions to Equation (6) can be computed using
convex analysis. This approach is based on the interpretation of
elementary fluxes modes (simplest metabolic pathways linking
substrates to products) and makes the most of the available
information (i.e., metabolic network and extracellular measure-
ments) without imposing any artificial constraint.

Geometrically speaking, the set of positive solutions ofNivðtÞ ¼ 0
generates a convex polyhedron cone S (see Fig. 2). Any flux
distribution v in the cone S can be expressed as a non-negative linear
combination of a set of elementary flux vectors ei, which are the edges
of the polyhedral cone S:

vðtÞ ¼ w1ðtÞe1ðtÞ þ w2ðtÞe2ðtÞ þ :::þ wpðtÞepðtÞ;wiðtÞ � 0 ð7Þ

If the system is further constrained with the information provided by
the extracellular measurements (specific uptake and excretion rates), the

solution space reduces to a convex polytope F in the positive orthant,
where each admissible flux distribution v(t) can be expressed as a
convex combination of a set of non-negative basis vectors fiwhich are the
edges of this polytope. The set of admissible flux vectors is defined as:

vðtÞ ¼
X
i

wiðtÞf iðtÞ;wiðtÞ � 0;
X
i

wiðtÞ ¼ 1 ð8Þ

The basis vectors fi(t), the so-called elementary flux vectors of
the flux space F, can be obtained with the software METATOOL
(Pfeiffer et al., 1999), and in turn the admissible bounds vmini ðtÞ and
vmaxi ðtÞfor each admissible flux viðtÞ:

vminj ðtÞ � vjðtÞ � vmaxj ðtÞ;
with

vminj ðtÞ ¼ Min
i
f jiðtÞ; vmaxj ðtÞ ¼ Max

i
f jiðtÞ

ð9Þ

where f jiðtÞ is the j-th component of the i-th basis vector f iðtÞ.
The system is said well posed if the solution set is not empty and if

all themetabolicfluxes are bounded.Otherwise, the system is said to be
ill posed and additional extracellular information has to be provided.

Results

One of the objectives of this study is to evaluate and analyze the
switch of hybridoma cell metabolism from batch to perfusionmode.
Each of the 70 metabolic fluxes is now represented by bounded
intervals determined using convex analysis continuously over time.

Figure 1. Extracellular flux determination using splines. Red dots: extracellular concentrations. Biomass density in [109 cells/L], antibody concentration in [g/L] and the others in

[mM]. Green line: Spline over batch phase. Black line: Spline over perfusion phase. Blue line: Extracellular fluxes given in [mmol/109 cells.h]; except growth rate, which is in [h�1].

Figure 2. Convex polyhedron cones S and F (Riveros, 2012).
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Firstly, a close inspection of the extracellular fluxes reveals the
existence of a short lag phase at the beginning of the culture (first
8 h), which is excluded from the analysis.

Glycolysis Pathway

The rate of glycolysis is identical to the glucose uptake rate (see
Fig. 3). The highest flux through the glycolytic pathway is observed
in the exponential batch phase. Subsequently, it steadily decreases
until 100 h, and remains nearly constant afterwards.
In several studies, the glycolytic activity is reported as the result

of residual glucose concentration (Bonarius et al., 1996; Henry et al.,
2005; Selvarasu et al., 2009).

Tricarboxylic Acid cycle

According to the DMFCA results, the major nutrient flux for
the TCA cycle are glucose-derived pyruvate v6 (Fig. 3) and
a-Ketoglutarate derived from glutamine metabolism v18 and v19
(Fig. 5). This observation corresponds to the phenomenon of
glucose overflow metabolism (Amribt et al., 2013). The pyruvate
generated from glycolysis is mostly metabolized via lactic acid
fermentation and further reduced to lactate over the batch phase.
However this is not verified in the transient from batch to
perfusion phase, where pyruvate is mostly used to enter in the he
TCA cycle to be oxidized to CO2 (see Fig. 4). This means that cells
switch to a more efficient metabolism using most of the pyruvate
to obtain energy by means of the cellular respiration. In Sidorenko
et al. (2008), a significant pyruvate dehydrogenase (PDH) complex
activity was also found.
Pyruvate is also formed from TCA cycle intermediate malate

represented by metabolic flux v17. Metabolic flux analysis indicates
that the anaplerotic reaction catalyzed by malic enzyme (v17) and the
amino acid serine (v25) are significant contributors to the production
of pyruvate. In the work of Gambhir et al. (2003), malate shunt was

also considered a significant contributor to the production of pyruvate.
The fluxes centering on pyruvate are presented in Figure 4.
The anaplerotic reaction catalyzed by malic enzyme v17 is used

to compensate the intermediates removed of the TCA cycle to serve
as biosynthetic precursors (e.g., a-Ketoglutarate and oxaloacetate
serve as precursors of amino acids aspartate and glutamate,
respectively). As apparent from Figure 5, the metabolic flux v19 has
the same behavior as the anaplerotic reaction. It can also be
observed that the flux from succinate to malate (v12 and v13) is
larger than the flux from oxaloacetate to citrate (v8) (see Fig. 6) due
to the contribution of the anaplerotic reactions mainly in the form
of a-Ketoglutarate. These results are in agreement with the ones
obtained in the work of Paredes et al. (1998).

Amino Acid Metabolism

The lowest ratio between essential amino acid uptake rate and the
corresponding stoichiometric coefficient for antibody synthesis
gives an idea of which amino acid is the most used for antibody
production. The (average) ratios are depicted in Figure 7, from
which one can see that over the batch phase, valine is the most
significant contributor to antibody production; while over the
perfusion phase, valine, threonine, and lysine are the main
contributors. The ratios of isoleucine and leucine are large, meaning
that significant amounts of those were metabolized, probably for
energy production. In Zamorano et al. (2010) the lowest ratio was
found between threonine uptake rate and its stoichiometric
coefficient for protein synthesis and the authors made the
assumption that threonine was only used for protein production
and not for catabolism purposes.
The conditionally or non-essential amino acids (aspartate, glycine,

serine, glutamate, alanine, arginine, and asparagine) can be
consumed or synthesized according to the cell needs. For instance,
glycine is taken up over the batch phase (see Supplementary Material
Fig. S2) and it is produced via glycine hydroxymethyltransferase

Figure 3. Dynamic evolution of glycolysis fluxes along culture time.
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indicated by Gly ! Serðv22Þ. The opposite is observed over the
perfusion phase, being then catalyzed by serine hydroxymethyl-
transferase. Sometimes, due to glucose depletion from the medium
culture, the metabolism of the cells changes during this period and
they can start consuming lactate and alanine instead of producing
them in order to provide an alternative carbon and energy source for
biosynthesis and growth. Glucose depletion is not a limitation and
both alanine and lactate are produced over the whole culture. Given
this fact, the direction of metabolic reactions v15 and v16 are defined
as PyrþNADH!LacextþNADþ and PyrþGlu!AlaþaKG, respec-
tively. Asparagine is produced over the batch phase and is produced
over the perfusion phase through the asparagine synthase from
aspartate (v41). Glutamate, arginine and aspartate are consumed over
the whole culture (see Figs. S2 and S3 from Supplementary Material).

As observed in the work of Sanfeliu et al. (1997), when excessive
amounts of glutamine are added to the hybridoma culture,

glutamine is not efficiently used for cell growth, but rather to
produce by-products, such as ammonia, alanine and proline. This
fact is characterized as glutamine overflow metabolism (Amribt
et al., 2013). Indeed looking at Figure 8 one can conclude that most
of glutamine consumption is used to produce ammonia.

Respiratory Quotient (RQ)

The ratio between the carbon dioxide flux and oxygen flux is known
as the respiratory quotient (RQ) (Equation 10). The range of RQ
values reported for mammalian cells metabolism is around 1 (Frahm
et al., 2002; Lovrecz and Gray, 1994; Niu et al., 2013), meaning that
oxygen and carbon dioxide fluxes should be similar. The metabolic
network considered allows the estimation of the carbon dioxide flux
(v70). The values of oxygen uptake rate (OUR) were measured by
modifying a dynamic method based on monitoring the decrease of

Figure 5. Dynamic evolution of anaplerotic reaction v17 as well as of precursors a-Ketoglutarate and oxaloacetate expressed in metabolic flux v19.

Figure 4. Dynamic evolution of pyruvate production and consumption fates along culture time.
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the dissolved oxygen concentration over time. The detailed process is
described in Niu et al. (2013). The oxygen flux can be obtained
dividing OURby the biomass concentration inside of the bioreactor X
(Equation 11).

RQ ¼ vCO2

vO2
ð10Þ

vO2 ¼
OUR

X
ð11Þ

Both oxygen and carbon dioxide are depicted in Figure 9. There
is a clear overestimation of the carbon dioxide flux, especially over
the batch phase, where the respiratory quotient is outside of the
range reported in literature. Despite the overestimation of RQ,
the estimated carbon dioxide flux over the perfusion phase has the
same order of magnitude as the one reported in Lovrecz and Gray

(1994). In the work of Nolan and Lee (2011) an overestimation of
RQ was also found, with a range of 1.5–2.8.

Conclusions

In this study, the metabolic flux analysis of hybridoma culture is
achieved, using the classical pseudo steady-state assumption (no
accumulation of internal metabolites) and under the constraints of
the measurements of the time evolution of a number of culture
components. Due to an insufficient number of measurements, the
mass balance system is underdetermined.
In order to solve this underdetermined system and to quantify the

metabolic fluxes continuously over time, a new approach is proposed:
a dynamic metabolic flux analysis based on convex analysis (positive

Figure 6. Dynamic evolution of TCA cycle fluxes along culture time.

Figure 7. Ratio (in average) between essential amino acids uptake rate and its

stoichiometry for cellular antibody. Blue: Batch phase. Red: Perfusion phase.

Figure 8. Dynamic evolution of glutamine consumption to produce ammonia

given by flux v20 (blue), to produce biomass (defined as 0.0245� v49) (red) and to

participate in the antibody synthesis (defined as 0.01045� v50) (green).
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algebra). This method allows the determination of bounded intervals
for the intracellular metabolic fluxes continuously over the culture
time.

ClassicalMFAwas extensively used in the past and it is auseful tool
to analyze the cell average metabolism. However, from the results
obtained applying DMFCA, one can see that the cells are not in steady
state over the batchphase. Three phases are perfectly distinguishable:
in the first 24 h cells are adapting to the culture medium; between
24 h and 36 hmaximumgrowth rate is observable followedby growth
rate decline mainly caused by the decrease in glucose and glutamine
concentrations. When the perfusion mode starts, cells have to
re-adapt to the newculturemedium.As apparent fromFigures 3–6, 8,
and 9, steady-state metabolism is achieved around t¼ 100 h. The
presented method, DMFCA, is well suited to describe the dynamic
and adaptive behavior of the cells metabolism, allowing us to study
the switch of the hybridoma metabolism from batch to perfusion.

During the batch phase, cell growth rate is exponential.
Therefore, the uptake and production rates are larger than the ones
in the steady state perfusion phase. One important advantage
concerning the perfusion mode is the decrease of waste production
(i.e., lactate and ammonia production rates are reduced), improving
product quality. Consequently, one can conclude that cells switched
to a more efficient metabolism using most of the pyruvate to obtain
energy by means of the cellular respiration. Besides the switch from
batch to perfusion, the relatively small amount of glucose feeding
concentration also contributed to a more efficient metabolism. As
discussed before, even if large amounts of glutamine were added to
the culture, they were mostly used to produce ammonia (inhibitor)
than to produce antibody or for cell growth.

This paper presents research results of the Belgian Network DYSCO
(Dynamical Systems, Control, and Optimization), funded by the Inter-
university Attraction Poles Programme initiated by the Belgian Science
Policy Office. The authors are very grateful to Dr. Niu Hongxing for providing
the experimental data and to Prof. Olivier Henry for insightful advice.
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