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In this paper, we study the exponential stabilization of a shock steady state for the
inviscid Burgers equation on a bounded interval. Our analysis relies on the construction

of an explicit strict control Lyapunov function. We prove that by appropriately choosing
the feedback boundary conditions, we can stabilize the state as well as the shock location
to the desired steady state in H2-norm, with an arbitrary decay rate.
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1. Introduction

The problem of asymptotic stabilization for hyperbolic systems using boundary

feedback control has been studied for a long time. We refer to the pioneer work

due to Rauch and Taylor38 and Russell39 for linear coupled hyperbolic systems.

The first important result of asymptotic stability concerning quasilinear hyperbolic

equations was obtained by Slemrod41 and Greenberg and Li.19 These two works

dealt with local dissipative boundary conditions. The result was established by

using the method of characteristics, which allows to estimate the related bounds

along the characteristic curves in the framework of C1 solutions. Another approach

to analyze the dissipative boundary conditions is based on the use of Lyapunov

functions. Especially, Coron, Bastin and Andrea-Novel13 used this method to study

the asymptotic behavior of the nonlinear hyperbolic equations in the framework of

H2 solutions. In particular, the Lyapunov function they constructed is an extension

of the entropy and can be made strictly negative definite by properly choosing the

boundary conditions. This method has been later on widely used for hyperbolic con-

servation laws in the framework of C1 solutions11,20,21 or H2 solutions2,4,5,10,12,17,22

(see Ref. 3 for an overview of this method).

But all of these results concerning the asymptotic stability of nonlinear hyper-

bolic equations focus on the convergence to regular solutions, i.e. on the stabilization

of regular solutions to a desired regular steady state. It is well known, however, that

for quasilinear hyperbolic partial differential equations, solutions may break down

in finite time when their first derivatives break up even if the initial condition is

smooth.29 They give rise to the phenomena of shock waves with numerous impor-

tant applications in physics and fluid mechanics. Compared to classical case, very

few results exist on the stabilization of less regular solutions, which requires new

techniques. This is also true for related fields, as the optimal control problem.9,37

For the problem of control and asymptotic stabilization of less regular solutions, we

refer to Ref. 7 for the controllability of a general hyperbolic system of conservation

laws, Refs. 6 and 35 for the stabilization in the scalar case and Refs. 7 and 14

for the stabilization of a hyperbolic system of conservation laws. In Refs. 6, 14

and 35, by using suitable feedback laws on both sides of the interval, one can steer

asymptotically any initial data with sufficiently small total variations to any close

constant steady states. All those results concern the boundary stabilization of con-

stant steady states. In particular, as the target state is regular there is no need to
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stabilize any shock location. In this work, we will study the boundary stabilization

of steady states with jump discontinuities for a scalar equation. We believe that our

method can be applied to nonlinear hyperbolic systems as well. While preparing

the revised version, our attention was drawn to a very recent work Ref. 36 studying

a similar problem in the bounded variation (BV) norm. The method and the results

are quite different and complementary to this work.

Hyperbolic systems have a wide application in fluid dynamics, and hydraulic

jump is one of the best known examples of shock waves as it is frequently observed

in open channel flow such as rivers and spillways. Other physical examples of shock

waves can be found in road traffic or in gas transportation, with the water hammer

phenomenon. In the literature, Burgers equation often appears as a simplification

of the dynamical model of flows, as well as the most studied scalar model for trans-

portation. Burgers turbulence has been investigated both analytically and numer-

ically by many authors either as a preliminary approach to turbulence prior to an

occurrence of the Navier–Stokes turbulence or for its own sake since the Burgers

equation describes the formation and decay of weak shock waves in a compressible

fluid.26,32,44 From a mathematical point of view, it turns out that the study of Burg-

ers equation leads to many of the ideas that arise in the field of nonlinear hyperbolic

equations. It is therefore a natural first step to develop methods for the control of

this equation. For the boundary stabilization problem of viscous Burgers equation,

we refer to works by Krstic et al.28,42 for the stabilization of regular shock-like

profile steady states and Refs. 8 and 27 for the stabilization of null-steady-state. In

Ref. 42, the authors proved that the shock-like profile steady states of the linearized

unit viscous Burgers equation are exponentially stable when using high-gain “radi-

ation” boundary feedback (i.e. static boundary feedback only depending on output

measurements). However, they showed that there is a limitation in the decay rate

achievable by radiation feedback, i.e. the decay rate goes to zero exponentially as

the shock becomes sharper. Thus, they have to use another strategy (namely back-

stepping method) to achieve arbitrarily fast local convergence to arbitrarily sharp

shock profiles. However, this strategy requires a kind of full-state feedback control,

rather than measuring only the boundary data.

In this paper, we study the exponential asymptotic stability of a shock steady

state of the Burgers equation in H2-norm, which has been commonly used as a

proper norm for studying the stability of hyperbolic systems (see e.g. Refs. 16, 24

and 43), as it enables to deal with Lyapunov functions that are integrals on the

domain of quadratic quantities, which is relatively easy to handle. To that end,

we construct an explicit Lyapunov function with a strict negative definite time

derivative by properly choosing the boundary conditions. Though it has been shown

in Ref. 15 that exponential stability in H2-norm is not equivalent to C1-norm,

our result could probably be generalized to the C1-norm for conservation laws by

transforming the Lyapunov functions as in Refs. 11 and 20.

The first problem is to deal with the well-posedness of the corresponding initial

boundary value problem (IBVP) on a bounded domain. The existence of the weak
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solution to the initial value problem (IVP) of Burgers equation was first studied

by Hopf by using vanishing viscosity.23 The uniqueness of the entropy solution was

then studied by Oleinik.34 One can refer to Ref. 29 for a comprehensive study of

the well-posedness of hyperbolic conservation laws in piecewise continuous entropy

solution case and also to Ref. 18 in the class of entropy BV functions. Although

there are many results for the well-posedness of the IVP for hyperbolic conservation

laws, the problem of IBVP is less studied due to the difficulty of handling the

boundary condition. In Ref. 1, the authors studied IBVP but in the quarter plane,

i.e. x > 0, t > 0. By requiring that the boundary condition at x = 0 is satisfied in

a weak sense, they can apply the method introduced by LeFloch30 and obtain the

explicit formula of the solution. However, our case is more complicated since we

consider the Burgers equation defined on a bounded interval.

The organization of the paper is the following. In Sec. 2, we formulate the

problem and state our main results. In Sec. 3, we prove the well-posedness of the

Burgers equation in the framework of piecewise continuously differentiable entropy

solutions, which is one of the main results in this paper. Based on this well-posedness

result, we then prove in Sec. 4 by a Lyapunov approach that for appropriately

chosen boundary conditions, we can achieve the exponential stability in H2-norm

of a shock steady state with any given arbitrary decay rate and with an exact

exponential stabilization of the desired shock location. This result also holds for

the Hk-norm for any k ≥ 2. In Sec. 5, we extend the result to a more general

convex flux by requiring some additional conditions on the flux. Conclusion and

some open problems are provided in Sec. 6. Finally, some technical proofs are given

in Appendices A and B.

2. Problem Statement and Main Result

We consider the following nonlinear inviscid Burgers equation on a bounded domain:

yt(t, x) +

(
y2

2

)
x

(t, x) = 0 (2.1)

with initial condition

y(0, x) = y0(x), x ∈ (0, L), (2.2)

where L > 0 and boundary controls

y(t, 0+) = u0(t), y(t, L−) = uL(t). (2.3)

In this paper, we will be exclusively concerned with the case where the controls

u0(t) > 0, uL(t) < 0 have opposite signs and the state y(t, ·) at each time t has a

jump discontinuity as illustrated in Fig. 1. The discontinuity is a shock wave that

occurs at position xs(t) ∈ (0, L). According to the Rankine–Hugoniot condition,

the shock wave moves with the speed

ẋs(t) =
y(t, xs(t)

+) + y(t, xs(t)
−)

2
(2.4)
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Fig. 1. Entropy solution to the Burgers equation with a shock wave.

which satisfies the Lax entropy condition29:

y(t, xs(t)
+) < ẋs(t) < y(t, xs(t)

−), (2.5)

together with the initial condition

xs(0) = xs0. (2.6)

Under a constant control u0(t) = −uL(t) = 1 for all t, for any x0 ∈ (0, L), the

system (2.1), (2.3), (2.4) has a steady state (y∗, x∗s) defined as follows:

y∗(x) =

{
1, x ∈ [0, x0),

−1, x ∈ (x0, L],

x∗s = x0.

(2.7)

These equilibria are clearly not isolated and, consequently, not asymptotically

stable. Indeed, one can see that for any given equilibrium y∗ satisfying (2.7), we can

find initial data arbitrarily close to y∗ which is also an equilibrium of the form (2.7).

As the solution cannot be approaching the given equilibrium when t tends to infinity

as long as the initial data is another equilibrium, this feature prevents any stability

no matter how close the initial data is around y∗. With such open-loop constant

control another problem could appear: any small mistake on the boundary control

could result in a non-stationary shock moving far away from x0. It is therefore

relevant to study the boundary feedback stabilization of the control system (2.1),

(2.3), (2.4).

In this paper, our main contribution is precisely to show how we can exponen-

tially stabilize any of the steady states defined by (2.7) with boundary feedback

controls of the following form:

u0(t) = k1y(t, xs(t)
−) + (1− k1) + b1(x0 − xs(t)),

uL(t) = k2y(t, xs(t)
+)− (1 − k2) + b2(x0 − xs(t)).

(2.8)
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Here, it is important to emphasize that, with these controls, we are able not only

to guarantee the exponential convergence of the solution y(t, x) to the steady state

y∗ but also to exponentially stabilize the location of the shock discontinuity at the

exact desired position x0. In practice, if the system was used for instance to model

gas transportation, the measures of the state around the shock could be obtained

using sensors in the pipe. Note that if the control is applied properly, sensors would

be only needed on a small region as the shock would remain located in a small region.

Before addressing the exponential stability issue, we first show that there exists

a unique piecewise continuously differentiable entropy solution with xs(t) as its

single shock for system (2.1)–(2.4), (2.6), (2.8) provided that y0 and xs0 are in a

small neighborhood of y∗ and x0, respectively.

For any given initial condition (2.2) and (2.6), we define the following zero-order

compatibility conditions:

y0(0
+) = k1y0(x

−
s0) + (1− k1) + b1(x0 − xs0),

y0(L
−) = k2y0(x

+
s0)− (1− k2) + b2(x0 − xs0).

(2.9)

Differentiating (2.9) with respect to time t and using (2.4), we get the following

first-order compatibility conditions:

y0(0
+)y0x(0

+) = k1y0(x
−
s0)y0x(x

−
s0)− k1y0x(x

−
s0)

y0(x
−
s0) + y0(x

+
s0)

2

+ b1
y0(x

−
s0) + y0(x

+
s0)

2
,

y0(L
−)y0x(L−) = k2y0(x

+
s0)y0x(x

+
s0)− k2y0x(x

−
s0)

y0(x
−
s0) + y0(x

+
s0)

2

+ b2
y0(x

−
s0) + y0(x

+
s0)

2
.

(2.10)

The first result of this paper deals with the well-posedness of system (2.1)–(2.4),

(2.6), (2.8) and is stated in the following theorem.

Theorem 2.1. For all T > 0, there exists δ(T ) > 0 such that, for every xs0 ∈ (0, L)

and y0 ∈ H2((0, xs0);R) ∩ H2((xs0, L);R) satisfying the compatibility conditions

(2.9)–(2.10) and

|y0 − 1|H2((0,xs0);R) + |y0 + 1|H2((xs0,L);R) ≤ δ(T ),

|xs0 − x0| ≤ δ(T ),
(2.11)

the system (2.1)–(2.4), (2.6), (2.8) has a unique piecewise continuously differen-

tiable entropy solution y ∈ C0([0, T ];H2((0, xs(t));R) ∩ H2((xs(t), L);R)) with

xs ∈ C1([0, T ]; (0, L)) as its single shock. Moreover, there exists C(T ) such that the

following estimate holds for all t ∈ [0, T ]:

|y(t, ·)− 1|H2((0,xs(t));R) + |y(t, ·) + 1|H2((xs(t),L);R) + |xs(t)− x0|
≤ C(T )(|y0 − 1|H2((0,xs0);R) + |y0 + 1|H2((xs0,L);R) + |xs0 − x0|). (2.12)

The proof of this result is given in Sec. 3.
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Our next result deals with the exponential stability of the steady state (2.7) for

the H2-norm according to the following definition.

Definition 2.1. The steady state (y∗, x0) ∈ (H2((0, x0);R) ∩ H2((x0, L);R)) ×
(0, L) of the system (2.1), (2.3), (2.4), (2.8) is exponentially stable for the H2-

norm with decay rate γ, if there exist δ∗ > 0 and C > 0 such that for any y0 ∈
H2((0, xs0);R) ∩H2((xs0, L);R) and xs0 ∈ (0, L) satisfying

|y0 − y∗1(0, ·)|H2((0,xs0);R) + |y0 − y∗2(0, ·)|H2((xs0,L);R) ≤ δ∗,

|xs0 − x0| ≤ δ∗
(2.13)

and the compatibility conditions (2.9)–(2.10), and for any T > 0 the system

(2.1)–(2.4), (2.6), (2.8) has a unique solution (y, xs) ∈ C0([0, T ];H2((0, xs(t));R)∩
H2((xs(t), L);R))× C1([0, T ];R) and

|y(t, ·)− y∗1(t, ·)|H2((0,xs(t));R) + |y(t, ·)− y∗2(t, ·)|H2((xs(t),L);R) + |xs(t)− x0|
≤ Ce−γt(|y0 − y∗1(0, ·)|H2((0,xs0);R) + |y0 − y∗2(0, ·)|H2((xs0,L);R) + |xs0 − x0|),

∀ t ∈ [0, T ).

(2.14)

In (2.13) and (2.14),

y∗1(t, x) = y∗
(
x
x0
xs(t)

)
,

y∗2(t, x) = y∗
(
(x− L)x0
xs(t)− L

)
.

(2.15)

Remark 2.1. At first glance it could seem peculiar to define y∗1 and y∗2 and to

compare y(t, ·) with these functions. However, the steady state y∗ is piecewise H2

with discontinuity at x0, while the solution y(t, x) is piecewiseH
2 with discontinuity

at the shock xs(t), which may be moving around x0. Thus, to compare the solution

y with the steady state y∗ on the same space interval, it is necessary to define such

functions y∗1 and y∗2 .

Remark 2.2. We emphasize here that the “exponential stability for the H2-norm”

is not the usual convergence of the H2-norm of y − y∗ taken on (0, L) as y and y∗

do not belong to H2(0, L). This definition enables to define an exponential stability

in H2-norm for a function that has a discontinuity at some point and is regular

elsewhere. Note that the convergence to 0 of the H2-norm in the usual sense does

not ensure the convergence of the shock location xs to x0. Thus, to guarantee that

the state converges to the shock steady state, we have to take account of the shock

location, which is explained in Definition 2.1.

Remark 2.3. Note that this definition of exponential stability only deals a priori

with t ∈ [0, T ) for any T > 0. However, this together with Theorem 2.1 implies
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the global existence in time of the solution (y, xs) and the exponential stability on

[0,+∞). This is shown at the end of the proof of Theorem 4.1.

We can now state the main result of this paper.

Theorem 2.2. Let γ > 0. If the following conditions hold :

b1 ∈
(
γe−γx0,

γe−γx0

1− e−γx0

)
, b2 ∈

(
γe−γ(L−x0),

γe−γ(L−x0)

1− e−γ(L−x0)

)
, (2.16a)

k21 < e−γx0

(
1− b1

γ

(
b1
1− e−γx0

γe−γx0
+ b2

1− e−γ(L−x0)

γe−γ(L−x0)

))
, (2.16b)

k22 < e−γ(L−x0)

(
1− b2

γ

(
b1
1− e−γx0

γe−γx0
+ b2

1− e−γ(L−x0)

γe−γ(L−x0)

))
, (2.16c)

then the steady state (y∗, x0) of the system (2.1), (2.3), (2.4), (2.8) is exponentially

stable for the H2-norm with decay rate γ/4.

The proof of this theorem is given in Sec. 4.

Remark 2.4. One can actually check that for any γ > 0 there exist parameters

b1, b2 and k1, k2 satisfying (2.16) as, for b1 = γe−γx0 and b2 = γe−γ(L−x0), one has

1− b1
γ

(
b1
1− e−γx0

γe−γx0
+ b2

1− e−γ(L−x0)

γe−γ(L−x0)

)
= 1− e−γx0(2− e−γx0 − e−γ(L−x0))

= e−2γx0(eγx0 − 1)2 + e−γL > 0.

(2.17)

Similarly, we get

1− b2
γ

(
b1
1− e−γx0

γe−γx0
+ b2

1− e−γ(L−x0)

γe−γ(L−x0)

)
= e−2γ(L−x0)(eγ(L−x0) − 1)2 + e−γL > 0. (2.18)

Therefore, by continuity, there exist b1 and b2, satisfying condition (2.16a) such

that there exist k1 and k2 satisfying (2.16b) and (2.16c). This implies that γ can

be made arbitrarily large. And, from (2.16a)–(2.16c), we can note that for large γ

the conditions on the ki tend to

k21 < e−γx0, k22 < e−γ(L−x0).

Remark 2.5. The result can also be generalized to Hk-norm for any integer k ≥ 2

in the sense of Definition 2.1 by replacing H2 with Hk. This can be easily done by

just adapting the Lyapunov function defined below by (4.3)–(4.9) as was done in

Secs. 4.5 and 6.2 of Ref. 3.

Remark 2.6. If we set k1 = k2 = b1 = b2 = 0, then from (2.8), u0(t) ≡ 1 and

uL(t) ≡ −1. Thus it seems logical that the larger γ is, the smaller k1 and k2 are.
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However, it could seem counter-intuitive that b1 and b2 have to tend to 0 when γ

tends to +∞, as if one sets b1 = 0 and b2 = 0, one cannot stabilize the location

of the system just like in the constant open-loop control case. In other words, for

any γ > 0 the prescribed feedback works while the limit feedback we obtain by

letting γ → +∞ cannot even ensure the asymptotic stability of the system. The

explanation behind this apparent paradox is that when γ tends to infinity, the

Lyapunov function candidate used to prove Theorem 4.1 is not equivalent to the

norm of the solution and cannot guarantee anymore the exponential decay of the

solution in the H2-norm. More precisely, one can see, looking at (4.69) and (4.71),

that the hypothesis (4.16) of Lemma 4.1 does not hold anymore.

3. An Equivalent System with Shock-Free Solutions

Our strategy to analyze the existence and the exponential stability of the shock

wave solutions to the scalar Burgers equation (2.1) is to use an equivalent 2 × 2

quasilinear hyperbolic system having shock-free solutions. In order to set up this

equivalent system, we define the two following functions:

y1(t, x) = y

(
t, x

xs(t)

x0

)
, y2(t, x) = y

(
t, L+ x

xs(t)− L

x0

)
(3.1)

and the new state variables as follows:

z(t, x) =

(
z1(t, x)

z2(t, x)

)
=

(
y1(t, x) − 1

y2(t, x) + 1

)
, x ∈ (0, x0). (3.2)

The idea behind the definition of y1, y2 is to describe the behavior of the solu-

tion y(t, x) before and after the moving shock, while studying functions on a time

invariant interval. Observe indeed that the functions y1 and y2 in (3.1) correspond

to the solution y(t, x) on the time varying intervals (0, xs(t)) and (xs(t), L) respec-

tively, albeit with a time varying scaling of the space coordinate x which is driven

by xs(t) and allows to define the new state variables (z1, z2) on the fixed time

invariant interval (0, x0). The reason to rescale y2 on (0, x0) instead of (x0, L) is to

simplify the analysis by defining state variables on the same space interval with the

same direction of propagation.

Besides, from (3.2), the former steady state (y∗, x0) corresponds now to the

steady state (z = 0, xs = x0) in the new variables. With these new variables, the

dynamics of (y, xs) can now be expressed as follows:

z1t +

(
1 + z1 − x

ẋs
x0

)
z1x

x0
xs

= 0,

z2t +

(
1− z2 + x

ẋs
x0

)
z2x

x0
L− xs

= 0,

ẋs(t) =
z1(t, x0) + z2(t, x0)

2
,

(3.3)
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with the boundary conditions:

z1(t, 0) = k1z1(t, x0) + b1(x0 − xs(t)),

z2(t, 0) = k2z2(t, x0) + b2(x0 − xs(t)),
(3.4)

and initial condition

z(0, x) = z0(x), xs(0) = xs0, (3.5)

where z0 = (z01 , z
0
2)

T and

z01(x) = y0

(
x
xs0
x0

)
− 1,

z02(x) = y0

(
L+ x

xs0 − L

x0

)
+ 1.

(3.6)

Furthermore, in the new variables, the compatibility conditions (2.9)–(2.10) are

expressed as follows:

z01(0) = k1z
0
1(x0) + b1(x0 − xs0),

z02(0) = k2z
0
2(x0) + b2(x0 − xs0),

(3.7)

and

(1 + z01(0))z
0
1x(0)

x0
xs0

= k1

(
1 + z01(x0)−

z01(x0) + z02(x0)

2

)
z01x(x0)

x0
xs0

+ b1
z01(x0) + z02(x0)

2
,

(1− z02(0))z
0
2x(0)

x0
L− xs0

= k2

(
1− z02(x0) +

z01(x0) + z02(x0)

2

)
z02x(x0)

x0
L− xs0

+ b2
z01(x0) + z02(x0)

2
.

(3.8)

Concerning the existence and uniqueness of the solution to the system (3.3)–(3.5),

we have the following lemma.

Lemma 3.1. For all T > 0, there exists δ(T ) > 0 such that, for every xs0 ∈ (0, L)

and z0 ∈ H2((0, x0);R
2) satisfying the compatibility conditions (3.7)–(3.8) and

|z0|H2((0,x0);R2) ≤ δ(T ), |xs0 − x0| ≤ δ(T ), (3.9)

the system (3.3)–(3.5) has a unique classical solution (z, xs) ∈ C0([0, T ];H2((0, x0);

R
2))×C1([0, T ]; (0, L)). Moreover, there exists C(T ) such that the following estimate

holds for all t ∈ [0, T ]

|z(t, ·)|H2((0,x0);R2) + |xs(t)− x0| ≤ C(T )(|z0|H2((0,x0);R2) + |xs0 − x0|). (3.10)

Proof. The proof of Lemma 3.1 is given in Appendix A.
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From this lemma, it is then clear that the proof of Theorem 2.1 follows imme-

diately.

Proof of Theorem 2.1. The change of variables (3.1), (3.2) induces an equiva-

lence between the classical solutions (z, xs) of the system (3.3)–(3.5) and the entropy

solutions with a single shock (y, xs) of the system (2.1)–(2.4), (2.6), (2.8). Con-

sequently, from (3.2) and provided |z0|H2((0,x0);R2) and |xs0 − x0| are sufficiently

small, the existence and uniqueness of a solution with a single shock (y, xs) to the

system (2.1)–(2.4), (2.6), (2.8) satisfying the entropy condition (2.5) when (y0, xs0)

is in a sufficiently small neighborhood of (y∗, x0) follows directly from the existence

and uniqueness of the classical solution (z, xs) to the system (3.3)–(3.5) which is

guaranteed by Lemma 3.1.

Remark 3.1. Under the assumption in Lemma 3.1, if we assume furthermore that

z0 ∈ Hk((0, x0);R
2) with k ≥ 2 satisfying the kth order compatibility conditions

(see the definition in p. 143 of Ref. 3), then (z, xs) ∈ C0([0, T ];Hk((0, x0);R
2)) ×

Ck([0, T ];R) and (3.10) still holds. This is a straightforward extension of the proof

in Appendix A, thus we will not give the details of this proof here.

4. Exponential Stability for the H2-Norm

This section is devoted to the proof of Theorem 2.2 concerning the exponential

stability of the steady state of system (2.1), (2.3), (2.4), (2.8). Actually, on the basis

of the change of variables introduced in the previous section, we know that we only

have to prove the exponential stability of the steady state of the auxiliary system

(3.3)–(3.4) according to the following theorem which is equivalent to Theorem 2.2.

Theorem 4.1. For any γ > 0, if condition (2.16) on the parameters of the feedback

holds, then there exist δ∗ > 0 and C > 0 such that for any z0 ∈ H2((0, x0);R
2) and

xs0 ∈ (0, L) satisfying

|z0|H2((0,x0);R2) ≤ δ∗, |xs0 − x0| ≤ δ∗ (4.1)

and the compatibility conditions (3.7)–(3.8), and for any T > 0 the system

(3.3)–(3.5) has a unique classical solution (z, xs) ∈ C0([0, T ];H2((0, x0);R
2)) ×

C1([0, T ];R) such that

|z(t, ·)|H2((0,x0);R2) + |xs(t)− x0|
≤ Ce−γt/4(|z0|H2((0,x0);R2) + |xs0 − x0|), ∀ t ∈ [0, T ). (4.2)

When this theorem holds, we say that the steady state (z = 0, xs = x0) of the

system (3.3)–(3.4) is exponentially stable for the H2-norm with convergence rate

γ/4. Recall that, from Remark 2.4, there always exist parameters such that (2.16)

holds.

Before proving Theorem 4.1, let us give an overview of our strategy. We first

introduce a Lyapunov function candidate V with parameters to be chosen. Then, in
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Lemma 4.1, we give a condition on the parameters such that V is equivalent to the

square of the H2-norm of z plus the absolute value of xs − x0, which implies that

proving the exponential decay of V with rate γ/2 is enough to show the exponential

stability of the system with decay rate γ/4 for the H2-norm. In Lemma 4.2, we

show that in order to obtain Theorem 4.1, it is enough to prove that V decays

along any solutions (z, xs) ∈ C3([0, T ] × [0, x0];R
2) × C3([0, T ];R) with a density

argument. Then in Lemma 4.3, we compute the time derivative of V along any C3

solutions of the system and we give a sufficient condition on the parameters such

that V satisfies a useful estimate along these solutions. Finally, we show that there

exist parameters satisfying the sufficient condition of Lemma 4.3. This, together

with Lemma 4.2, ends the proof of Theorem 4.1.

We now introduce the following candidate Lyapunov function which is defined

for all z = (z1, z2)
T ∈ H2((0, x0);R

2) and xs ∈ (0, L):

V (z, xs) = V1(z) + V2(z, xs) + V3(z, xs) + V4(z, xs) + V5(z, xs) + V6(z, xs)

(4.3)

with

V1(z) =

∫ x0

0

p1e
−µx
η1 z21 + p2e

−µx
η2 z22dx, (4.4)

V2(z, xs) =

∫ x0

0

p1e
−µx
η1 z21t + p2e

−µx
η2 z22tdx, (4.5)

V3(z, xs) =

∫ x0

0

p1e
−µx
η1 z21tt + p2e

−µx
η2 z22ttdx, (4.6)

V4(z, xs) =

∫ x0

0

p̄1e
−µx
η1 z1(xs − x0) dx +

∫ x0

0

p̄2e
−µx
η2 z2(xs − x0) dx

+ κ(xs − x0)
2, (4.7)

V5(z, xs) =

∫ x0

0

p̄1e
−µx
η1 z1tẋs dx+

∫ x0

0

p̄2e
−µx
η2 z2tẋs dx+ κ(ẋs)

2, (4.8)

V6(z, xs) =

∫ x0

0

p̄1e
−µx
η1 z1ttẍs dx+

∫ x0

0

p̄2e
−µx
η2 z2ttẍs dx+ κ(ẍs)

2. (4.9)

In (4.4)–(4.9), µ, p1, p2, p̄1, p̄2 are positive constants. Moreover

η1 = 1, η2 =
x0

L− x0
(4.10)

and

κ > 1. (4.11)

Actually, in this section, we will need to evaluate V (z, xs) only along the sys-

tem solutions for which the variables zt = (z1t, z2t), ztt = (z1tt, z2tt), ẋs
and ẍs that appear in the definition of V can be well defined as functions of
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(z, xs)∈H2((0, x0);R
2)× (0, L) from the system (3.3)–(3.4) and their space deriva-

tives. For example, z1t and z2t are defined as functions of (z, xs) by

z1t := −
(
1 + z1 − x

z1(x0) + z2(x0)

2x0

)
z1x

x0
xs
, (4.12)

z2t := −
(
1− z2 + x

z1(x0) + z2(x0)

2x0

)
z2x

x0
L− xs

, (4.13)

and z1tt and z2tt as functions of (z, xs) by

z1tt := −
(
1 + z1 − x

z1(x0) + z2(x0)

2x0

)
(z1t)x

x0
xs

−
(
z1t − x

z1t(x0) + z2t(x0)

2x0

)
z1x

x0
xs

− z1t
z1(x0) + z2(x0)

2xs
, (4.14)

z2tt := −
(
1− z2 + x

z1(x0) + z2(x0)

2x0

)
(z2t)x

x0
L− xs

+

(
z2t − x

z1t(x0) + z2t(x0)

2x0

)
z2x

x0
L− xs

+ z2t
z1(x0) + z2(x0)

2(L− xs)
. (4.15)

The functions z1t and z2t which appear in (4.14) and (4.15) are supposed to be

defined by (4.12) and (4.13), respectively.

Remark 4.1. When looking for a Lyapunov function to stabilize the state (z1, z2)

in H2-norm, the component (V1 + V2 + V3) can be seen as the most natural and

easiest choice, as it is equivalent to a weighted H2-norm by properly choosing

the parameters. This kind of Lyapunov function, sometimes called basic quadratic

Lyapunov function, is used for instance in Ref. 2 or Sec. 4.4 of Ref. 3. However,

in the present case one needs to stabilize both the state z and the shock location

xs, which requires to add additional terms to the Lyapunov function in order to

deal with xs. Besides, as we have no direct control on xs (observe that none of the

terms of the right-hand side of (2.4), or equivalently of the third equation of (3.3),

is a control), we need to add some coupling terms between the state z on which

we have a control and the shock location xs in the Lyapunov function. Thus, V4 is

designed to provide such coupling with the product of the component of z and xs,

while V5 and V6 are its analogous for the time derivatives terms (as V2 and V3 are

the analogous of V1 respectively for the first and second time derivative of z).

We now state the following lemma, providing a condition on µ, p1, p2, p̄1 and

p̄2 such that V (z, xs) is equivalent to (|z|2H2((0,x0);R2) + |xs − x0|2).
Lemma 4.1. If

max(Θ1,Θ2) < 2, (4.16)

where

Θ1 :=
p̄21
p1

η1
µ

(
1− e

−µx0
η1

)
, Θ2 :=

p̄22
p2

η2
µ

(
1− e−

µx0
η2

)
, (4.17)
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there exists β > 0 such that

β(|z|2H2((0,x0);R2) + |xs − x0|2) ≤ V ≤ 1

β
(|z|2H2((0,x0);R2) + |xs − x0|2) (4.18)

for any (z, xs) ∈ H2((0, x0);R
2)× (0, L) satisfying

|z|2H2((0,x0);R2) + |xs − x0|2 < β2. (4.19)

Proof of Lemma 4.1. Let us start with

V4 =

∫ x0

0

p̄1e
−µx
η1 z1(xs − x0)dx +

∫ x0

0

p̄2e
−µx
η2 z2(xs − x0)dx+ κ(xs − x0)

2.

(4.20)

Using Young’s inequality we get

−1

2

(∫ x0

0

p̄1e
−µx
η1 z1 dx

)2

− (xs − x0)
2

2
− 1

2

(∫ x0

0

p̄2e
−µx
η2 z2 dx

)2

− (xs − x0)
2

2
+ κ(xs − x0)

2

≤ V4 ≤ 1

2

(∫ x0

0

p̄1e
−µx
η1 z1 dx

)2

+
(xs − x0)

2

2
+

1

2

(∫ x0

0

p̄2e
−µx
η2 z2 dx

)2

+
(xs − x0)

2

2
+ κ(xs − x0)

2. (4.21)

Hence, using the Cauchy–Schwarz inequality and the expression of V1 given in (4.4),

p1

(
1− 1

2
Θ1

)∫ x0

0

e
−µx
η1 z21dx+ p2

(
1− 1

2
Θ2

)∫ x0

0

e
−µx
η2 z22 dx+ (xs − x0)

2(κ− 1)

≤ V1 + V4 ≤ p1

(
1 +

1

2
Θ1

)∫ x0

0

e
−µx
η1 z21dx+ p2

(
1 +

1

2
Θ2

)∫ x0

0

e
−µx
η2 z22 dx

+(xs − x0)
2(κ+ 1), (4.22)

and similarly

p1

(
1− 1

2
Θ1

)∫ x0

0

e
−µx
η1 z21tdx+ p2(1− 1

2
Θ2)

∫ x0

0

e
−µx
η2 z22t dx+ (ẋs)

2(κ− 1)

≤ V2 + V5 ≤ p1

(
1 +

1

2
Θ1

)∫ x0

0

e
−µx
η1 z21tdx+ p2

(
1 +

1

2
Θ2

)∫ x0

0

e
−µx
η2 z22t dx

+(ẋs)
2(κ+ 1), (4.23)

and also

p1

(
1− 1

2
Θ1

)∫ x0

0

e
−µx
η1 z21ttdx+ p2

(
1− 1

2
Θ2

)∫ x0

0

e
−µx
η2 z22tt dx+ (ẍs)

2(κ− 1)

≤ V3 + V6 ≤ p1

(
1 +

1

2
Θ1

)∫ x0

0

e
−µx
η1 z21ttdx+ p2

(
1 +

1

2
Θ2

)∫ x0

0

e
−µx
η2 z22tt dx

+(ẍs)
2(κ+ 1). (4.24)
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Hence, from (4.11), κ > 1 and (4.16) is satisfied, there exists σ > 0 such that

σ(|z|2H2
t ((0,x0);R2) + |xs − x0|2) ≤ V ≤ 1

σ
(|z|2H2

t ((0,x0);R2) + |xs − x0|2), (4.25)

where, for a function z ∈ H2((0, x0);R
2), |z|H2

t ((0,x0);R2) is defined by

|z|H2
t ((0,x0);R2) = (|z|2L2((0,x0);R2) + |zt|2L2((0,x0);R2) + |ztt|2L2((0,x0);R2))

1/2, (4.26)

with zt and ztt defined as (4.12)–(4.15). Let us point out that from (4.12)–(4.15),

there exists C > 0 such that

1

C
|z|H2((0,x0);R2) ≤ |z|H2

t ((0,x0);R2) ≤ C|z|H2((0,x0);R2), (4.27)

if (|z|2H2((0,x0);R2) + |xs − x0|2) < 1/C. It follows from (4.25) and (4.27) that β > 0

can be taken sufficiently small such that inequality (4.18) holds provided (4.19) is

satisfied. This concludes the proof of Lemma 4.1.

Before proving Theorem 4.1, we introduce the following density argument, which

shows that it is enough to prove the exponential decay of V along any C3 solutions

of the system.

Lemma 4.2. Let V be a C1 and nonnegative functional on C0([0, T ];H2((0, x0);

R
2)) × C1([0, T ];R). If there exist δ > 0 and γ > 0 such that for any (z, xs) ∈

C3([0, T ]× [0, x0];R
2)×C3([0, T ];R) solution of (3.3)–(3.4), with associated initial

condition (z0, xs0) satisfying |z0|H2((0,x0);R2) ≤ δ and |xs0 − x0| ≤ δ, one has

dV (z(t, ·), xs(t))
dt

≤ −γ
2
V (z(t, ·), xs(t)), (4.28)

then (4.28) also holds in a distribution sense for any (z, xs) ∈ C0([0, T ];H2((0, x0);

R
2))×C1([0, T ];R) solution of (3.3)–(3.4) such that the associated initial condition

(z0, xs0) satisfies |z0|H2((0,x0);R2) < δ and |xs0 − x0| < δ.

Proof of Lemma 4.2. Let V be a C1 and nonnegative functional on C0([0, T ];

H2((0, x0);R
2)) × C1([0, T ];R) and let (z, xs) ∈ C0([0, T ];H2((0, x0);R

2)) ×
C1([0, T ];R) be solution of (3.3)–(3.4) with associated initial condition

|z0|H2((0,x0);R2) ≤ δ and |xs0 −x0| ≤ δ. Let (z0n, xns0) ∈ H4((0, x0);R
2)× (0, L), n ∈

N be a sequence of functions that satisfy the fourth-order compatibility conditions

and

|z0n|H2((0,x0);R2) ≤ δ, |xns0 − x0| ≤ δ, (4.29)

such that z0n converges to z0 in H2((0, x0);R
2) and xns0 converges to xs0. From

Remark 3.1, there exists a unique solution (zn, xns ) ∈ C0([0, T ];H4((0, x0);R
2)) ×

C4([0, T ];R) to (3.3)–(3.4) corresponding to the initial condition (z0n, xns0) and for

any t ∈ [0, T ], we have

|zn(t, ·)|H2((0,x0);R2) + |xns (t)− x0| ≤ C(T )(|z0n|H2((0,x0);R2) + |xns0 − x0|). (4.30)
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Hence, from (4.29) and the third equation of (3.3), the sequence (zn, xns ) is bounded

in C0([0, T ];H2((0, x0);R
2)) × C1([0, T ];R). By Corollary 4 of Ref. 40, we can

extract a subsequence, which we still denote by (zn, xns ) that converges to (u, ys)

in (C0([0, T ];C1([0, x0];R
2))∩C1([0, T ];C0([0, x0];R

2)))×C1([0, T ];R), which is a

classical solution of (3.3)–(3.5). If we define

J(u) =

{
+∞ if u /∈ L∞((0, T );H2((0, x0);R

2)),

|u|L∞((0,T );H2((0,x0);R2)) if u ∈ L∞((0, T );H2((0, x0);R
2)),

(4.31)

then J is lower semi-continuous and we have

J(u) ≤ lim
n→+∞

|zn|C0([0,T ];H2((0,x0);R2)), (4.32)

thus from (4.30) and the convergence of (z0n, xns0) in H
2((0, x0);R

2) × R, we have

J(u) ∈ R and u ∈ L∞((0, T );H2((0, x0);R
2)). Moreover, as (u, ys) is a solu-

tion to (3.3)–(3.5), we get the extra regularity u ∈ C0([0, T ];H2((0, x0);R
2)).

Hence, from the uniqueness of the solution given by Lemma 3.1, u = z

and consequently ys = xs, which implies that (zn, xns ) converges to (z, xs)

in (C0([0, T ];C1([0, x0];R
2)) ∩ C1([0, T ];C0([0, x0];R

2))) × C1([0, T ];R). Now, we

define V n(t) := V (zn(t, ·), xns (t)). Note that V (t) = V (z(t, ·), xs(t)) is continuous

with time t and well-defined as, from Lemma 3.1, z ∈ C0([0, T ];H2((0, x0);R
2)). As

(zn, xns ) belongs to C
0([0, T ];H4((0, x0);R

2))×C4([0, T ];R) and is thus C3, and as

it is a solution of (3.3)–(3.4) with initial condition satisfying (4.29), we have from

(4.28)

dV n

dt
≤ −γ

2
V n, (4.33)

thus V n is decreasing on [0, T ]. Therefore,

V n(t)− V n(0) ≤ −γt
2
V n(t), ∀ t ∈ [0, T ], (4.34)

which implies that (
1 +

γt

2

)
V n(t) ≤ V n(0), ∀ t ∈ [0, T ]. (4.35)

Using the lower semi-continuity of J , by the continuity of V and the convergence

of (z0n, xns0) in H
2((0, x0);R

2)× R, we have(
1 +

γt

2

)
V (t) ≤ V (0), ∀ t ∈ [0, T ]. (4.36)

Note that instead of approximating (z0, xs0), we could have approximated

(z(s, ·), xs(s)) where s ∈ [0, T ) and follow the same procedure as above. Therefore,

we have in fact for any s ∈ [0, T )(
1 +

γ(t− s)

2

)
V (t) ≤ V (s), ∀ t ∈ [s, T ], (4.37)
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thus for any 0 ≤ s < t ≤ T

V (t)− V (s)

t− s
≤ −γ

2
V (t), (4.38)

which implies that (4.28) holds in the distribution sense. This ends the proof of

Lemma 4.2.

We now state our final lemma, which gives a sufficient condition so that V

defined by (4.3)–(4.9) satisfies a useful estimate along any C3 solutions.

Lemma 4.3. Let V be defined by (4.3)–(4.9). If the matrix A defined by (4.59)–

(4.64) is positive definite, then for any T > 0, there exists δ1(T ) > 0 such that for

any (z, xs) ∈ C3([0, T ]× [0, x0];R
2)×C3([0, T ];R) solution of (3.3)–(3.5) satisfying

|z0|H2((0,x0);R2) ≤ δ1(T ) and |xs0 − x0| ≤ δ1(T ),

dV (z(t, ·), xs(t))
dt

≤ −µ
2
V (z(t, ·), xs(t)) +O((|z(t, ·)|H2((0,x0);R2) + |xs − x0|)3), ∀ t ∈ [0, T ].

(4.39)

Here and hereafter, O(s) means that there exist ε > 0 and C1 > 0, both inde-

pendent of z, xs, T and t ∈ [0, T ], such that

(s ≤ ε) ⇒ (|O(s)| ≤ C1s).

To prove this lemma, we differentiate V with respect to time along any C3 solu-

tions and perform several estimates on the different components of V . For the

sake of simplicity, for any z ∈ C0([0, T ];H2((0, x0);R
2)), we denote from now on

|z(t, ·)|H2((0,x0);R2) by |z|H2 .

Proof of Lemma 4.3. Let V be given by (4.3)–(4.9) and T > 0. Let us assume

that (z, xs) is a C3 solution to the system (3.3)–(3.5), with initial condition

|z0|H2((0,x0);R2) ≤ δ1(T ) and |xs0 − x0| ≤ δ1(T ) respectively with δ1(T ) > 0 to be

chosen later on. Let us examine the different components of the Lyapunov function.

We start by studying V1, V2 and V3 which can be treated similarly as in Sec. 4.4

of Ref. 3. Differentiating V1 along the solution (z, xs) and integrating by parts,

noticing (4.10), we have

dV1
dt

= −2

∫ x0

0

(
p1e

−µx
η1 z1

(
1 + z1 − x

ẋs
x0

)
x0
xs
z1x

+ p2e
−µx
η2 z2

(
1− z2 + x

ẋs
x0

)
x0

L− xs
z2x

)
dx

= −µV1 −
[
p1e

−µx
η1

x0
xs
z21 + p2e

−µx
η2

x0
L− xs

z22

]x0

0

+O((|z|H2 + |xs − x0|)3). (4.40)
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From (3.3), we have

z1tt +

(
1 + z1 − x

ẋs
x0

)
z1tx

x0
xs

+

(
z1t − x

ẍs
x0

)
z1x

x0
xs

+ z1t
ẋs
xs

= 0,

z2tt +

(
1− z2 + x

ẋs
x0

)
z2tx

x0
L− xs

−
(
z2t − x

ẍs
x0

)
z2x

x0
L− xs

− z2t
ẋs

L− xs
= 0.

(4.41)

Therefore, similarly to (4.40), we can obtain

dV2
dt

= −µV2 −
[
p1e

−µx
η1

x0
xs
z21t + p2e

−µx
η2

x0
L− xs

z22t

]x0

0

+O((|z|H2 + |xs − x0|)3).
(4.42)

From (4.41) and using (3.3), we get

z1ttt +

(
1 + z1 − x

ẋs
x0

)
z1ttx

x0
xs

+ 2

(
z1t − x

ẍs
x0

)
z1tx

x0
xs

+
ẋs
xs

(
z1tt + z1t

ẋs
xs

)

+

(
z1tt − x

...
x s

x0

)
z1x

x0
xs

+ z1tt
ẋs
xs

+ z1t
ẍsxs − (ẋs)

2

x2c
= 0,

z2ttt +

(
1− z2 + x

ẋs
x0

)
z2ttx

x0
L− xs

− 2

(
z2t − x

ẍs
x0

)
z2tx

x0
L− xs

+
ẋs

L− xs

(
−z2tt + z2t

ẋs
L− xs

)
−
(
z2tt − x

...
x s

x0

)
z2x

x0
L− xs

− z2tt
ẋs

L− xs
− z2t

ẍs(L − xs) + (ẋs)
2

(L − xs)2
= 0. (4.43)

Then differentiating V3 along the system solutions and using (4.43), we have

dV3
dt

≤ −
[
p1e

−µx
η1
x0
xs

(z21tt)

(
1 + z1 − x

ẋs
x0

)]x0

0

−
[
p2e

−µx
η2

x0
L− xs

z22tt

(
1− z2 + x

ẋs
x0

)]x0

0

− µmin

(
x0
xs
,
L− x0
L− xs

)
V3

−µ

∫ x0

0

(
x0
xs
p1e

−µx
η1 z21ttz1 −

L− x0
L− xs

p2e
−µx

η2 z22ttz2

)
dx

+µ

∫ x0

0

(
x0
xs
p1e

−µx
η2 xz21tt

ẋs
x0

− L− x0
L− xs

p2e
−µx

η1 xz22tt
ẋs
x0

)
dx

− 3

∫ x0

0

(
p1e

−µx
η1 z21tt

ẋs
xs

− p2e
−µx

η2 z22tt
ẋs

L− xs

)
dx

−
∫ x0

0

(
p1e

−µx
η1 z21ttz1x

x0
xs

− p2e
−µx

η2 z22ttz2x
x0

L− xs

)
dx
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− 4

∫ x0

0

(
p1e

−µx
η1 z1tt

(
z1t − x

ẍs
x0

)
z1tx

x0
xs

− p2e
−µx

η2 z2tt

(
z2t − x

ẍs
x0

)
z2tx

x0
L− xs

)
dx

− 2

∫ x0

0

(
p1e

−µx
η1 z1tt

(
z1tt + z1t

ẋs
xs

)
ẋs
xs

− p2e
−µx

η2 z2tt

×
(
z2tt − z2t

ẋs
L− xs

)
ẋs

L− xs

)
dx− 2

∫ x0

0

(
p1e

−µx
η1 z1ttz1t

ẍsxs − (ẋs)
2

x2c

− p2e
−µx

η2 z2ttz2t
ẍs(L− xs) + (ẋs)

2

(L − xs)2

)
dx− 2

∫ x0

0

(
p1e

−µx
η1 z1tt

(
z1tt −x

...
xs
x0

)

× z1x
x0
xs

− p2e
−µx

η2 z2tt

(
z2tt − x

...
xs
x0

)
z2x

x0
L− xs

)
dx.

(4.44)

Observe that, while previously all the cubic terms in z could be bounded by |z|3H2 ,

here in the last line in (4.44) we have
...
xs which is proportional to ztt(t, x0) and

cannot be roughly bounded by the |z|H2 norm. To overcome this difficulty, we

transform these terms using Young’s inequality and we get

2

∫ x0

0

(
p1e

−µx
η1 z1tt

(
x

...
x s

x0

)
z1x

x0
xs

− p2e
−µx

η2 z2tt

(
x

...
x s

x0

)
z2x

x0
L− xs

)
dx

≤ C|z(t, ·)|C1([0,x0];R2)(z1tt(t, x0) + z2tt(t, x0))
2

+O(|z(t, ·)|C1([0,x0];R2)|z|2H2 ), (4.45)

where C denotes a constant, independent of z, xs, T and t ∈ [0, T ]. Note that

the first term on the right is now proportional to z2tt(t, x0) with a proportionality

coefficient C|z(t, ·)|C1([0,x0];R2) that, by Sobolev inequality, can be made sufficiently

small provided that |z|H2 is sufficiently small and thus can be dominated by the

boundary terms. More precisely, from (4.44) and (4.45) we have

dV3
dt

≤ −µV3 −
[
p1e

−µx
η1

x0
xs

(z21tt)

]x0

0

−
[
p2e

−µx
η2

x0
L− xs

z22tt

]x0

0

+O(|z|H2 )(z21tt(t, x0) + z22tt(t, x0)) +O((|z|H2 + |xs − x0|)3). (4.46)

Let us now deal with the term V4 that takes into account the position of the jump.

In the following, we use notations z(0) and z(x0) instead of z(t, 0) and z(t, x0) for

simplicity. We have

dV4
dt

= −
∫ x0

0

p̄1e
−µx
η1

(
1 + z1 − x

ẋs
x0

)
z1x(xs − x0)

x0
xs
dx+

∫ x0

0

p̄1e
−µx
η1 z1ẋs dx

−
∫ x0

0

p̄2e
−µx
η2

(
1− z2 + x

ẋs
x0

)
z2x(xs − x0)

x0
L− xs

dx
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+

∫ x0

0

p̄2e
−µx
η2 z2ẋs dx+ 2κẋs(xs − x0)

= −(xs − x0)

[
p̄1e

−µx
η1

x0
xs
z1 + p̄2e

−µx
η2

x0
L− xs

z2

]x0

0

− µ(V4 − κ(xs − x0)
2)

+
z1(x0) + z2(x0)

2

(∫ x0

0

p̄1e
−µx

η1 z1 dx

)
+
z1(x0) + z2(x0)

2

×
(∫ x0

0

p̄2e
−µx

η2 z2 dx

)
+ κ(z1(x0) + z2(x0))(xs − x0)

+O((|z|H2 + |xs − x0|)3).
(4.47)

According to Young’s inequality, for any positive ε1 and ε2, we have

z1(x0) + z2(x0)

2

(∫ x0

0

p̄1e
−µx

η1 z1 dx

)

≤ ε1
4

(
z1(x0) + z2(x0)

2

)2

+
1

ε1

(∫ x0

0

p̄1e
−µx

η1 z1 dx

)2

,

z1(x0) + z2(x0)

2

(∫ x0

0

p̄2e
−µx

η2 z2 dx

)

≤ ε2
4

(
z1(x0) + z2(x0)

2

)2

+
1

ε2

(∫ x0

0

p̄2e
−µx

η2 z2 dx

)2

.

Then using the boundary condition (3.4) and Cauchy–Schwarz inequality, (4.47)

becomes

dV4
dt

≤ −µV4 − p̄1(xs − x0)
x0
xs

((
e−

µx0
η1 − k1

)
z1(x0) + b1(xs − x0)

)
− p̄2(xs − x0)

x0
L− xs

((
e−

µx0
η2 − k2

)
z2(x0) + b2(xs − x0)

)
+(ε1 + ε2)

z21(x0) + z22(x0)

8
+ max

{
Θ1

ε1
,
Θ2

ε2

}
V1 + κ(xs − x0)(z1(x0)

+ z2(x0)) + µκ(xs − x0)
2 +O((|z|H2 + |xs − x0|)3). (4.48)

Let us now consider V5. From (4.8) and (4.41), one has similarly

dV5
dt

= −
∫ x0

0

p̄1e
−µx
η1 z1txẋs

x0
xs
dx+

∫ x0

0

p̄1e
−µx
η1 z1tẍs dx

−
∫ x0

0

p̄2e
−µx
η2 z2txẋs

x0
L− xs

dx+

∫ x0

0

p̄2e
−µx
η2 z2tẍs dx+ 2κẍsẋs

+O
(
(|z|H2 + |xs − x0|)3

)
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= −ẋs
[
p̄1e

−µx
η1

x0
xs
z1t + p̄2e

−µx
η2

x0
L− xs

z2t

]x0

0

− µ(V5 − κ(ẋs)
2)

+
z1t(x0) + z2t(x0)

2

(∫ x0

0

p̄1e
−µx

η1 z1t dx

)
+
z1t(x0) + z2t(x0)

2

×
(∫ x0

0

p̄2e
−µx

η2 z2t dx

)
+ κ(z1t(x0) + z2t(x0))ẋs +O((|z|H2 + |xs − x0|)3).

By differentiating (3.4) with respect to time, we have

z1t(0) = k1z1t(x0)− b1ẋs,

z2t(0) = k2z2t(x0)− b2ẋs,
(4.49)

and therefore using Cauchy–Schwarz and Young’s inequalities, we get

dV5
dt

≤ −µV5 − p̄1ẋs
x0
xs

((
e
−µx0

η1 − k1
)
z1t(x0) + b1ẋs

)
− p̄2ẋs

x0
L− xs

((
e−

µx0
η2 − k2

)
z2t(x0) + b2ẋs

)
+(ε1 + ε2)

z21t(x0) + z22t(x0)

8
+ max

{
Θ1

ε1
,
Θ2

ε2

}
V2

+ κẋs(z1t(x0) + z2t(x0)) + µκ(ẋs)
2 +O((|z|H2 + |xs − x0|)3). (4.50)

Furthermore, by differentiating (4.49) with respect to time, we have

z1tt(0) = k1z1tt(x0)− b1ẍs,

z2tt(0) = k2z2tt(x0)− b2ẍs,
(4.51)

and therefore using also (4.43), one has

dV6
dt

= −
∫ x0

0

p̄1e
−µx
η1 z1ttxẍs

x0
xs
dx+

∫ x0

0

p̄1e
−µx
η1 z1tt

...
x s dx−

∫ x0

0

p̄2e
−µx
η2 z2ttxẍs

× x0
L− xs

dx+

∫ x0

0

p̄2e
−µx
η2 z2tt

...
x s dx + 2κ

...
x sẍs +

∫ x0

0

p̄1e
−µx
η1 ẍs

×
(
x

...
x s

x0

)
z1x

x0
xs
dx −

∫ x0

0

p̄2e
−µx
η2 ẍs

(
x

...
x s

x0

)
z2x

x0
L− xs

dx

+O((|z|H2 + |xs − x0|)3)

= −ẍs
[
p̄1e

−µx
η1

x0
xs
z1tt + p̄2e

−µx
η2

x0
L− xs

z2tt

]x0

0

− µ(V6 − κ(ẍs)
2)

+
z1tt(x0) + z2tt(x0)

2

(∫ x0

0

p̄1e
−µx

η1 z1tt dx

)

+
z1tt(x0) + z2tt(x0)

2

(∫ x0

0

p̄2e
−µx

η2 z2tt dx

)
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+ κ(z1tt(x0) + z2tt(x0))ẍs +

∫ x0

0

p̄1e
−µx
η1 ẍs

(
x

...
x s

x0

)
z1x

x0
xs
dx

−
∫ x0

0

p̄2e
−µx
η2 ẍs

(
x

...
x s

x0

)
z2x

x0
L− xs

dx+O((|z|H2 + |xs − x0|)3).

Note that, as above for V3, here appears again
...
xs which is proportional to ztt(t, x0)

and cannot be bounded by |z|H2 . We therefore use Cauchy–Schwarz and Young’s

inequalities as previously and the boundary condition (4.51) to get

dV6
dt

≤ −µV6 − p̄1ẍs
x0
xs

((
e
−µx0

η1 − k1
)
z1tt(x0) + b1ẍs

)
− p̄2ẍs

x0
L− xs

((
e−

µx0
η2 − k2

)
z2tt(x0) + b2ẍs

)
+(ε1 + ε2)

z21tt(x0) + z22tt(x0)

8
+ max

{
Θ1

ε1
,
Θ2

ε2

}
V2

+ κẍs(z1tt(x0) + z2tt(x0)) + µκ(ẍs)
2 +O(|z|H2 )(z21tt(x0) + z22tt(x0))

+O((|z|H2 + |xs − x0|)3). (4.52)

Hence, from (4.40), (4.48) and the boundary conditions (3.4), we have

dV1
dt

+
dV4
dt

≤ −µ(V1 + V4) (4.53)

+max

{
Θ1

ε1
,
Θ2

ε2

}
V1

+

[
x0
xs
p1
(
k21 − e−

µx0
η1

)
+
ε1 + ε2

8

]
z21(x0)

+

[
x0

L− xs
p2
(
k22 − e

−µx0
η2

)
+
ε1 + ε2

8

]
z22(x0)

+

[
−2

x0
xs
p1b1k1 − x0

xs
p̄1
(
e−

µx0
η1 − k1

)
+ κ

]
z1(x0)(xs − x0)

+

[
−2

x0
L− xs

p2b2k2 − x0
L− xs

p̄2
(
e−

µx0
η2 − k2

)
+ κ

]
z2(x0)(xs − x0)

+

[
x0
xs
p1b

2
1 +

x0
L− xs

p2b
2
2 −

x0
xs
p̄1b1 − x0

L− xs
p̄2b2 + µκ

]
(xs − x0)

2

+O((|z|H2 + |xs − x0|)3). (4.54)

Let us now select ε1 and ε2 as follows:

ε1 = 2
Θ1

µ
, ε2 = 2

Θ2

µ
, (4.55)
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where Θ1 and Θ2 are defined in (4.17). Then (4.54) can be rewritten in the following

compact form:

dV1
dt

+
dV4
dt

≤ −µ
2
V1 − µV4 − ZTA0 Z+O((|z|H2 + |xs − x0|)3). (4.56)

This expression involves the quadratic form ZTA0 Z with the vector Z defined as

Z = (z1(x0) z2(x0) (xs − x0))
T (4.57)

and the matrix A0 satisfies

A0 = A+O(|xs − x0|), (4.58)

where A is given by

A =



a11 0 a13

0 a22 a23

a31 a32 a33


 (4.59)

with

a11 = p1
(
e−

µx0
η1 − k21

)− ε1 + ε2
8

, (4.60)

a13 = a31 = p1b1k1 +
p̄1
2

(
e
−µx0

η1 − k1
)− κ

2
, (4.61)

a22 =
x0

L− x0
p2
(
e
−µx0

η2 − k22
)− ε1 + ε2

8
, (4.62)

a23 = a32 =
x0

L− x0
p2b2k2 +

x0
L− x0

p̄2
2

(
e
−µx0

η2 − k2
)− κ

2
, (4.63)

a33 = −p1b21 −
x0

L− x0
p2b

2
2 + p̄1b1 +

x0
L− x0

p̄2b2 − µκ. (4.64)

Similarly, from (4.42) and (4.50), we get

dV2
dt

+
dV5
dt

≤ −µ
2
V2 − µV5 − ZT

tA0 Zt +O((|z|H2 + |xs − x0|)3), (4.65)

while from (4.46) and (4.52), we have

dV3
dt

+
dV6
dt

≤ −µ
2
V3 − µV6 − ZT

ttA1 Ztt +O((|z|H2 + |xs − x0|)3) (4.66)

with

A1 = A0 +



O(|z|H2 ) 0 0

0 O(|z|H2 ) 0

0 0 0


. (4.67)

If A is positive definite, from (4.58) and (4.67) and by continuity, A0 and A1 are

also positive definite provided that |z|H2 and |xs−x0| are sufficiently small. Hence,
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from (4.56), (4.65), (4.66) and Lemma 3.1, there exists δ1(T ) > 0 such that, if

|z0|H2((0,x0);R2) ≤ δ1(T ) and |xs0 − x0| ≤ δ1(T ), one has

dV

dt
≤ −µ

2
V +O((|z|H2 + |xs − x0|)3), (4.68)

which ends the proof of Lemma 4.3.

Let us now prove Theorem 4.1.

Proof of Theorem 4.1. From Lemmas 4.1 and 4.2, all it remains to do is to

show that for any γ > 0, under conditions (2.16) there exist µ, p1, p2, p̄1 and p̄2
satisfying (4.16) and such that V given by (4.3)–(4.9) decreases exponentially with

rate γ/2 along any C3 solution of the system (3.3)–(3.5). Using Lemma 4.3 we first

show that for any γ > 0 there exists µ > γ, and positive parameters p1, p2, p̄1
and p̄2 satisfying (4.16) and such that the matrix A defined by (4.59)–(4.64) is

positive definite, which implies that (4.39) holds. Then, we show that this implies

the exponential decay of V with decay rate γ/2 along any C3 solution of (3.3)–(3.5).

Let us start by selecting p1 and p2 as

p1 =
p̄1
2b1

, p2 =
p̄2
2b2

. (4.69)

Then the cross terms (4.61), (4.63) of the matrix A become

a13 = a31 =
p̄1
2
e−

µx0
η1 − κ

2
, a23 = a32 =

x0
L− x0

p̄2
2
e−

µx0
η2 − κ

2
. (4.70)

Let p̄1 and p̄2 be selected as

p̄1 = κe
µx0
η1 , p̄2 = κ

L− x0
x0

e
µx0
η2 . (4.71)

Then we have

a13 = a31 = 0, a23 = a32 = 0 (4.72)

such that A can now be rewritten as

A =



a11 0 0

0 a22 0

0 0 a33


. (4.73)

Moreover, from (4.69) and (4.71), we get

a33 =
p̄1
2
b1 +

x0
L− x0

p̄2
2
b2 − µκ =

κ

2
b1e

µx0
η1 +

κ

2
b2e

µx0
η2 − µκ. (4.74)

As conditions (2.16) are strict inequalities, by continuity it follows that we can

select µ > γ such that these conditions (2.16) are still satisfied with µ instead of γ

such that

µe−
µx0
η1 < b1 <

µe−
µx0
η1

1− e−
µx0
η1

, µe−
µx0
η2 < b2 <

µe−
µx0
η2

1− e−
µx0
η2

, (4.75)
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this together with (4.74) gives

a33 > 0. (4.76)

From (4.17), (4.55), (4.60), (4.62), (4.69) and (4.71), we have

a11 =
κ

2b1
(1− k21e

µx0
η1 )− κ

2µ2

[
b1
(
e

µx0
η1 − 1

)
+ b2

(
e

µx0
η2 − 1

)]
, (4.77)

a22 =
κ

2b2

(
1− k22e

µx0
η2

)− κ

2µ2

[
b1
(
e

µx0
η1 − 1

)
+ b2

(
e

µx0
η2 − 1

)]
. (4.78)

Then, under assumptions (2.16), it can be checked that

a11 > 0, a22 > 0. (4.79)

This implies that A is positive definite.

Thus from Lemma 4.3, for any T > 0, there exists δ1(T ) > 0 such that for

any (z, xs) ∈ C3([0, T ]× [0, x0];R
2)×C3([0, T ];R) solution of (3.3)–(3.5) satisfying

|z0|H2((0,L);R2) ≤ δ1(T ) and |xs0 − x0| ≤ δ1(T ), one has

dV

dt
≤ −µ

2
V +O((|z|H2 + |xs − x0|)3). (4.80)

Now let us remark that from condition (4.75) we have

max

(
2
b1η1
µ

e
µx0
η1

(
1− e−

µx0
η1

)
, 2

L− x0
x0

b2η2
µ

e
µx0
η2

(
1− e−

µx0
η2

))
< 2. (4.81)

Therefore, there exists κ > 1 such that

max

(
2κ
b1η1
µ

e
µx0
η1

(
1− e−

µx0
η1

)
, 2κ

L− x0
x0

b2η2
µ

e
µx0
η2

(
1− e−

µx0
η2

))
< 2, (4.82)

which means from (4.69) and (4.71) that (4.16) is satisfied. Hence from (4.80) and

Lemma 4.1, since µ > γ, there exists δ0(T ) ≤ δ1(T ) such that, if |z0|H2((0,x0);R2) ≤
δ0(T ) and |xs0 − x0| ≤ δ0(T ), then

dV

dt
≤ −γ

2
V (4.83)

along the C3 solutions of the system (3.3)–(3.5). Thus from Lemma 4.2, (4.83)

holds along the C0([0, T ];H2((0, x0);R
2))×C1([0, T ];R) solutions of (3.3)–(3.5) in

a distribution sense.

So far δ0(T ) may depend on T , while δ∗ in Theorem 4.1 does not depend on T .

The only thing left to check is that we can find δ∗ independent of T such that if

|z0|H2((0,x0);R2) ≤ δ∗ and |xs0 − x0| ≤ δ∗, then (4.83) holds on (0, T ) for any T > 0.

As the constant β involved in Lemma 4.1 does not depend on T , there exists T1 > 0

such that

β−2e−
γ
2 T1 <

1

2
. (4.84)
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As T1 ∈ (0,+∞), from Lemma 3.1, we can choose δ0(T1) > 0 satisfying

C(T1)δ0(T1) < β/2, such that for every xs0 ∈ (0, L) and z0 ∈ H2((0, x0);R
2)

satisfying the compatibility conditions (3.7)–(3.8) and

|z0|H2((0,x0);R2) ≤ δ0(T1), |xs0 − x0| ≤ δ0(T1),

there exists a unique solution (z, xs) ∈ C0([0, T1];H
2((0, x0);R

2)) × C1([0, T1];R)

to the system (3.3)–(3.5) satisfying

|z(t, ·)|H2((0,x0);R2) + |xs(t)− x0| < β (4.85)

and such that (4.83) holds on (0, T1) in a distribution sense. From (4.85), Lemma 4.1

and (4.84),

|z(T1, ·)|H2((0,x0);R2) ≤ δ0(T1), |xs(T1)− x0| ≤ δ0(T1). (4.86)

Moreover, the compatibility conditions hold now at time t = T1 instead

of t = 0. Thus, from Lemma 3.1 there exists a unique (z, xs) ∈
C0([T1, 2T1];H

2((0, x0);R
2)) × C1([T1, 2T1];R) solution of (3.3)–(3.5) on [T1, 2T1]

and (4.83) holds on (T1, 2T1) in a distribution sense. One can repeat this analysis on

[jT1, (j + 1)T1] where j ∈ N
∗\{1}. Setting δ∗ = δ0(T1), we get that (4.83) holds on

(0, T ) for any T > 0 in a distribution sense along the C0([0, T ];H2((0, x0);R
2)) ×

C1([0, T ];R) solutions of the system (3.3)–(3.5). In fact, it also implies the global

existence and uniqueness of (z, xs) ∈ C0([0,+∞);H2((0, x0);R
2))×C1([0,+∞);R)

solution of (3.3)–(3.5) and the fact that (4.83) holds on (0,+∞). This concludes

the proof of Theorem 4.1.

5. Extension to a General Convex Flux

We can in fact extend this method to a more general convex flux. Let f ∈ C3(R)

be a convex function, and consider the equation

∂ty + ∂x(f(y)) = 0. (5.1)

For this conservation law, the Rankine–Hugoniot condition becomes

ẋs =
f(y(t, xs(t)

+))− f(y(t, xs(t)
−))

y(t, xs(t)+)− y(t, xs(t)−)
(5.2)

and, let (y∗, x0) be an entropic shock steady state of (5.1)–(5.2), without loss of

generality we can assume that y∗(x+0 ) = −1 and y∗(x−0 ) = 1, thus f(1) = f(−1).

Then, for any x0 ∈ (0, L), we have the following result.

Theorem 5.1. Let f ∈ C3(R) be a convex function such that f(1) = f(−1) and

assume in addition that

f ′(1) ≥ 1 and |f ′(−1)| ≥ 1. (5.3)
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Let γ > 0. If the following conditions hold :

b1 ∈
(

2γe−γx0

f ′(1) + |f ′(−1)| ,
γe−γx0

1− e−γx0

)
, b2 ∈

(
2γe−γ(L−x0)

f ′(1) + |f ′(−1)| ,
γe−γ(L−x0)

1− e−γ(L−x0)

)
,

(5.4a)

k21 < e−γx0

(
1− f ′(1)

b1
γ

(
b1
1− e−γx0

γe−γx0
+ b2

1− e−γ(L−x0)

γe−γ(L−x0)

))
, (5.4b)

k22 < e−γ(L−x0)

(
1− |f ′(−1)|b2

γ

(
b1
1− e−γx0

γe−γx0
+ b2

1− e−γ(L−x0)

γe−γ(L−x0)

))
, (5.4c)

then the steady state (y∗, x0) of the system (5.1), (5.2), (2.3), (2.8) is exponentially

stable for the H2-norm with decay rate γ/4.

One can use exactly the same method as previously. We give in Appendix B a

way to adapt the proof of Theorem 4.1.

Remark 5.1. One could wonder why we require condition (5.3). This condition

ensures that there always exist parameters bi and ki satisfying (5.4).

6. Conclusion and Open Problems

The stabilization of shock-free regular solutions of quasilinear hyperbolic systems

has been the subject of a large number of publications in the recent scientific litera-

ture. In contrast, there are no results concerning the Lyapunov stability of solutions

with jump discontinuities, although they occur naturally in the form of shock waves

or hydraulic jumps in many applications of fluid dynamics. For instance, the inviscid

Burgers equation provides a simple scalar example of a hyperbolic system having

natural solutions with jump discontinuities. The main contribution of this paper is

precisely to address the issue of the boundary exponential feedback stabilization of

an unstable shock steady state for the Burgers equation over a bounded interval.

Our strategy to solve the problem relies on introducing a change of variables which

allows to transform the scalar Burgers equation with shock wave solutions into an

equivalent 2 × 2 quasilinear hyperbolic system having shock-free solutions over a

bounded interval. Then, by a Lyapunov approach, we show that, for appropriately

chosen boundary conditions, the exponential stability in H2-norm of the steady

state can be achieved with an arbitrary decay rate and with an exact exponential

stabilization of the desired shock location. Compared with previous results in the

literature for classical solutions of quasilinear hyperbolic systems, the selection of

an appropriate Lyapunov function is challenging because the equivalent system is

parameterized by the time-varying position of the jump discontinuity. In particular,

the standard quadratic Lyapunov function used in the book Ref. 3 has to be aug-

mented with suitable extra terms for the analysis of the stabilization of the jump

position. Based on the result, some open questions could be addressed. Could these

results be generalized to any convex flux, especially when (5.3) is not satisfied? As
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we show the rapid stabilization result, is it possible to obtain finite time stabiliza-

tion? Could we replace the left/right state at the shock by measurements nearby or

by averages close to the shock? If not, could the error on both the state and shock

location be bounded?

Appendix A. Proof of Lemma 3.1

Proof of Lemma 3.1. We adapt the fixed point method used in Appendix B of

Ref. 3 (see also Refs. 25 and 31). We first deal with the case where

T ∈ (0,min(x0, L− x0)). (A.1)

For any ν > 0, xs0 ∈ R and z0 ∈ H2((0, x0);R
2), let Cν(z

0, xs0) be the set of

z ∈ L∞((0, T );H2((0, x0);R
2)) ∩W 1,∞((0, T );H1((0, x0);R

2))

∩ W 2,∞((0, T );L2((0, x0);R
2))

such that

|z|L∞((0,T );H2((0,x0);R2)) ≤ ν, (A.2)

|z|W 1,∞((0,T );H1((0,x0);R2)) ≤ ν, (A.3)

|z|W 2,∞((0,T );L2((0,x0);R2)) ≤ ν, (A.4)

z(·, x0) ∈ H2((0, T );R2), |z(·, x0)|H2((0,T );R2) ≤ ν2, (A.5)

z(0, ·) = z0, (A.6)

zt(0, ·) = −A(z0, ·, xs(z(·, x0))(0))z0x, (A.7)

where we write xs(z(·, x0))(t) in order to emphasize its dependence on z(·, x0) in

the following proof and

xs(z(·, x0))(t) =: xs0 +

∫ t

0

z1(s, x0) + z2(s, x0)

2
ds. (A.8)

In (A.7),

A(z, x, xs(z(·, x0))(t)) =
(
a1(z, x, xs(z(·, x0))(t)) 0

0 a2(z, x, xs(z(·, x0))(t))

)
(A.9)

with

a1(z, x, xs(z(·, x0))(t))

=

(
1 + z1(t, x)− x

z1(t, x0) + z2(t, x0)

2x0

)
x0

xs(z(·, x0))(t) , (A.10)

a2(z, x, xs(z(·, x0))(t))

=

(
1− z2(t, x) + x

z1(t, x0) + z2(t, x0)

2x0

)
x0

L− xs(z(·, x0))(t) . (A.11)
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The set Cν(z
0, xs0) is not empty and is a closed subset of L∞((0, T );L2((0, L);R2))

provided that |z0|H2((0,x0);R2) ≤ δ and |xs0 − x0| ≤ δ, with δ sufficiently small (see

for instance Appendix B of Ref. 3).

Let us define a mapping

F : Cν(z
0, xs0) → L∞((0, T );H2((0, x0);R

2)) ∩W 1,∞((0, T );H1((0, x0);R
2))

∩W 2,∞((0, T );L2((0, x0);R
2)), (A.12)

v = (v1, v2)
T 
→ F(v) = z = (z1, z2)

T ,

where z is the solution of the linear hyperbolic equation

zt +A(v, x, xs(v(·, x0))(t))zx = 0, (A.13)

z(0, x) = z0(x), (A.14)

with boundary conditions

z1(t, 0) = k1z1(t, x0) + b1ψ(t), (A.15)

z2(t, 0) = k2z2(t, x0) + b2ψ(t), (A.16)

where

ψ(t) = x0 − xs(v(·, x0))(t). (A.17)

In the following, we will treat z1 in detail. For the sake of simplicity, we denote

f1(t, x) := a1(v(t, x), x, xs(v(·, x0))(t)). (A.18)

It is easy to check from (A.10) that if ν is sufficiently small, then f1(t, x) is strictly

positive for any (t, x) ∈ [0, T ]× [0, x0]. Let us now define the characteristic curve

ξ1(s; t, x) passing through (t, x) as

dξ1(s; t, x)

ds
= f1(s, ξ1(s; t, x)),

ξ1(t; t, x) = x.

(A.19)

One can see that for every (t, x) ∈ [0, T ]× [0, x0], ξ1(·; t, x) is uniquely defined

on some closed interval in [0, T ]. From (A.1), only two cases can occur (see Fig. 2):

If ξ1(t; 0, 0) < x ≤ x0, there exists β1 ∈ [0, x0] depending on (t, x) such that

β1 = ξ1(0; t, x). (A.20)

If 0 < x < ξ1(t; 0, 0), there exists α1 ∈ [0, t] depending on (t, x) such that

ξ1(α1; t, x) = 0, (A.21)

and in this case, there exists γ1 ∈ [0, x0] depending on α1 such that

γ1 = ξ1(0;α1, x0). (A.22)

Moreover, we have the following lemma which will be used in the estimations here-

after (the proof can be found at the end of this appendix).
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Fig. 2. Demonstration of the characteristics.

Lemma A.1. There exist ν0 > 0 and C > 0 such that, for any T satisfying (A.1),

for any ν ∈ (0, ν0] and for a.e. t ∈ (0, T ), we have

|f1(t, ·)|0 ≤ C, |f1x(t, ·)|0 ≤ Cν, |f1t(t, ·)|0 ≤ Cν, (A.23)

|∂xξ1(s; t, ·)|0 ≤ C, |∂tξ1(s; t, ·)|0 ≤ C, s ∈ [0, t], (A.24)

|∂xβ1(t, ·)|0 ≤ C, |(∂xβ1(t, ·))−1|0 ≤ C, (A.25)

|∂tβ1(t, ·)|0 ≤ C, |(∂tβ1(t, ·))−1|0 ≤ C, (A.26)

|∂xα1(t, ·)|0 ≤ C, |(∂xα1(t, ·))−1|0 ≤ C, (A.27)

|∂xγ1(t, ·)|0 ≤ C, |(∂xγ1(t, ·))−1|0 ≤ C, (A.28)∫ T

0

|∂ttβ1(t, x0)|2 dt ≤ Cν, (A.29)

∫ x0

0

|∂xxα1(t, x)|2dx ≤ Cν, (A.30)

∫ x0

0

|∂xxβ1(t, x)|2dx ≤ Cν, (A.31)

∫ x0

0

|∂xxγ1(t, x)|2dx ≤ Cν. (A.32)

In these inequalities, and hereafter in this section, |f |0 denotes the C0-norm of a

function f with respect to its variable and C may depend on x0, xs0, ν0, k1, k2, b1
and b2, but is independent of ν, T, v and z.
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Our goal is now to use a fixed point argument to show the existence and unique-

ness of the solution to (3.3)–(3.5). First, we show that for ν and δ sufficiently small,

F maps Cν(z
0, xs0) into itself, i.e.

F(Cν(z
0, xs0)) ⊂ Cν(z

0, xs0).

Then, in a second step, we prove that F is a contraction mapping.

(1) F maps Cν(z
0, xs0) into itself.

For any v ∈ Cν(z
0, xs0), let z = F(v), we prove that z ∈ Cν(z

0, xs0). By the

definition of F in (A.12), using the method of characteristics, we can solve (A.13)–

(A.16) for z1 and obtain that

z1(t, x) =

{
k1z

0
1(γ1) + b1ψ(α1), 0 < x < ξ1(t; 0, 0),

z01(β1), ξ1(t; 0, 0) < x < x0.
(A.33)

Obviously z verifies the properties (A.6)–(A.7). Next, we prove that z verifies the

property (A.5). Using the change of variables and from (A.26), we have∫ T

0

z1(t, x0)
2dt =

∫ T

0

z01(β1(t, x0))
2dt ≤ C

∫ x0

0

(z01(x))
2dx. (A.34)

In (A.34) and hereafter, C denotes various constants that may depend on x0, xs0,

ν0, k1, k2, b1 and b2, but are independent of ν, T , v and z. Similarly, by (A.26), we

obtain∫ T

0

z1t(t, x0)
2dt =

∫ T

0

(z01x(β1(t, x0))∂tβ1(t, x0))
2dt ≤ C

∫ T

0

(z01x(x))
2dx. (A.35)

From (A.29) and using Sobolev inequality, one has∫ T

0

z1tt(t, x0)
2dt =

∫ T

0

(z01xx(β1(t, x0))(∂tβ1(t, x0))
2

+ z01x(β1(t, x0))∂ttβ1(t, x0))
2dt

≤ C

∫ x0

0

(z01xx(x))
2dx+ 2|z01x|20

∫ T

0

(∂ttβ1(t, x0))
2 dt

≤ C|z01 |2H2((0,x0);R)
. (A.36)

Combining (A.34)–(A.36), we get

|z1(·, x0)|H2((0,T );R) ≤ C|z01 |H2((0,x0);R). (A.37)

Applying similar estimate to z2 gives

|z2(·, x0)|H2((0,T );R) ≤ C|z02 |H2((0,x0);R). (A.38)

From (A.37) and (A.38), we can select δ sufficiently small such that

|z(·, x0)|H2((0,T );R2) ≤ ν2, (A.39)
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which shows both the regularity and the boundedness property (A.5). We can again

use the method of characteristics to prove properties (A.2)–(A.4). For a.e. t ∈ (0, T ),

z1x(t, x) =

{
k1z

0
1x(γ1)∂xγ1 + b1ψ̇(α1)∂xα1, 0 < x < ξ1(t; 0, 0),

z01x(β1)∂xβ1, ξ1(t; 0, 0) < x < x0.
(A.40)

z1xx(t, x) =



k1z

0
1x(γ1)∂xxγ1 + k1z

0
1xx(γ1)(∂xγ1)

2

+ b1ψ̈(α1)(∂xα1)
2 + b1ψ̇(α1)∂xxα1, 0 < x < ξ1(t; 0, 0)︸ ︷︷ ︸,

z01x(β1)∂xxβ1 + z01xx(β1)(∂xβ1)
2, ξ1(t; 0, 0) < x < x0.

(A.41)

Note that the last equation is true in distribution sense but shows that z1 ∈
L∞((0, T );H2((0, x0);R)). We first estimate |z|L∞((0,T );H2((0,x0);R2)). From (A.8)

and (A.17), using Sobolev inequality, we get

|ψ|0 ≤ |xs0 − x0|+ C|v(·, x0)|H2((0,T );R2), (A.42)

|ψ̇|0 ≤ C|v(·, x0)|H2((0,T );R2), (A.43)

|ψ̈|0 ≤ C|v(·, x0)|H2((0,T );R2). (A.44)

From (A.33), (A.40) and (A.41), we can compute directly using (A.25), (A.27)–

(A.28) and (A.30)–(A.32) that∫ x0

0

z21dx ≤ (|(∂xβ1(t, ·))−1|0 + 2k21|(∂xγ1(t, ·))−1|0)
∫ x0

0

(z01(x))
2dx+ 2b21x0|ψ|20,

≤ C(|z01 |2H2((0,x0);R)
+ |xs0 − x0|2 + |v(·, x0)|2H2((0,T );R2)), (A.45)∫ x0

0

z21xdx ≤ (|∂xβ1(t, ·)|0 +2k21 |∂xγ1(t, ·)|0)
∫ x0

0

(z01x(x))
2dx

+2x0b
2
1|ψ̇|20|∂xα1(t, ·)|20

≤ C(|z01 |2H2((0,x0);R)
+ |v(·, x0)|2H2((0,T );R2)), (A.46)∫ x0

0

z21xxdx ≤ (2|∂xβ1(t, ·)|30 + 4k21|∂xγ1(t, ·)|30)
∫ x0

0

(z01xx)
2dx

+2|z01x|20
∫ x0

0

|∂xxβ1(t, x)|2dx+ 4k21 |z01x|20
∫ x0

0

|∂xxγ1(t, x)|2dx

+4b21|∂xα1(t, x)|40
∫ x0

0

|ψ̈(α1(t, x))|2dx+ 4b21|ψ̇|20
∫ x0

0

|∂xxα1(t, x)|2dx

≤ C(|z01 |2H2((0,x0);R)
+ |v(·, x0)|2H2((0,T );R2)). (A.47)

Combining (A.45)–(A.47), we obtain

|z1(t, ·)|H2((0,x0);R)

≤ C(|z01 |H2((0,x0);R) + |xs0 − x0|+ |v(·, x0)|H2((0,T );R2)). (A.48)



February 1, 2019 17:1 WSPC/103-M3AS 1950009

Exponential boundary feedback stabilization of a shock steady state 303

Similarly, one can get

|z2(t, ·)|H2((0,x0);R)

≤ C(|z02 |H2((0,x0);R) + |xs0 − x0|+ |v(·, x0)|H2((0,T );R2)). (A.49)

Noticing from v ∈ Cν(z
0, xs0) that

|v(·, x0)|H2((0,T );R2) ≤ ν2,

thus by selecting δ and ν ∈ (0, ν0] sufficiently small, in addition to the previous

hypothesis on δ, we have indeed

|z(t, ·)|H2((0,x0);R2) ≤ ν a.e. t ∈ (0, T ), (A.50)

which proves (A.2). The same method as to prove (A.50) enables us to show that

z1 verifies also (A.3) and (A.4). One only has to realize that

z1t(t, x) =

{
k1z

0
1x(γ1)∂tγ1 + b1ψ̇(α1)∂tα1, 0 < x < ξ1(t; 0, 0),

z01x(β1)∂tβ1, ξ1(t; 0, 0) < x < x0,

z1tt(t, x) =



k1z

0
1x(γ1)∂ttγ + k1z

0
1xx(γ1)(∂tγ1)

2

+ b1ψ̈(α1)(∂tα1)
2 + b1ψ̇(α1)∂ttα1, 0 < x < ξ1(t; 0, 0)︸ ︷︷ ︸,

z01x(β1)∂ttβ1 + z01xx(β1)(∂tβ1)
2, ξ1(t; 0, 0) < x < x0,

z1tx(t, x) =



k1z

0
1x(γ1)∂x(∂tγ1) + k1z

0
1xx(γ1)(∂xγ1∂tγ1)

+ b1ψ̈(α1)(∂tα1∂xα1) + b1ψ̇(α1)∂x(∂tα1), 0 < x < ξ1(t; 0, 0)︸ ︷︷ ︸,
z01x(β1)∂x(∂tβ1) + z01xx(β1)(∂xβ1∂tβ1), ξ1(t; 0, 0) < x < x0,

and to estimate
∫ ξ1(t;0,0)

0
|∂ttα1|2dx,

∫ x0

ξ1(t;0,0)
|∂ttβ1|2dx,

∫ ξ1(t;0,0)

0
|∂ttγ1|2dx,∫ ξ1(t;0,0)

0 |∂x(∂tα1)|2dx,
∫ x0

ξ1(t,0,0)
|∂x(∂tβ1)|2dx and

∫ ξ1(t;0,0)

0 |∂x(∂tγ1)|2dx similarly

as in (A.30)–(A.32) using the fact that v belongs to L∞((0, T );H2((0, x0);R
2)) ∩

W 1,∞((0, T );H1((0, x0);R
2))∩W 2,∞((0, T );L2((0, x0);R

2)) with bound ν in these

norms.

We can clearly perform similar estimates for z2. Consequently there exist δ and

ν1 ∈ (0, ν0] sufficiently small depending only on C such that, for any ν ∈ (0, ν1], z =

F(v) verifies properties (A.2)–(A.7) and therefore F(Cν(z
0, xs0)) ⊂ Cν(z

0, xs0).

(2) F is a contraction mapping.

Next, we prove that F is a contraction mapping satisfying the following inequality:

|F(v)− F(v̄)|L∞((0,T );L2((0,x0);R2)) +M |F(v)(·, x0)−F(v̄)(·, x0)|L2((0,T );R2)

≤ 1

2
|v − v̄|L∞((0,T );L2((0,x0);R2)) +

M

2
|v(·, x0)− v̄(·, x0)|L2((0,T );R2),

(A.51)
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where M > 0 is a constant. We start with z1, and with the estimate of |z1 −
z̄1|L∞((0,T );L2((0,x0);R)). For any chosen v and v̄ from Cν(z

0, xs0), without loss of

generality, we may assume that ξ1(t; 0, 0) < ξ̄1(t; 0, 0), where ξ̄1 is the characteristic

defined in (A.19) associated to v̄. From (A.33), we have∫ x0

0

|z1(t, x) − z̄1(t, x)|2 dx

=

∫ ξ1(t;0,0)

0

|k1z01(γ1)− k1z
0
1(γ̄1) + b1ψ(α1)− b1ψ̄(ᾱ1)|2 dx

+

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|z01(β1)− (k1z
0
1(γ̄1) + b1ψ̄(ᾱ1))|2 dx

+

∫ x0

ξ̄1(t;0,0)

|z01(β1)− z01(β̄1)|2 dx. (A.52)

From the definition of ψ in (A.17) and (A.8), using Sobolev and Cauchy–Schwarz

inequalities, we have∫ ξ1(t;0,0)

0

|b1ψ(α1)− b1ψ̄(ᾱ1)|2 dx

=

∫ ξ1(t;0,0)

0

b21

∣∣∣∣
∫ α1

0

v1(s, x0) + v2(s, x0)

2
ds−

∫ ᾱ1

0

v̄1(s, x0) + v̄2(s, x0)

2
ds

∣∣∣∣2dx
≤ C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2) + C|v̄(·, x0)|2H2((0,T );R2)

×
∫ ξ1(t;0,0)

0

|α1 − ᾱ1|2 dx. (A.53)

By the definition of γ1 in (A.22) and the corresponding definition of γ̄1 and using

(A.24), we obtain∫ ξ1(t;0,0)

0

|k1z01(γ1)− k1z
0
1(γ̄1)|2 dx ≤ C|z01 |2H2((0,x0);R)

∫ ξ1(t;0,0)

0

|α1 − ᾱ1|2 dx.
(A.54)

Combining (A.52)–(A.54), we get∫ x0

0

|z1(t, x)− z̄1(t, x)|2 dx

≤ C(|z01 |2H2((0,x0);R)
+ |v̄(·, x0)|2H2((0,T );R2))

∫ ξ1(t;0,0)

0

|α1 − ᾱ1|2 dx

+ |z01 |2H2((0,x0);R)

∫ x0

ξ̄1(t;0,0)

|β1 − β̄1|2 dx
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+

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|z01(β1)− (k1z
0
1(γ̄1) + b1ψ̄(ᾱ1))|2 dx

+C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2).

(A.55)

We estimate each term in (A.55) separately. By the definition of β1 in (A.20) and

the corresponding definition of β̄1, we have∫ x0

ξ̄1(t;0,0)

|β1 − β̄1|2 dx =

∫ x0

ξ̄1(t;0,0)

|ξ1(0; t, x)− ξ̄1(0; t, x)|2 dx. (A.56)

Now, let us estimate |ξ1(0; t, x)− ξ̄1(0; t, x)|. From the definition of xs in (A.8) and

the definitions of ξ1 and ξ̄1, see (A.19), we get for any s ∈ [0, t] that

|ξ1(s; t, x)− ξ̄1(s; t, x)|

=

∣∣∣∣
∫ t

s

f1(θ, ξ1(θ; t, x)) dθ −
∫ t

s

f̄1(θ, ξ̄1(θ; t, x)) dθ

∣∣∣∣
≤
∫ t

s

(∣∣∣∣
(
1 + v1(θ, ξ1)− ξ1

v1(θ, x0) + v2(θ, x0)

2x0

)

× x0
xs(v(·, x0))(θ)xs(v̄(·, x0))(θ)

∣∣∣∣
·
∫ θ

0

∣∣∣∣v1(α, x0)− v̄1(α, x0) + v2(α, x0)− v̄2(α, x0)

2

∣∣∣∣ dα
)
dθ

+

∫ t

s

∣∣∣∣ x0
xs(v̄(·, x0))(θ)

∣∣∣∣ ·
∣∣∣∣v1(θ, ξ1)− v̄1(θ, ξ̄1) + ξ̄1

v̄1(θ, x0) + v̄2(θ, x0)

2x0

− ξ1
v1(θ, x0) + v2(θ, x0)

2x0

∣∣∣∣ dθ
≤ C|v(·, x0)− v̄(·, x0)|L2((0,T );R2) + Cν

∫ t

s

|ξ1(θ; t, x) − ξ̄1(θ; t, x)| dθ

+C

∫ t

s

|v1(θ, ξ̄1(θ; t, x))− v̄1(θ, ξ̄1(θ; t, x))|dθ. (A.57)

From (A.57), we get for ν ∈ (0, ν0] sufficiently small and for ξ̄1(t; 0, 0) < x ≤ x0
that

|ξ1(·; t, x) − ξ̄1(·; t, x)|C0([0,t];R)

≤ C|v(·, x0)− v̄(·, x0)|L2((0,T );R2) + C

∫ t

0

|v1(θ, ξ̄1(θ; t, x))

− v̄1(θ, ξ̄1(θ; t, x))| dθ. (A.58)
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Thus, from (A.56) and (A.58) we have∫ x0

ξ̄1(t;0,0)

|β1 − β̄1|2 dx

≤ C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2) + C

∫ x0

ξ̄1(t;0,0)

(∫ t

0

|v1(θ, ξ̄1(θ; t, x))

− v̄1(θ, ξ̄1(θ; t, x))| dθ
∫ t

0

)2

dx

≤ C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2)

+C

∫ t

0

∫ x0

ξ̄1(t;0,0)

|v1(θ, ξ̄1(θ; t, x)) − v̄1(θ, ξ̄1(θ; t, x))|2 dx dθ

≤ C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2) + C|v1 − v̄1|2L∞((0,T );L2((0,x0);R))
.

(A.59)

The last inequality is obtained using the change of variable y = ξ̄1(θ; t, x), well-

defined for 0 ≤ θ ≤ t ≤ T and ξ̄1(t; 0, 0) < x ≤ x0. Let us now estimate |α1 −
ᾱ1|L2((0,ξ1(t;0,0));R). Without loss of generality, we may assume that α1 ≤ ᾱ1. By

definition of α1 in (A.21) and the corresponding definition of ᾱ1, we have∫ t

α1

f1(s, ξ1(s; t, x))ds = x =

∫ t

ᾱ1

f̄1(s, ξ̄1(s; t, x))ds. (A.60)

Hence, similarly to (A.57), we get

|α1 − ᾱ1| ≤ 1

inf
(t,x)∈[0,T ]×[0,x0]

|f1(t, x)|
∫ t

ᾱ1

|f1(s, ξ1(s; t, x)) − f̄1(s, ξ̄1(s; t, x))|ds

≤ C|v(·, x0)− v̄(·, x0)|L2((0,T );R2) + Cν

∫ t

ᾱ1

|ξ1(θ; t, x)− ξ̄1(θ; t, x)| dθ

+C

∫ t

ᾱ1

|v1(θ, ξ̄1(θ; t, x)) − v̄1(θ, ξ̄1(θ; t, x))|dθ. (A.61)

Similarly to the proof of (A.58), for ν ∈ (0, ν0] sufficiently small, we can obtain that

(note that ξ1(s; t, x) and ξ̄1(s; t, x) for any s ∈ [ᾱ1, t] are well defined as we assume

that α1 ≤ ᾱ1)

|ξ1(·; t, x)− ξ̄1(·; t, x)|C0([ᾱ1,t];R) ≤ C|v(·, x0)− v̄(·, x0)|L2((0,T );R2)

+C

∫ t

ᾱ

|v1(θ, ξ̄1(θ; t, x)) − v̄1(θ, ξ̄1(θ; t, x))| dθ.
(A.62)
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Using this inequality in (A.61) and performing similarly as in (A.59), we can obtain∫ ξ1(t;0,0)

0

|α1 − ᾱ1|2 dx ≤ C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2)

+C|v1 − v̄1|2L∞((0,T );L2((0,x0);R))
. (A.63)

Let us now focus on the estimation of the term
∫ ξ̄1(t;0,0)

ξ1(t;0,0)
|z01(β1) − (k1z

0
1(γ̄1) +

b1ψ̄(ᾱ1))|2 dx in (A.55). Using the compatibility condition (3.7), we have∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|z01(β1)− (k1z
0
1(γ̄1) + b1ψ̄(ᾱ1))|2 dx

=

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|z01(β1)− z01(0) + z01(0)− (k1z
0
1(γ̄1) + b1ψ̄(ᾱ1))|2 dx

=

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|z01(β1)− z01(0) + k1z
0
1(x0) + b1(x0 − xs0)

− (k1z
0
1(γ̄1) + b1ψ̄(ᾱ1))|2 dx

≤ C|z01 |2H2((0,x0);R)

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|β1|2 dx+ C|z01 |2H2((0,x0);R)

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|x0 − γ̄1|2 dx

+C

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

∣∣∣∣
∫ ᾱ1

0

v̄1(s, x0) + v̄2(s, x0)

2
ds

∣∣∣∣2 dx. (A.64)

We first estimate
∫ ξ̄1(t;0,0)

ξ1(t;0,0)
|β1|2 dx. As ξ1(s; t, x) is increasing with respect to s ∈

[0, t], we have

|β1| < |ξ1(ᾱ1; t, x)| = |ξ1(ᾱ1; t, x)− ξ̄1(ᾱ1; t, x)|
≤ |ξ1(·; t, x)− ξ̄1(·; t, x)|C0([ᾱ1,t];R), (A.65)

then by (A.62) and performing the same proof as in (A.59), we get∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|β1|2 dx ≤ C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2)

+C|v1 − v̄1|2L∞((0,T );L2((0,x0);R))
. (A.66)

Let us now look at the second term in (A.64), from (A.24) and the definition of γ̄1,

we have∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|x0 − γ̄1|2 dx =

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|ξ̄1(0; 0, x0)− ξ̄1(0; ᾱ1, x0)|2 dx

≤ |∂tξ̄1|20
∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|ᾱ1|2 dx ≤ C

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|ᾱ1|2 dx. (A.67)
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It is easy to deal with the last term in (A.64), one has

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

∣∣∣∣
∫ ᾱ1

0

v̄1(s, x0) + v̄2(s, x0)

2
ds

∣∣∣∣2 dx
≤ C|v̄(·, x0)|2H2((0,T );R2)

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|ᾱ1|2 dx. (A.68)

Thus, we only have to estimate
∫ ξ̄1(t;0,0)

ξ1(t;0,0)
|ᾱ1|2 dx. Noticing that for any fixed (t, x),

the characteristic ξ̄1(s; t, x) is increasing with respect to s ∈ [ᾱ1, t] and that

ξ−1
1 (·; t, x)(β1) = 0, we obtain

ᾱ1 < ξ̄−1
1 (·; t, x)(β1)− ξ−1

1 (·; t, x)(β1).

Moreover,

β1 = x+

∫ ξ−1
1 (·;t,x)(β1)

t

f1(s; ξ1(s; t, x)) dθ,

β1 = x+

∫ ξ̄−1
1 (·;t,x)(β1)

t

f̄1(s; ξ̄1(s; t, x)) dθ.

Then similarly as for (A.61), we can prove that

|ξ̄−1
1 (·; t, x)(β1)− ξ−1

1 (·; t, x)(β1)|

≤ C|v(·, x0)− v̄(·, x0)|L2(0,T ) + Cν

∫ t

ξ̄−1
1 (·;t,x)(β1)

|ξ1(θ; t, x)− ξ̄1(θ; t, x)| dθ

+C

∫ t

ξ̄−1
1 (·;t,x)(β1)

|v1(θ, ξ̄1(θ; t, x)) − v̄1(θ, ξ̄1(θ; t, x))|dθ.

Thus, similarly as in the proof for (A.63), we get

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|ᾱ1|2 dx ≤ C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2)

+C|v1 − v̄1|2L∞((0,T );L2((0,x0);R))
. (A.69)

Finally, using estimations (A.66) and (A.67)–(A.69), (A.64) becomes

∫ ξ̄1(t;0,0)

ξ1(t;0,0)

|z01(β1)− (k1z
0
1(γ̄1) + b1ψ(ᾱ1))|2 dx

≤ C(|z01 |2H2((0,x0);R)
+ |v̄(·, x0)|2H2((0,T );R2))(|v(·, x0)− v̄(·, x0)|2L2((0,T );R2)

+ |v1 − v̄1|2L∞((0,T );L2((0,x0);R))
). (A.70)
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Combining (A.55), (A.59), (A.63) and (A.70), we get

|z1 − z̄1|2L∞((0,T );L2((0,x0);R))

≤ C(|z01 |2H2((0,x0);R)
+ |v̄(·, x0)|2H2((0,T );R2))

× (|v(·, x0)− v̄(·, x0)|2L2((0,T );R2) + |v1 − v̄1|2L∞((0,T );L2((0,x0);R))
)

+C|v(·, x0)− v̄(·, x0)|2L2((0,T );R2). (A.71)

We are left with estimating |z(·, x0)− z̄(·, x0)|L2((0,T );R2) in order to obtain (A.51).

Here we give the estimation for z1. Using (A.58), we get∫ T

0

|z1(t, x0)− z̄1(t, x0)|2 dt

=

∫ T

0

|z01(ξ1(0; t, x0))− z01(ξ̄1(0; t, x0))|2

≤ |z01x|20
∫ T

0

|ξ1(0; t, x0)− ξ̄1(0; t, x0)|2 dt

≤ C|z01 |2H2((0,x0);R)
|v(·, x0)− v̄(·, x0)|2L2((0,T );R2)

+C|z01 |2H2((0,x0);R)

∫ T

0

∫ t

0

|v1(θ, ξ̄1(θ; t, x0))− v̄1(θ, ξ̄1(θ; t, x0))|2 dθ dt

≤ C|z01 |2H2((0,x0);R)
|v(·, x0)− v̄(·, x0)|2L2((0,T );R2)

+C|z01 |2H2((0,x0);R)

∫ T

0

∫ T

θ

|v1(θ, ξ̄1(θ; t, x0))− v̄1(θ, ξ̄1(θ; t, x0))|2 dt dθ

≤ C|z01 |2H2((0,x0);R)
(|v(·, x0)− v̄(·, x0)|2L2((0,T );R2)

+ |v1 − v̄1|2L∞((0,T );L2((0,x0);R))
). (A.72)

The last inequality is obtained by changing the variable y = ξ̄1(θ; t, x0). Similar

estimates can be done for z2. Hence, from (A.71) and (A.72), there exists M > 0

such that for δ sufficiently small and ν ∈ (0, ν2], where ν2 ∈ (0, ν1] is sufficiently

small and depends only on C, we have

|z− z̄|L∞((0,T );L2((0,x0);R2)) +M |z(·, x0)− z̄(·, x0)|L2((0,T );R2)

≤ 1

2
|v − v̄|L∞((0,T );L2((0,x0);R2)) +

M

2
|v(·, x0)− v̄(·, x0)|L2((0,T );R2). (A.73)

Hence F is a contraction mapping and has a fixed point z ∈ Cν(z
0, xs0), i.e.

there exists a unique solution z ∈ Cν(z
0, xs0) to the system (3.3)–(3.5). Notic-

ing (A.8), we get that xs ∈ C1([0, T ];R). To get the extra regularity z ∈
C0([0, T ];H2((0, x0);R

2)), we adapt the proof given by Majda (see pp. 44–46 of

Ref. 33). There, the author used energy estimates method for an initial value prob-

lem. Using this method for our boundary value problem, we have to be careful with
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the boundary terms when integrating by parts. Substituting v by z in ψ(t) and

f1(t, x) in the expression of z1x, z1xx in (A.40) and (A.41), noticing (A.2)–(A.4) and

computing similar estimates as in (A.46) and (A.47), we can obtain the “hidden”

regularity zx(·, x0) ∈ L2((0, T );R2) and zxx(·, x0) ∈ L2((0, T );R2) together with

estimates on |zx(·, x0)|L2((0,T );R2) and |zxx(·, x0)|L2((0,T );R2), which are sufficient to

take care of the boundary terms when integrating by parts. This concludes the

proof of the existence and uniqueness of a classical solution xs(t) ∈ C1([0, T ];R)

and z ∈ C0([0, T ];H2((0, x0);R
2)) in Cν(z

0, xs0) to the system (3.3)–(3.5) for T

satisfying (A.1).

The estimate (3.10) for |z(t, ·)|H2((0,x0);R2) part can be obtained from estimates

(A.48)–(A.49) by first replacing v with z and then applying (A.37)–(A.38). Noticing

the definition of xs in (A.8) and applying (A.37)–(A.38) again, the estimate for the

|xs(t)− x0| part follows.
Next, we show the uniqueness of the solution in C0([0, T ];H2((0, x0);R

2)). Sup-

pose that there is another solution z̃ ∈ C0([0, T ];H2((0, x0);R
2)), we prove that

z̃ ∈ Cν(z
0, xs0), for δ sufficiently small. To that end, assume that z(t, ·) = z̃(t, ·)

for any t ∈ [0, τ ] with τ ∈ [0, T ]. If τ �= T , by (3.10), for δ sufficiently small and

as z̃ ∈ C0([0, T ];H2((0, x0);R
2)), one can choose τ ′ ∈ (τ, T ) small enough such

that z̃ ∈ Cν(z(τ), xs(τ)) with T is replaced by τ ′ − τ and by considering τ as the

new initial time. Thus, z(t, ·) = z̃(t, ·) for any t ∈ [0, τ ′]. As |z̃(t, ·)|H2((0,x0);R2) is

uniformly continuous on [0, T ], and as, moreover C and ν do not depend on T , we

can repeat this process and finally get z(t, ·) = z̃(t, ·) on [0, T ].

For general T > 0, one just needs to take T1 satisfying (A.1) and, noticing that

C and ν do not depend on T1, one can apply the above procedure at most [T/T1]+1

times. This concludes the proof of Lemma 3.1.

Proof of Lemma A.1. From (A.19), we have

∂2ξ1(s; t, x)

∂s∂x
= f1x

∂ξ1(s; t, x)

∂x
,

∂ξ1(t; t, x)

∂x
= 1,

(A.74)

and 

∂2ξ1(s; t, x)

∂s∂t
= f1x

∂ξ1(s; t, x)

∂t
,

∂ξ1(s; s, x)

∂s
+
∂ξ1(s; s, x)

∂t
= 0.

(A.75)

Thus,

∂xξ1(s; t, x) = e−
∫

t
s
f1x(θ,ξ1(θ;t,x))dθ, (A.76)

∂tξ1(s; t, x) = −f1(t, x)e−
∫

t
s
f1x(θ,ξ1(θ;t,x))dθ. (A.77)
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From (A.76)–(A.77) and noticing β1 = ξ1(0; t, x), we have

∂β1
∂t

= −f1(t, x)e−
∫ t
0
f1x(θ,ξ1(θ;t,x))dθ,

∂β1
∂x

= e−
∫ t
0
f1x(θ,ξ1(θ;t,x))dθ. (A.78)

From (A.76), noticing ξ1(α1; t, x) = 0 and by chain rules, we have

∂α1

∂x
= − 1

f1(α1, 0)
e
− ∫

t
α1

f1x(s,ξ1(s;t,x)) ds, (A.79)

and as γ1 = ξ1(0;α1, x0), we obtain from (A.77) that

∂γ1
∂x

=
dγ1
dα1

∂α1

∂x

=
f1(α1, x0)

f1(α1, 0)
e
− ∫ α1

0 f1x(s,ξ1(s;α1,x0)) ds−
∫ t
α1

f1x(s,ξ1(s;t,x))ds. (A.80)

Observe that for a.e. s ∈ (0, T ) and x ∈ [0, x0],

|v1(s, x)| ≤
∣∣∣∣
∫ x

θ

v1x(s, l)dl

∣∣∣∣+ |v1(s, θ)|, ∀ θ ∈ [0, x0] (A.81)

and as v1 is H1 in x and its L2-norm is bounded by ν, there exists θ such that

|v1(s, θ)| ≤ ν/
√
x0, therefore

|v1(s, x)| ≤ Cν, (A.82)

and similarly as v1 is H2 in x with the same bound and v1t is in

L∞((0, T );H1((0, x0);R)) with bound ν from (A.3)

x ∈ [0, x0], |v1x(s, x)| ≤ Cν for a.e. s ∈ (0, T ),

x ∈ [0, x0], |v1t(s, x)| ≤ Cν for a.e. s ∈ (0, T ).
(A.83)

From the expression of f1 defined in (A.18) and using (A.76)–(A.80) and (A.82)–

(A.83), after some direct computations, estimates (A.23)–(A.28) can be obtained.

We now demonstrate the estimate (A.29) in detail, while (A.30)–(A.32) can be

treated in a similar way, thus we omit them. From (A.78), we have

∂ttβ1 =

(
−f1t(t, x) + f1(t, x)

(
f1x(t, x) +

∫ t

0

f1xx(θ, ξ1(θ; t, x))∂tξ1(θ; t, x) dθ

))

× e−
∫

t
0
f1x(θ,ξ1(θ;t,x))dθ.

Looking at (A.18), as v is only in L∞((0, T );H2((0, x0);R
2)) ∩ W 1,∞((0, T );

H1((0, x0);R
2)) ∩W 2,∞((0, T );L2((0, x0);R

2)), this equation is expressed a priori

formally in the distribution sense. Thus, we have to be careful when we estimate

(A.29). By (A.18) and using estimates (A.23), (A.24), we get by Cauchy–Schwarz

inequality together with the change of variable y = ξ1(θ; t, x0) that∫ T

0

|∂ttβ1(t, x0)|2 dt ≤ Cν + C

∫ T

0

∣∣∣∣
∫ t

0

f1xx(θ, ξ1(θ; t, x0))∂tξ1(θ; t, x0) dθ

∣∣∣∣
2

dt
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≤ Cν + C

∫ T

0

∫ t

0

v21xx(θ, ξ1(θ; t, x0))∂
2
t ξ1(θ; t, x0) dθdt

= Cν + C

∫ T

0

∫ T

θ

v21xx(θ, ξ1(θ; t, x0))∂
2
t ξ1(θ; t, x0) dtdθ

≤ Cν + C

∫ T

0

∫ x0

0

v21xx(θ, y) dydθ

≤ Cν. (A.84)

Appendix B. Proof of Theorem 5.1

First observe that, after the change of variables (3.1), (3.2), the new equations are

z1t +

(
f ′(1) + (f ′(z1 + 1)− f ′(1))− x

ẋs
x0

)
z1x

x0
xs

= 0,

z2t +

(
−f ′(−1) + (f ′(−1)− f ′(z2 − 1)) + x

ẋs
x0

)
z2x

x0
L− xs

= 0,

ẋs(t) =
f ′(1)z1(t, x0)− f ′(−1)z2(t, x0)

2 + (z1(t, x0)− z2(t, x0))

+

(f(z1(t, x0) + 1)− f ′(1)z1(t, x0)− f(1))

− (f(z2(t, x0)− 1)− f ′(−1)z2(t, x0)− f(−1))

2 + (z1(t, x0)− z2(t, x0))
(B.1)

and the boundary conditions remain given by (3.4). Note that in (B.1) the expres-

sion of ẋs can actually be written as

ẋs(t) =
f ′(1)z1(t, x0)− f ′(−1)z2(t, x0)

2
+O(|z(t, x0)|2). (B.2)

Thus, to prove Theorem 5.1, it suffices to show Theorem 4.1 with (B.1) instead of

(3.3). We still define the Lyapunov function candidate as previously by (4.3)–(4.9).

Then Lemmas 4.1 and 4.2 remain unchanged. To adapt Lemma 4.3, one can check

that, when differentiating V1, V2 and V3 along the C3 solutions of (B.1), (3.4) with

associated initial conditions and noticing that under assumption f(−1) = f(1), one

has f ′(−1) ≤ 0, f ′(1) ≥ 0 from the property of convex function, we obtain as previ-

ously (4.40), (4.42) and (4.46) but with f ′(1)p1 instead of p1 and |f ′(−1)|p2 instead
of p2 in the boundary terms and µVi being replaced by µmin(f ′(1), |f ′(−1)|)Vi.
Then, from (5.3) and dealing with V4, we finally get

dV1
dt

+
dV4
dt

≤ −µ(V1 + V4) + max

{
Θ1

ε1
,
Θ2

ε2

}
V1
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+

[
x0
xs
p1(k

2
1 − e

−µx0
η1 )f ′(1) +

ε1 + ε2
8

f ′(1)2
]
z21(x0)

+

[
x0

L− xs
p2(k

2
2 − e−

µx0
η2 )|f ′(−1)|+ ε1 + ε2

8
|f ′(−1)|2

]
z22(x0)

+f ′(1)
[
−2

x0
xs
p1b1k1 − x0

xs
p̄1(e

−µx0
η1 − k1) + κ

]
z1(x0)(xs − x0)

+|f ′(−1)|
[
−2

x0
L− xs

p2b2k2 − x0
L− xs

p̄2(e
−µx0

η2 − k2) + κ

]
z2(x0)(xs − x0)

+

[
x0
xs
p1b

2
1f

′(1) +
x0

L− xs
p2b

2
2|f ′(−1)| − x0

xs
p̄1b1f

′(1)

− x0
L− xs

p̄2b2|f ′(−1)|+ µκ

]
(xs − x0)

2 +O((|z|H2 + |xs − x0|)3) (B.3)

and a similar expression for V2 + V5 and V3 + V6 as previously. Thus Lemma 4.3

still holds but with A now defined by

a11 = p1
(
e
−µx0

η1 − k21
)
f ′(1)− ε1 + ε2

8
f ′(1)2, (B.4)

a13 = a31 = f ′(1)p1b1k1 + f ′(1)
p̄1
2

(
e−

µx0
η1 − k1

)− f ′(1)
κ

2
, (B.5)

a22 =
x0

L− x0
p2
(
e−

µx0
η2 − k22

)|f ′(−1)| − ε1 + ε2
8

|f ′(−1)|2, (B.6)

a23 = a32 = |f ′(−1)| x0
L− x0

p2b2k2

+ |f ′(−1)| x0
L− x0

p̄2
2

(
e−

µx0
η2 − k2

)− |f ′(−1)|κ
2
, (B.7)

a33 = −p1b21f ′(1)− x0
L− x0

p2b
2
2|f ′(−1)|+ p̄1b1f

′(1)

+
x0

L− x0
p̄2b2|f ′(−1)| − µκ (B.8)

instead of (4.60)–(4.64). We can then choose p1, p2, p̄1, p̄2 as previously by (4.69)–

(4.71) and A becomes again diagonal with the expression of its elements given by

a33 =
κ

2
f ′(1)b1e

µx0
η1 +

κ

2
|f ′(−1)|b2e

µx0
η2 − µκ, (B.9)

a11 =
κf ′(1)
2b1

(
1− k21e

µx0
η1

)− κf ′(1)2

2µ2

[
b1
(
e

µx0
η1 − 1

)
+ b2

(
e

µx0
η2 − 1

)]
, (B.10)

a22 =
κ|f ′(−1)|

2b2

(
1− k22e

µx0
η2

)− κ|f ′(−1)|2
2µ2

[
b1
(
e

µx0
η1 − 1

)
+ b2

(
e

µx0
η2 − 1

)]
,

(B.11)
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instead of (4.74), (4.77) and (4.78), respectively. Then to prove Theorem 4.1 with

(B.1) instead of (3.3), we only need to show now that under assumption (5.4) there

exist µ > γ and κ > 1 such that aii > 0, i = 1, 2, 3 and such that (4.16) holds where

Θi, i = 1, 2 are still defined by (4.17). But this can be checked exactly as in the

proof of Theorem 4.1. With condition (5.3), one can now check as in Remark 2.4

that there always exist parameters bi and ki such that conditions (5.4) are satisfied.
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