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a b s t r a c t

In an open channel, a hydraulic jump is an abrupt transition between a torrential (supercritical) flow and a
fluvial (subcritical) flow. In this article hydraulic jumps are represented by discontinuous shock solutions
of hyperbolic Saint-Venant equations. Using a Lyapunov approach,we prove thatwe can stabilize the state
of the system in H2-norm as well as the hydraulic jump location, with simple feedback boundary controls
and an arbitrary decay rate, by appropriately choosing the gains of the feedback boundary controls.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction and main result

Nonlinear hyperbolic equations are well-known to give rise
to discontinuities in finite time that are physically meaningful.
Hydraulic jump is one of the most known example. A hydraulic
jump is a phenomenon that frequently occurs in open channel
flow, such as rivers and spillways. It describes a transition between
a torrential (or supercritical) regime and a fluvial (or subcritical)
regime, i.e., an abrupt transition between a fast flow and a slow
flow with a higher height. As a consequence, a part of the ini-
tial kinetic energy of the flow is converted into an increase in
potential energy, while some energy is irreversibly lost through
turbulence and heat. This phenomenon can be seen not only in
rivers and spillways but also in air flows of the atmosphere. This
is for instance believed to explain the phenomenon of ‘‘Morning
Glory cloud’’ (Clarke, 1972) and may be at the origin of some
gliders’ crashes (Kuettner & Hertenstein, 2002). Hydraulic jumps
are important not only because they occur naturally but also be-
cause they are sometimes engineered on purpose and are very
useful in hydraulic applications to dissipate energy in water and
prevent in this way the erosion of the streambed or damages
on hydraulic installations (Hager, 1992). However, when studying
the flow equations, the stabilization of hydraulic jumps is seldom
considered and almost all the studies focus on the stabilization of
the dynamics of the fluvial regime (Bastin & Coron, 2011, 2016,
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2017; Bastin, Coron, & d’Andréa Novel, 2009; Coron, d’Andréa
Novel, & Bastin, 1999; Gugat, Leugering, Schittkowski, & Schmidt,
2001; de Halleux, Prieur, Coron, d’Andréa Novel, & Bastin, 2003;
Leugering & Schmidt, 2002). In this paper, we explicitly address
the issue of the stabilization of a hydraulic jump represented by
a discontinuous shock solution of the flow equations, switching
from the torrential regime to the fluvial regime. In otherwords, the
two eigenvalues of the hyperbolic system modeling the shallow
water are both positive in the torrential regime and one of them
changes sign and switches to a negative value in the fluvial regime.
Our goal is to achieve the stability of the channel with a general
class of local feedback controls at the boundary. Fundamentally,
the stabilization of shock steady states for hyperbolic systems,
while being very interesting, has rarely been studied. One can refer
to Bastin, Coron, Hayat, and Shang (2017) and Perrollaz (2018) for
the scalar case and to our knowledge, no such result exists for
systems. By a Lyapunov approach we prove the exponential H2-
stability of the steady state, with an arbitrary decay rate and with
an exact exponential stabilization of the desired location of the
hydraulic jump.

We consider a channel with a rectangular cross section with
constant width, which is taken to be 1 without loss of generality.
We denote by Q (t, x) the flux and H(t, x) the water depth, where t
and x are, respectively, the time and space independent variables as
usual. As the channel has a finite length L > 0, the spatial domain is
bounded and noted [0, L]. The Saint-Venant model which, neglect-
ing friction, consists in a continuity equation and an equilibrium of
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forces, is written as

∂tH + ∂xQ = 0,

∂tQ + ∂x

(
gH2

2
+

Q 2

H

)
= 0.

(1)

We are interested with solution trajectories (H(t, x),Q (t, x))T that
may have a jump discontinuity at some point xs(t) ∈ (0, L) and
are classical otherwise. Thus, in order to close the system, we need
a relationship between Q and H before and after this jump. From
the Rankine–Hugoniot condition applied to (1), two quantities are
conserved through the jump in the jump’s referential: the flux
Q and the momentum gH2/2 + Q 2/H . This gives the following
relationships at the jump xs(t):

[Q ]
+

−
= ẋs[H]

+

−
,

[Q ]
+

−
ẋs =

[
Q 2

H
+

1
2
gH2

]+

−

,
(2)

where, as usual, ẋs denotes the time derivative of xs, i.e., the speed
of the jump. These relationships can be reformulated as:

ẋs =
[Q ]

+

−

[H]
+

−

, (3)

and ([Q ]
+

−
)2 = [H]

+

−

[
Q 2

H
+

1
2
gH2

]+

−

, (4)

where we define for any bounded function f in a neighborhood of
xs: [f ]+− = f (x+

s (t)) − f (x−
s (t)). This relation (4) can be regarded

as the generalization for non-stationary states of the well-known
Bélanger equation (8) below.

Our goal is to stabilize the steady states of the system (1), (3) and
(4) where a (single) hydraulic jump occurs, meaning that the flow
switches from the torrential regime to the fluvial regimewith a dis-
continuity in height. Therefore, such steady states ((H∗,Q ∗)T, x∗

s )
satisfy the following conditions:

1. Q ∗ is constant and positive, x∗
s ∈ (0, L) and

H∗
=

{
H∗

1 , x ∈ [0, x∗
s ),

H∗

2 , x ∈ (x∗
s , L],

(5)

where H∗

1 , H
∗

2 are positive constants.
2. The steady state flow is in the torrential regime before the

jump and in the fluvial regime after the jump. This means
that in the torrential regime the two system eigenvalues are
positive,

λ1 =
Q ∗

H∗

1
−
√
gH∗

1 > 0, λ2 =
Q ∗

H∗

1
+
√
gH∗

1 > 0,

for x ∈ [0, x∗

s ), (6)

while there is one positive and one negative eigenvalue in
the fluvial regime (Bastin & Coron, 2016),

− λ3 =
Q ∗

H∗

2
−
√
gH∗

2 < 0, λ4 =
Q ∗

H∗

2
+
√
gH∗

2 > 0,

for x ∈ (x∗

s , L]. (7)

In particular this implies that H∗

1 < H∗

2 .
3. Furthermore, the Rankine–Hugoniot conditions applied to

(1) in the stationary case are equivalent to the following
well-known Bélanger equation (Chanson, 2009)

H∗

2

H∗

1
=

−1 +

√
1 + 8 (Q ∗)2

g(H∗
1 )

3

2
. (8)

Physical remarks.

• The switch from the torrential regime to the fluvial regime
corresponds to a transition (shock) between a statewhere the
system (1) has two positive eigenvalues and a statewhere the
system has one positive and one negative eigenvalue. As we
will see later (from Theorem 1.1 together with (6) and (7)),
this transition (shock) induces a discontinuity not only for
the eigenvalue that changes sign but also for the eigenvalue
that keeps the same sign. More precisely, if we denote by
λs the eigenvalue that changes sign, then λs(x−

s (t)) > 0 >

λs(x+
s (t)) for all t > 0. And if we denote by λc the eigenvalue

that does not change sign, then λc(x−
s (t)) ̸= λc(x+

s (t)) for all
t > 0. We point out that smooth transitions could happen
around critical equilibria or when source terms are consid-
ered (see Coron, Glass, & Wang, 2009/10; Gugat & Ulbrich,
2017). Such smooth transitions are also related to coupling
conditions for networks for the transition from supersonic to
subsonic fluid states, such as natural gas pipeline transporta-
tion systems that have been analyzed in Gugat, Herty, and
Müller (2017).

• Note thatwhen the solutions are classical, the formulation (1)
of the Saint-Venant equations with the level H and the flux Q
as state variables is equivalent to the alternative formulation
with the level H and the velocity Q/H that is obtained by
replacing the equilibrium of forces by an energy equation and
is used for instance in Bastin and Coron (2016, 2017) and
Hayat and Shang (2017). When the solutions are not classical
however, the two formulations are not equivalent anymore
and this can be seen by looking at the stationary states: the
formulation (1) in level and flux is compatible with shock
and discontinuity of H∗(x) while the version with the energy
equation is not. This is logical as there is a pointwise loss of
energy in the hydraulic jump, which implies that the energy
conservation does not hold anymore.

• From (3), the location of the shock xs may be moving around
its initial location and potentially all along the channel. This
can be seen in practical phenomena such as tidal bores. The
main challenge of this work is to also stabilize this location
when stabilizing the state of the system. This is not obvious
as one can see that for given heights and flux (H∗

1 ,H
∗

2 ,Q
∗)

satisfying (6)–(8), any shock location x∗
s ∈ [0, L] induces

an admissible steady state ((H∗,Q ∗)T, x∗
s ), where H∗ is given

by (5). Thus the steady states are not isolated and therefore
not asymptotically stable in open loop. Indeed, any small
perturbation on x∗

s corresponds to another steady state with
the same heights and flux at the two ends.

As illustrated in Fig. 1, let us consider a channel which is
equipped with devices allowing a feedback control on H(t, 0) =

H0(t), Q (t, L) = QL(t) and Q (t, 0) ≈ Q0(t) (quasi-steady state
approximation). Let the set point for the control be a steady state
((H∗,Q ∗)T, x∗

s ) defined as previously by (5)–(8). We assume that
static boundary feedback control laws are selected so that the
boundary conditions can be written in the following general form:(H(t, 0) − H∗

1
Q (t, 0) − Q ∗

Q (t, L) − Q ∗

)
= G

⎛⎜⎝Q (t, x−
s ) − Q ∗

Q (t, x+
s ) − Q ∗

H(t, x−
s ) − H∗

1
xs − x∗

s

⎞⎟⎠
−

( 0
0

G4(H(t, L) − H∗

2 )

)
(9)

where G = (G1,G2,G3)T : R4
→ R3 and G4 : R → R are of class

C2 and satisfy

G(0) = 0, G4(0) = 0, G′

4(0) = −λ4. (10)
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Fig. 1. Open channel with a hydraulic jump and three control devices: the gate opening H0(t) and the inflow Q0(t) and outflow QL(t) which are driven by two pumps.

Obviously, by (5), the steady state ((H∗,Q ∗)T, x∗
s ) satisfies the

boundary conditions (9), as H∗(0) = H∗

1 and H∗(L) = H∗

2 . Note
that this boundary feedback is quite simple to implement as it only
requires a pointwisemeasure ofH(t, L), xs(t),H(t, x−

s ),Q (t, x+
s ) and

Q (t, x−
s ).

In order to state the main stability result of this article, we first
introduce the following notations:

D(x, γ ) = diag

(
si(1 − si

λi
λ4
)

bi
e

γ
xiλi

(x∗s −x)
, i ∈ {1, 2, 3}

)
,

D̃(γ ) = diag

⎛⎜⎝
⎛⎜⎝ 3∑

j=1

e
γ x∗s
xiλi

−
γ x∗

s

xjλj

⎞⎟⎠(1 − si
λi

λ4

)2

,

i ∈ {1, 2, 3}

⎞⎟⎠ ,

K =

⎛⎜⎜⎜⎜⎜⎜⎝
λ2λ1

λ2 − λ1
−

λ1

λ2 − λ1
0

λ2λ1

λ1 − λ2
−

λ2

λ1 − λ2
0

0 0
λ3

λ3 + λ4

⎞⎟⎟⎟⎟⎟⎟⎠

× G′(0)

⎛⎜⎜⎜⎜⎜⎝
1 1 0
λ1

λ4

λ2

λ4
1 +

λ3

λ4
1
λ1

1
λ2

0

0 0 0

⎞⎟⎟⎟⎟⎟⎠ ,

d =
1

H∗

1 − H∗

2
,

(b1
b2
b3

)
=

⎛⎜⎜⎜⎜⎜⎜⎝
λ2λ1

λ2 − λ1
−

λ1

λ2 − λ1
0

λ2λ1

λ1 − λ2
−

λ2

λ1 − λ2
0

0 0
λ3

λ3 + λ4

⎞⎟⎟⎟⎟⎟⎟⎠G′(0)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0

0

0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

(11)

with s1 = s2 = 1, s3 = −1, x1 = x2 = 1, x3 = x∗
s /(L − x∗

s ) and
x4 = x∗

s /(x
∗
s − L).

We consider the following initial condition

H(0, x) = H0(x), Q (0, x) = Q0(x), xs(0) = xs,0 (12)

where xs,0 ∈ (0, L) and (H0(x),Q0(x))T ∈ H2((0, xs,0);R2) ∩

H2((xs,0, L);R2). We assume that the initial condition satisfies the
first order compatibility conditions derived from (9), (see Bastin &
Coron, 2016 for a proper definition of the first order compatibility
condition which is omitted here for the sake of simplicity).

Now, we give the following definition:

Definition 1.1. The steady state ((H∗,Q ∗)T, x∗
s ) is locally expo-

nentially stable for the H2-norm with decay rate γ , if there exist
δ∗ > 0 and C∗ > 0 such that for any initial data (H0(x),Q0(x))T ∈

H2((0, xs,0);R2) ∩ H2((xs,0, L);R2) and xs,0 ∈ (0, L) satisfying

|(H0 − H∗

1 ,Q0 − Q ∗)T|H2((0,xs,0);R2)

+ |(H0 − H∗

2 ,Q0 − Q ∗)T|H2((xs,0,L);R2) ≤ δ∗, (13)

|xs,0 − x∗

s | ≤ δ∗, (14)

and the corresponding first order compatibility conditions derived
from (9), and for any T > 0, the system (1), (3), (4), (9) and
(12) has a unique solution (H,Q )T ∈ C0([0, T ];H2((0, xs(t));R2) ∩

H2((xs(t), L);R2)) and xs ∈ C1([0, T ]) and

|(H(t, ·) − H∗

1 ,Q (t, ·) − Q ∗)T|H2((0,xs(t));R2)

+ |(H(t, ·) − H∗

2 ,Q (t, ·) − Q ∗)T|H2((xs(t),L);R2)

+ |xs(t) − x∗

s |

≤ C∗e−γ t
(
|(H0 − H∗

1 ,Q0 − Q ∗)T|H2((0,xs,0);R2)

+ |(H0 − H∗

2 ,Q0 − Q ∗)T|H2((xs,0,L);R2)

+ |xs,0 − x∗

s |

)
, ∀t ∈ [0, T ).

(15)

Remark 1. A function f in C0([0, T ];H2((0, xs(t));R2) ∩ H2((xs
(t), L);R2)) is a function f in C0([0, T ]; L2((0, L);R2)) such that, if
one defines

f1(t, x) := f (t, xs(t)x), t ∈ (0, T ), x ∈ (0, 1), (16)

f2(t, x) := f (t, L + (xs(t) − L)x), t ∈ (0, T ), x ∈ (0, 1), (17)

then f1 and f2 are both in C0([0, T ];H2((0, 1);R2)). The transfor-
mation f → (f1, f2) enables us to reduce the problem to a time-
invariant domain and to define the stability of a function f ∈

C0([0, T ];H2((0, xs(t));R2) ∩ H2((xs(t), L);R2)), a function that is
piecewise H2 with a discontinuity that is potentially moving. This
transformation will also be used later on in the analysis of the
problem (see (23) below).

Based on Definition 1.1, we have the following theorem.
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Theorem 1.1. For any given steady state ((H∗,Q ∗)T, x∗
s ) of the

system (1) satisfying (5)–(8) and the boundary conditions (9), for any
γ > 0,

if for i = 1, 2, 3

bi ∈

⎛⎝ −γ e−
γ

xiλi
x∗s

3dsi
(
1 − si

λi
λ4

)
(1 − e−

γ
xiλi

x∗s )
,

−γ e−
γ

xiλi
x∗s

3dsi
(
1 − si

λi
λ4

)
⎞⎠ ,

if si

(
1 − si

λi

λ4

)
< 0,

bi ∈

⎛⎝ −γ e−
γ

xiλi
x∗s

3dsi
(
1 − si

λi
λ4

) ,
−γ xie

−
γ

xiλi
x∗s

3dsi
(
1 − si

λi
λ4

)
(1 − e−

γ
xiλi

x∗s )

⎞⎠ ,

if si

(
1 − si

λi

λ4

)
> 0,

(18)

and if the matrix

D(x∗

s , γ )−K TD(0, γ )K−

(
3∑

k=1

2d2

γ 2 bksk(1 − sk
λk

λ4
)(e

γ x∗s
xkλk − 1)

)
D̃(γ )

(19)

is positive definite, with (b1, b2, b3)T, D, D̃ and K defined in (11), then
the steady state ((H∗,Q ∗)T, x∗

s ) is locally exponentially stable for the
H2-norm with decay rate γ /4.

Remark 2. Note that it is not obvious that there always exists G
such that K and (b1, b2, b3)T defined in (11) satisfy (18)–(19). We
will prove in details that such G indeed exists in Appendix.

2. Well-posedness of the system

In this section,weprove thewell-posedness of the Saint-Venant
equations (1) with the hydraulic jump conditions (3) and (4), the
boundary feedback control conditions (9) and initial condition (12).
We have the following well-posedness theorem.

Theorem 2.1. For any T > 0, there exists δ(T ) > 0 such that, for
any given initial condition (12) satisfying the first order compatibility
conditions and

|(H0 − H∗

1 ,Q0 − Q ∗)T|H2((0,xs,0);R2)

+ |(H0 − H∗

2 ,Q0 − Q ∗)T|H2((xs,0,L);R2) ≤ δ(T ), (20)

|xs,0 − x∗

s | ≤ δ(T ), (21)

the system (1), (3), (4), (9) and (12) has a unique solution (H,Q )T ∈

C0([0, T ];H2((0, xs,0);R2) ∩ H2((xs,0, L);R2)) and xs ∈ C1([0, T ]).
Moreover, the following estimate holds for any t ∈ [0, T ]

|(H(t, ·) − H∗

1 ,Q (t, ·) − Q ∗)T|H2((0,xs(t));R2)

+ |(H(t, ·) − H∗

2 ,Q (t, ·) − Q ∗)T|H2((xs(t),L);R2)

+ |xs(t) − x∗

s |

≤ C(T )
(
|(H0 − H∗

1 ,Q0 − Q ∗)T|H2((0,xs,0);R2)

+ |(H0 − H∗

2 ,Q0 − Q ∗)T|H2((xs,0,L);R2) + |xs,0 − x∗

s |

)
.

(22)

Proof. One can see that the shock location xs depends on t in
general. In order to avoid the time-varying domains [0, xs(t)] and
[xs(t), L], under the assumption that xs ∈ C0([0, T ]), we perform,
as in Diagne, Shang, and Wang (2016) and Li and Yu (1985), a

transformation of the space coordinate x which allows to define
new state variables on the fixed domain [0, x∗

s ] as follows:

H1(t, x) = H(t, x
xs
x∗
s
),

Q1(t, x) = Q (t, x
xs
x∗
s
),

H2(t, x) = H(t, L + x
xs − L
x∗
s

),

Q2(t, x) = Q (t, L + x
xs − L
x∗
s

).

(23)

Let us denote by hi and qi the deviations

hi = Hi − H∗

i , qi = Qi − Q ∗, i = 1, 2. (24)

Then, the system (1), (3) and (4) is equivalent to the following
4 × 4 system, which is diagonalizable by blocks and defined on
R+

× [0, x∗
s ]:

∂th1 −

(
x
ẋs
x∗
s

)
x∗
s

xs
∂xh1 +

x∗
s

xs
∂xq1 = 0,

∂tq1 +

(
2(q1 + Q ∗)
h1 + H∗

1
− x

ẋs
x∗
s

)
x∗
s

xs
∂xq1

+

(
g(h1 + H∗

1 ) −
(q1 + Q ∗)2

(h1 + H∗

1 )2

)
x∗
s

xs
∂xh1 = 0,

∂th2 +

(
x
ẋs
x∗
s

)
x∗
s

L − xs
∂xh2 −

x∗
s

L − xs
∂xq2 = 0,

∂tq2 −

(
2(q2 + Q ∗)
h2 + H∗

2
− x

ẋs
x∗
s

)
x∗
s

L − xs
∂xq2

−

(
g(h2 + H∗

2 ) −
(q2 + Q ∗)2

(h2 + H∗

2 )2

)
x∗
s

L − xs
∂xh2 = 0,

(25)

where

ẋs =
q2(t, x∗

s ) − q1(t, x∗
s )

h2(t, x∗
s ) − h1(t, x∗

s ) + H∗

2 − H∗

1
(26)

and with, from the jump condition (4), the following boundary
condition at x = x∗

s :

(q2 − q1)2 = (h2 − h1 + H∗

2 − H∗

1 )
(
(q2 + Q ∗)2

h2 + H∗

2
+

g
2
(h2 + H∗

2 )
2

−
(q1 + Q ∗)2

h1 + H∗

1
−

g
2
(h1 + H∗

1 )
2
)

. (27)

Now, we introduce the following Riemann coordinates

u =

⎛⎜⎝u1
u2
u3
u4

⎞⎟⎠ =

(
S1 0
0 S2

)⎛⎜⎝h1
q1
h2
q2

⎞⎟⎠ (28)

with

S1 =

( 1
λ1

1
λ2

1 1

)−1

, S2 =

(
−

1
λ3

1
λ4

1 1

)−1

(29)

and λi defined in (6), (7). Then the system (25) can be rewritten as

ut + (Λ(xs) + A(u, xs) + xẋsB(xs))ux = 0, (30)
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where

Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x∗
s

xs
λ1 0 0 0

0
x∗
s

xs
λ2 0 0

0 0
x∗
s

L − xs
λ3 0

0 0 0 −
x∗
s

L − xs
λ4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(31)

andwhere A, B are twomatrices of class C2 that can be obtained by
direct computations (omitted here for simplicity) and such that A
satisfies A(0, xs) = 0. Using the change of coordinates (28), Eq. (26)
becomes:

ẋs =
u1(t, x∗

s ) + u2(t, x∗
s ) − u3(t, x∗

s ) − u4(t, x∗
s )∑3

i=1
ui(t, x∗

s )
λi

−
u4(t, x∗

s )
λ4

+ (H∗

1 − H∗

2 )
(32)

and the boundary condition (27) becomes:

2Q ∗

H∗

2
(u3 + u4) −

2Q ∗

H∗

1
(u1 + u2) + (gH∗

2 −
Q ∗2

H∗2
2

)(
u4

λ4
−

u3

λ3
)

− (gH∗

1 −
Q ∗2

H∗2
1

)(
u1

λ1
+

u2

λ2
) = O

(
|u(t, x∗

s )|
2
)

. (33)

Here and hereafter, O(s) (with s ≥ 0) means that for any ε > 0,
there exists C1 > 0 such that

(s ≤ ε) H⇒ (|O(s)| ≤ C1s).

With the expression of the eigenvalues given by (6) and (7), (33)
becomes

λ4u4(t, x∗

s ) = λ1u1(t, x∗

s ) + λ2u2(t, x∗

s ) + λ3u3(t, x∗

s )

+ O
(
|u(t, x∗

s )|
2
)

. (34)

Using (23), (24), (28) and (34), the boundary conditions (9) now
become(u1(t, 0)
u2(t, 0)
u3(t, 0)

)
= B

((u1(t, x∗
s )

u2(t, x∗
s )

u3(t, x∗
s )

)
, u4(t, 0), xs − x∗

s

)
, (35)

where B = (B1, B2, B3)T : R3
× R × R → R3 is of class C2 and

where B1 and B2 are defined by

B1 =
(
λ2G1(u(t, x∗

s ), xs) − G2(u(t, x∗

s ), xs)
) λ1

λ2 − λ1
, (36)

B2 =
(
λ1G1(u(t, x∗

s ), xs) − G2(u(t, x∗

s ), xs)
) λ2

λ1 − λ2
. (37)

To define B3, from the boundary conditions (9) and the change of
variables (24), (28), we have

u3(t, 0) =
−λ4λ3

λ3 + λ4

(
u4(t, 0)

λ4
−

u3(t, 0)
λ3

)
+

λ3

λ3 + λ4
G3(u(t, x∗

s ), xs)

−
λ3

λ3 + λ4
G4

(
u4(t, 0)

λ4
−

u3(t, 0)
λ3

)
. (38)

From condition (10), applying the implicit function theorem, one
obtains

B3 = F(u4(t, 0),G3(u(t, x∗

s ), xs)) (39)

in a neighborhood of u = 0 with

F(0, 0) = 0, ∂1F(0, 0) = 0, ∂2F(0, 0) =
λ3

λ3 + λ4
, (40)

where ∂iF, i = 1, 2, denote the partial derivative ofF with respect
to its ith variable.

Remark 3. For simplicity, in (36)–(39), we have used the following
slight abuse of notation adapted from (9):

Gi(u(t, x∗

s ), xs) = Gi

⎛⎜⎜⎜⎝
u1(t, x∗

s ) + u2(t, x∗
s )

u3(t, x∗
s ) + u4(t, x∗

s )
u1(t, x∗

s )
λ1

+
u2(t, x∗

s )
λ2

xs − x∗
s

⎞⎟⎟⎟⎠ , i = 1, 2, 3. (41)

From (23), (24), (28) and (34), one can see that, as expressed in (35),
B only depends on ui(t, x∗

s ), i = 1, 2, 3, u4(t, 0) and xs − x∗
s because

from (34) u4(t, x∗
s ) can be considered as a function of ui(t, x∗

s ), i =

1, 2, 3.

The initial condition (12) becomes

u(0, x) = u0(x) = (u10(x), u20(x), u30(x), u40(x))T,

xs(0) = xs,0
(42)

that satisfies the first order compatibility conditions corresponding
to (35). Thus, to study the well-posedness of (1), (3), (4), (9) and
(12) is equivalent to study the well-posedness of (30), (32), (34),
(35) and (42). We have the following lemma from which one can
easily obtain Theorem 2.1.

Lemma 2.1. For any T > 0, there exists δ(T ) > 0 such that, for
any xs,0 ∈ (0, L) and u0 ∈ H2((0, x∗

s );R
4) satisfying the first order

compatibility conditions and

|u0|H2((0,x∗s );R4) ≤ δ(T ) and |xs,0 − x∗

s | ≤ δ(T ), (43)

the system (30), (32), (34), (35) and (42) has a unique solution u ∈

C0([0, T ];

H2((0, x∗
s );R

4)) and xs ∈ C1([0, T ]). Moreover, the following estimate
holds for any t ∈ [0, T ]

|u(t, ·)|H2((0,x∗s );R4) + |xs(t) − x∗

s | ≤ C(T )(|u0|H2((0,x∗s );R4)

+ |xs,0 − x∗

s |). (44)

Remark 4. For the proof of Lemma 2.1, we refer to Bastin et al.
(2017, Appendix), where the well-posedness of a 2 × 2 nonlinear
hyperbolic system coupled with an ODEwas studied. But the proof
there can be easily adapted to the 4 × 4 nonlinear hyperbolic
system coupled with an ODE. Noticing that A(0, xs) = 0 and that,
from (32), ẋs = 0 when u = 0, one has

Λ(xs) + A(u, xs) + xẋsB(xs) = Λ(xs)

when u = 0. Thus, (30) is indeed strictly hyperbolic provided that
|u|C0([0,T ];H2((0,x∗s );R4)) is small enough and can be diagonalized in a
neighborhood of u = 0. Then we can perform similar fixed point
argument as in Bastin et al. (2017, Appendix) by carefully esti-
mating the related norms of the solution along the characteristic
curves. The C1 regularity of xs is then obtained directly from (32).
We omit the details.

This completes the proof of Theorem 2.1. □

3. Exponential stability of the steady state for the H2-norm

In this section we prove Theorem 1.1.

Proof of Theorem 1.1. It is worth noticing that due to the equiva-
lence of the system (1), (3), (4), (9) and the system (30), (32), (34)
and (35), one only needs to prove the exponential stability of the
null-steady state of the system (30), (32), (34) and (35) for the H2-
norm.

Motivated by Coron, Bastin, and d’Andréa Novel (2008), see
also Bastin and Coron (2016, Section 4.4), and by Bastin et al.
(2017), we introduce the following Lyapunov function:
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V (u, xs) = V1(u)+V2(u)+V3(u)+V4(u, xs)+V5(u, xs)+V6(u, xs),
(45)

where:

V1(u) =

∫ x∗s

0

4∑
i=1

pie
−

µ
xiλi

xu2
i dx, (46)

V2(u) =

∫ x∗s

0

4∑
i=1

pie
−

µ
xiλi

xu2
itdx, (47)

V3(u) =

∫ x∗s

0

4∑
i=1

pie
−

µ
xiλi

xu2
ittdx, (48)

V4(u, xs) =

∫ x∗s

0

3∑
i=1

p′

i

λi
e−

µ
xiλi

xui(t, x)(xs − x∗

s )dx + C0(xs − x∗

s )
2,

(49)

V5(u, xs) =

∫ x∗s

0

3∑
i=1

p′

i

λi
e−

µ
xiλi

xuit (t, x)ẋsdx + C0(ẋs)2, (50)

V6(u, xs) =

∫ x∗s

0

3∑
i=1

p′

i

λi
e−

µ
xiλi

xuitt (t, x)ẍsdx + C0(ẍs)2, (51)

where pi and C0 are positive constants that shall be determined
later on, while p′

i are constants, not necessarily positive, whichwill
also be determined later on. Besides we impose C0 > 3/2 and we
recall that x1 = x2 = 1, x3 = x∗

s /(L − x∗
s ) and x4 = x∗

s /(x
∗
s − L).

In the following we may denote for simplicity Vi := Vi(u, xs) and
|u|H2 := |u(t, ·)|H2((0,x∗s );R4) in the computations. Similarly to what
is done in Bastin et al. (2017), from the Cauchy–Schwarz inequality
and as C0 > 3/2, it can be shown that the Lyapunov function V
considered here is equivalent to (|u|H2 + |xs − x∗

s |)
2 provided that

|u|H2 + |xs − x∗
s | is small enough and that

max
i

(
p′2
i xi

µλipi
(1 − e−

µ
xiλi

x∗s )
)

< 2. (52)

This means that, under condition (52), there exists ρ̄ > 0 and C̄
such that, for every T > 0 and u ∈ C0([0, T ];H2((0, x∗

s );R
4)) and

for every xs ∈ C1([0, T ]) solution of the system (30), (32), (34) and
(35), if |u|H2 + |xs − x∗

s | ≤ ρ̄

1
C̄
(|u|H2 + |xs − x∗

s |)
2

≤ V (u, xs) ≤ C̄(|u|H2 + |xs − x∗

s |)
2. (53)

This can be proved by direct estimations (see Bastin et al., 2017 for
more details).

From the boundary condition (35), as B is of class C2, we have

v(t, 0) = ∂1B(0, 0, 0)v(t, x∗

s ) + ∂2B(0, 0, 0)u4(t, 0)

+ ∂3B(0, 0, 0)(xs − x∗

s ) + O((|u|H2 + |xs − x∗

s |)
2), (54)

where v = (u1, u2, u3)T is the vector of the components of u on
which the feedback (35) applies. This notation is practical as it
isolates u1, u2 and u3 from u4 on which we have no control and
whose boundary condition is imposed by the condition (34). In
(54), the notation ∂1B is the 3 × 3 Jacobian matrix of the vector-
valued function B with respect to its first variable which is a 3-D
vector (see the expression of B in (35)). From (36)–(40), one can
check that ∂2B(0, 0, 0) ≡ 0. Moreover, from (36)–(39), noticing
(40), it can be verified that thematrix K and the vector (b1, b2, b3)T
defined in (11) satisfy

K = (kij)(i,j)∈{1,2,3}2 = ∂1B(0, 0, 0), ∂3B(0, 0, 0) = (b1, b2, b3)T.

(55)

Let T̄ > 0 be given and let xs,0 ∈ (0, L) and u0 ∈ H2((0, x∗
s );R

4)
satisfying the first order compatibility conditions and (43). Let u ∈

C0([0, T̄ ];H2((0, x∗
s );R

4)) and xs ∈ C1([0, T̄ ]) be the solution of
the system (30), (32), (34), (35) and (42). Let us start with the case
where u is of class C3. Taking the time derivative of V1 along this
solution and integrating by parts, we obtain

dV1

dt
= −µV1 −

[
4∑

i=1

pixiλie
−

µ
xiλi

xu2
i

]x∗s

0

+ O
(
(|u|H2 + |xs − x∗

s |)
3) .

(56)

By differentiating (30), similarly as (56), we can obtain

dV2

dt
= −µV2 −

[
4∑

i=1

pixiλie
−

µ
xiλi

xu2
it

]x∗s

0

+ O
(
(|u|H2 + |xs − x∗

s |)
3) .

(57)

Now, let us deal with the V3 term. To that end, we derive from (30)
that

uttt + Λ(xs)uttx + 2ẋsΛ′(xs)utx + (Λ′′(xs)(ẋs)2 + Λ′(xs)ẍs)ux

+ (A(u, xs)ux)tt + x
...
x sB(xs)ux + 2xẍs(B(xs)ux)t

+ xẋs(B(xs)ux)tt = 0.

(58)

Thus,

dV3

dt
= − µV3 −

[
4∑

i=1

pixiλie
−

µ
xiλi

xu2
itt

]x∗s

0

−

∫ x∗s

0

4∑
i=1

2pie
−

µ
xiλi

xx
...
x suitt

⎛⎝ 4∑
j=1

Bijujx

⎞⎠ dx

+ O
(
(|u|H2 + |xs − x∗

s |)
3) .

(59)

We observe that now
...
x s appears. As

...
x s is proportional to utt (x∗

s ),
it cannot be bounded by |u|H2 . However, we can use Young’s
inequality to compensate it with the boundary terms. Using (54),
one has

dV3

dt
≤ − µV3 −

4∑
i=1

((
pixiλie

−
µx∗s
xiλi + O(|u|H2 )

)

× u2
itt (x

∗

s ) − u2
itt (0)

)
+ O

(
(|u|H2 + |xs − x∗

s |)
3) .

(60)

Differentiating (49), from (30), one has

dV4

dt
=(xs − x∗

s )
∫ x∗s

0

3∑
i=1

p′

i

λi
e−

µ
xiλi

xuit (t, x)dx

+ ẋs

∫ x∗s

0

3∑
i=1

p′

i

λi
e−

µ
xiλi

xui(t, x)dx + 2C0ẋs(xs − x∗

s )

= − (xs − x∗

s )
∫ x∗s

0

3∑
i=1

xip′

ie
−

µ
xiλi

xuix(t, x)dx

+ d
(
u1(x∗

s ) + u2(x∗

s ) − u3(x∗

s ) − u4(x∗

s )
)

×

∫ x∗s

0

3∑
i=1

p′

i

λi
e−

µ
xiλi

xui(t, x)dx

+ 2dC0(xs − x∗

s )
(
u1(x∗

s ) + u2(x∗

s ) − u3(x∗

s ) − u4(x∗

s )
)

+ O
(
(|u|H2 + |xs − x∗

s |)
3) ,

(61)
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where we recall that d = (H∗

1 −H∗

2 )
−1 < 0 is defined in (11). Thus,

integrating by parts and using (34),

dV4

dt
= −(xs − x∗

s )

[
3∑

i=1

xip′

ie
−

µ
xiλi

xui(t, x)

]x∗s

0

−µ(V4 − C0(xs − x∗

s )
2)

+d
(
u1(x∗

s )
(
1 −

λ1

λ4

)
+ u2(x∗

s )
(
1 −

λ2

λ4

)
−u3(x∗

s )
(
1 +

λ3

λ4

))
×

(
2C0(xs − x∗

s ) +

∫ x∗s

0

3∑
i=1

p′

i

λi
e−

µ
xiλi

xui(t, x)dx

)
+O

(
(|u|H2 + |xs − x∗

s |)
3) . (62)

Similarly for V5, from (30), one has

dV5

dt
= − ẋs

[
3∑

i=1

xip′

ie
−

µ
xiλi

xuit (t, x)

]x∗s

0

− µ(V5 − C0(ẋs)2)

+ d

(
3∑

i=1

(
1 − si

λi

λ4

)
siuit (x∗

s )

)

×

(
2C0ẋs +

∫ x∗s

0

3∑
i=1

p′

i

λi
e−

µ
xiλi

xuit (t, x)dx

)
+ O

(
(|u|H2 + |xs − x∗

s |)
3) .

(63)

By (58), for V6, one has

dV6

dt
= − ẍs

[
3∑

i=1

xip′

ie
−

µ
xiλi

xuitt (t, x)

]x∗s

0

− µ(V6 − C0(ẍs)2)

+ d

(
3∑

i=1

(
1 − si

λi

λ4

)
siuitt (x∗

s )

)

×

(
2C0ẍs +

∫ x∗s

0

3∑
i=1

p′

i

λi
e−

µ
xiλi

xuitt (t, x)dx

)

−

∫ x∗s

0

3∑
i=1

p′

i

λi
e−

µ
xiλi

xx
...
x s

⎛⎝ 4∑
j=1

Bijujx

⎞⎠ (xs − x∗

s ) dx

+ O
(
(|u|H2 + |xs − x∗

s |)
3) .

(64)

Dealing with the
...
x s term in (64) similarly as for V3, we have

dV6

dt
= − ẍs

3∑
i=1

((
xip′

ie
−

µ
xiλi

x∗s
+ O

(
|u|H2

))
uitt (x∗

s ) − xip′

iuitt (0)
)

− µ(V6 − C0(ẍs)2)

+ d

(
3∑

i=1

(
1 − si

λi

λ4

)
siuitt (x∗

s )

)

×

(
2C0ẍs +

∫ x∗s

0

3∑
i=1

p′

i

λi
e−

µ
xiλi

xuitt (t, x)dx

)
+ O

(
(|u|H2 + |xs − x∗

s |)
3) .

(65)

Note that V2 + V5 has the same structure as V1 + V4 with ui and
xs − x∗

s being replaced by uit and ẋs respectively. The same applies
for V3 + V6 by replacing ui and xs − x∗

s in V1 + V4 with uitt and ẍs
respectively. Hence, we only need to analyze V1 + V4. From (56)
and (62), recalling that si = 1 if i ∈ {1, 2} and s3 = −1, one has

d(V1 + V4)
dt

= −

[
4∑

i=1

pixiλie
−

µ
xiλi

xu2
i

]x∗s

0

− µ(V1 + V4)

− (xs − x∗

s )

[
3∑

i=1

xip′

ie
−

µ
xiλi

xui

]x∗s

0

+ µC0(xs − x∗

s )
2

+ d

(
3∑

i=1

ui(x∗

s )si

(
1 − si

λi

λ4

))

×

(
2C0(xs − x∗

s ) +

∫ x∗s

0

3∑
i=1

p′

i

λi
e−

µ
xiλi

xui(t, x)dx

)
+ O

(
(|u|H2 + |xs − x∗

s |)
3) . (66)

Using now the boundary conditions (34), (54) and noticing (55),
(66) becomes

d(V1 + V4)
dt

= − µ(V1 + V4)

− v(x∗

s )
T
(
F (x∗

s , µ) − K TF (0, µ)K
)
v(x∗

s )

−
x4p4
λ4

e−
µ

x4λ4
x∗s (λ1u1(x∗

s ) + λ2u2(x∗

s ) + λ3u3(x∗

s ))
2

− λ4|x4|p4u2
4(0) +

3∑
i=1

xipiλib2i (xs − x∗

s )
2

+ 2
3∑

i=1

xipiλibi

⎛⎝ 3∑
j=1

kijuj(x∗

s )(xs − x∗

s )

⎞⎠
−

⎛⎝ 3∑
i=1

ui(x∗

s )(xs − x∗

s )
(
xip′

ie
−

µ
xiλi

x∗s

−2dC0si

(
1 − si

λi

λ4

))
−

3∑
j=1

kijuj(x∗

s )(xs − x∗

s )xip
′

i

⎞⎠
+

3∑
i=1

xip′

ibi(xs − x∗

s )
2
+ µC0(xs − x∗

s )
2

+ d

(
3∑

i=1

ui(x∗

s )si

(
1 − si

λi

λ4

))

×

⎛⎝∫ x∗s

0

3∑
j=1

p′

j

λj
e
−

µ
xjλj

x
uj(t, x)dx

⎞⎠
+ O

(
(|u|H2 + |xs − x∗

s |)
3) , (67)

where

F (x, µ) = diag
(
λipixie

−
µ

xiλi
x
, i ∈ {1, 2, 3}

)
. (68)

We observe that, except from the last product proportional to d, a
quadratic form in (v(x∗

s )
T, u4(0), xs−x∗

s ) appears. Using successively
the Young and Cauchy–Schwarz inequalities to deal with the last
product, and noticing that∫ x∗s

0
e−

µ
xiλi

xdx =
λixi
µ

(1 − e−
µ

xiλi
x∗s ), (69)
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we get that, for any j ∈ {1, 2, 3},

d

(
3∑

i=1

ui(x∗

s )si

(
1 − si

λi

λ4

))(∫ x∗s

0

p′

j

λj
e
−

µ
xjλj

x
uj(t, x)dx

)
≤

εj

µ

⎛⎝p′2
j xj(1 − e

−
µ

xjλj
x∗s )

λjpj

⎞⎠(∫ x∗s

0
pje

−
µ

xjλj
x
u2
j (t, x)dx

)

+
d2

4εj

(
3∑

i=1

ui(x∗

s )
(
1 − si

λi

λ4

)
si

)2

.

Using again the Cauchy–Schwarz inequality, we get that

d2

4εj

(
3∑

i=1

ui(x∗

s )
(
1 − si

λi

λ4

)
si

)2

≤
d2

4εj

⎛⎝ 3∑
i=1

u2
i (x

∗

s )
(
1 − si

λi

λ4

)2
⎛⎝ 3∑

j=1

e
µx∗s
xiλi

−
µx∗s
xjλj

⎞⎠⎞⎠ .

(70)

Therefore, combining (67)–(70), one has

d(V1 + V4)
dt

≤ − µ(V1 + V4) − v(x∗

s )
T
(
F (x∗

s , µ) − K TF (0, µ)K

−
d2

4

(
3∑

k=1

1
εk

)
diag

⎛⎝⎛⎝ 3∑
j=1

e
µx∗s
xiλi

−
µx∗s
xjλj

⎞⎠
×

(
1 − si

λi

λ4

)2
⎞⎠

i∈{1,2,3}

)
v(x∗

s )

−
x4p4
λ4

e−
µ

x4λ4
x∗s (λ1u1(x∗

s ) + λ2u2(x∗

s )

+ λ3u3(x∗

s ))
2
− λ4|x4|p4u2

4(0)

+

(
µC0 +

3∑
i=1

(xipiλib2i + xip′

ibi)

)
(xs − x∗

s )
2

+

3∑
i=1

(εi

µ

(
p′2
i xi(1 − e−

µ
λixi

x∗s )
λipi

)

×

(∫ x∗s

0
pie

−
µ

xiλi
xu2

i (t, x)dx

))
+

3∑
j=1

(
2dC0sj

(
1 − sj

λj

λ4

)
− xjp′

je
−

µ
xjλj

x∗s

+

3∑
i=1

(2xipiλibikij + xip′

ikij)
)
uj(x∗

s )(xs − x∗

s )

+ O
(
(|u|H2 + |xs − x∗

s |)
3) . (71)

In order to obtain an exponential decay, we first choose εi such that

1
εi

=
2p′2

i xi(1 − e−
µ

xiλi
x∗s )

µ2λipi
, i = 1, 2, 3. (72)

Therefore, (71) becomes

d(V1 + V4)
dt

≤ −
µ

2
V1 − µV4 − v(x∗

s )
T

(
F (x∗

s , µ) − K TF (0, µ)K

−
d2

4

(
3∑

k=1

1
εk

)
D̃(µ)

)
v(x∗

s )

−
x4p4
λ4

e−
µ

x4λ4
x∗s (λ1u1(x∗

s ) + λ2u2(x∗

s ) + λ3u3(x∗

s ))
2

−λ4|x4|p4u2
4(0)

+

(
µC0 +

3∑
i=1

(xipiλib2i + xip′

ibi)
)
(xs − x∗

s )
2

+

3∑
j=1

(
2dC0sj

(
1 − sj

λj

λ4

)
− xjp′

je
−

µ
xjλj

x∗s

+

3∑
i=1

(2xipiλibikij + xip′

ikij)

)
uj(x∗

s )(xs − x∗

s )

+O
(
(|u|H2 + |xs − x∗

s |)
3) . (73)

We clearly see now two terms proportional to V1 and V4 respec-
tively that will bring the exponential decay, and a quadratic form
in (v(x∗

s )
T, u4(0), xs −x∗

s ) appears. In order to simplify the quadratic
form by canceling the cross terms, we choose

p′

i = 2
dC0si

(
1 − si

λi
λ4

)
e

µ
xiλi

x∗s

xi
, i = 1, 2, 3. (74)

Observe that from (18), one always has bixip′

i < 0 for i = 1, 2, 3,
thus we can choose

pi = −
p′

i

2biλi
> 0, i = 1, 2, 3. (75)

Therefore we have, using (74), (75) and Young’s inequality

d(V1 + V4)
dt

≤ −
µ

2
V1 − µV4 − v(x∗

s )
T

×

(
F (x∗

s , µ) − K TF (0, µ)K −
d2

4

(
3∑

k=1

1
εk

)
D̃(µ)

− diag
(
3|x4|p4λ2

i

λ4
e−

µ
x4λ4

x∗s
)

i∈{1,2,3}

)
v(x∗

s )

− λ4|x4|p4u2
4(0) +

(
µC0 −

1
2

3∑
i=1

|xip′

ibi|

)
× (xs − x∗

s )
2

+ O
(
(|u|H2 + |xs − x∗

s |)
3) . (76)

Observe that the conditions (18) and (19) are satisfied for γ > 0,
but as the inequalities are strict, there exists µ > γ such that (18)
and (19) are also verified with µ instead of γ . We choose such µ

and using (74), one can see that

µC0 −
1
2

3∑
i=1

|xip′

ibi| < 0, (77)

and one can also check from (72), (74), (75), (11) and condition (19)
and using that −dC0 > 0, the matrix defined by

F (x∗

s , µ) − K TF (0, µ)K −
d2

4

(
3∑

k=1

1
εk

)
D̃(µ) (78)

is positive definite. This implies that there exists p4 > 0 such that
the quadratic form in v(x∗

s ) in (76) is non-positive. Therefore

d(V1 + V4)
dt

≤ −
µ

2
V1 − µV4 + O

(
(|u|H2 + |xs − x∗

s |)
3) . (79)

As µ > γ , at least if |u|H2 + |xs − x∗
s | is small enough which can be

guaranteed from Lemma 2.1 by requiring δ(T̄ ) small enough

d(V1 + V4)
dt

≤ −
γ

2
(V1 + V4), (80)
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thus,
dV
dt

≤ −
γ

2
V . (81)

We have derived (81) under the assumption that the trajecto-
ries of (30), (32), (34) and (35) are of class C3, but one can use
a density argument to generalize the result for trajectories in
C0([0, T̄ ];H2((0, x∗

s );R
4)) by noticing that γ does not depend on

any C2 or C3-norm of u. The inequality (81) is then understood in
the distribution sense. One can refer to Bastin et al. (2017) or Bastin
and Coron (2016, Comment 4.6) for more details.

By the equivalence between the Lyapunov function V and
(|u|H2 +|xs − x∗

s |)
2 if this last quantity is small, we get immediately

the exponential stability of the null steady state of the system (30),
(32), (34) and (35) for theH2-normwith decay rate γ /4. It remains
to check that under assumption (19), (52) holds with p′

i and pi
defined as (74) and (75). Indeed,

max
i

(
p′2
i xi

µλipi
(1 − e−

µ
xiλi

x∗s )
)

<
4C0

3
, (82)

therefore there exists C0 > 3/2 such that the condition (52) is
satisfied.

So far δ(T̄ ) depends on T̄ , wenext prove that for any given T > 0,
we can choose δ∗ independent of T such that (81) holds on (0, T )
as required in Definition 1.1.

Let us now assume that xs,0 ∈ (0, L) and u0 ∈ H2((0, x∗
s );R

4)
satisfying the first order compatibility conditions and

|u0|H2((0,x∗s );R4) + |xs,0 − x∗

s | < ρ̄ and V (u0, xs,0) ≤ ν, (83)

where ν > 0 is going to be chosen small enough. Then, for any
t ∈ [0, T̄ ], at least if ν > 0 is small enough, from (44), (53) and
(81),

|u(t)|H2((0,x∗s );R4) + |xs(t) − x∗

s | < ρ̄ and V (u(t), xs(t)) ≤ ν. (84)

Using (84) for t = T̄ one can keep going on [T̄ , 2T̄ ] and then on
[2T̄ , 3T̄ ], etc. So we get that, for every j = 1, 2, 3, . . . ,

V (u(t), xs(t)) ≤ ν, t ∈ [(j − 1)T̄ , jT̄ ], (85)

(|u(t)|H2((0,x∗s );R4) + |xs(t) − x∗

s |) < ρ̄, t ∈ [(j − 1)T̄ , jT̄ ], (86)
dV
dt

≤ −
γ

2
V in the distribution sense on (0, jT̄ ). (87)

Noticing (28), there exists a δ∗ such that if (13)–(14) hold, one has
(83). Thus, noticing also that for any T > 0 there exists j ∈ N such
that (0, T ) ⊂ (0, jT̄ ), one gets that the steady state ((H∗,Q ∗)T, x∗

s ) is
locally exponentially stable for the H2-norm with decay rate γ /4.
The proof of Theorem 1.1 is thus complete. □

Remark5. Given the assumptions of Theorem1.1, it is obvious that
this stability result is robust with respect to small variations of G
in the feedback control. However, it is actually also robust with re-
spect to small variations of G4. Indeed, if |G′

4(0) + λ4| is sufficiently
small but with a bound independent of the state (H,Q )T and xs,
we can still define B as in (36)–(39) using the implicit function
theorem. Then looking at (54), ∂2B(0, 0, 0) ̸= 0, but for any δ > 0,
|∂2B(0, 0, 0)| < δ provided |G′

4(0) + λ4| is sufficiently small. Then
all the additional terms about u2

4(0) and u2
i (x

∗
s ), i = 1, 2, 3 will be

compensated by the fact that p4 > 0 in (73) and that |G′

4(0) + λ4|

is sufficiently small. The rest of the proof is the same as in the case
where G′

4(0) = −λ4.

4. Conclusion

In this article, we have considered the problem of the boundary
feedback stabilization of an open channel with a hydraulic jump.
We focused on the case where the channel has a rectangular

cross section without friction or slope. The channel dynamics are
modeled by a version of the homogeneous Saint-Venant equations
with the water level H and the flow rate Q as state variables. The
hydraulic jump is represented by a discontinuous shock solution
of the system. Themain contribution of this paper is to analyze the
boundary feedback stabilization of the system with a general class
of static feedback controls that require pointwisemeasurements of
the level and the flux at the boundary and in the immediate vicinity
of the hydraulic jump. In order to prove the well-posedness of the
system, we first introduce a change of variables which allows to
transform the Saint-Venant equations with shock wave solutions
into an equivalent 4 × 4 quasilinear hyperbolic system which is
parametrized by the jump position but has shock-free solutions.
Then, by a Lyapunov approach, we show that, for the considered
class of boundary feedback controls, the exponential stability in
H2-norm of the steady state can be achieved with an arbitrary
decay rate and with an exponential stabilization of the desired
location of the hydraulic jump. Compared with previous results in
the literature for classical solutions of quasilinear hyperbolic sys-
tems, the H2-Lyapunov function introduced in Coron et al. (2008)
(see also Bastin & Coron, 2016, Section 4.4) has to be augmented
with suitable extra terms for the analysis of the stabilization of the
jump position. In the case where the cross section is irregular and
with friction or slope, the jump stabilization issue is much more
challenging and remains an open problem.
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Appendix

In this appendixwe prove that there always existsG such that K
and (b1, b2, b3)T defined in (11) satisfy (18)–(19). Let us first point
out that, for every K ∈ R3×3, there exists a linearmap G : R4

→ R3

such that the third equation of (11) holds. Hence it remains only
to show that there always exist K and (b1, b2, b3)T satisfying (18)
and (19). In the special case where K = diag(ki, i ∈ {1, 2, 3}),
the condition that the matrix defined in (19) is positive definite
becomes

k2i < e−
γ

xiλi
x∗s Di, ∀i ∈ {1, 2, 3}, (88)

with

Di := 1 −
2d2bi

γ 2si(1 − si
λi
λ4
)

(
3∑

k=1

bksk(1 − sk
λk

λ4
)(e

γ x∗s
xkλk − 1)

)

× (
3∑

j=1

e
γ x∗s
xiλi

−
γ x∗s
xjλj )(1 − si

λi

λ4
)2. (89)

Let us look at a limiting case in (18) and take bi = −γ e−γ x∗s /(xiλi)

/3dsi
(
1 − si

λi
λ4

)
. Then we have

Di = 1 −
2
9

(
3∑

k=1

(1 − e−
γ x∗s
xkλk )

)
(

3∑
j=1

e
−

γ x∗s
xjλj ). (90)

We denote y =

(
3∑

k=1

e−
γ x∗s
xkλk

)
. Thus we get

Di : = 1 −
2
3
y +

2
9
y2. (91)
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This is a second order polynomial with negative discriminant, thus
Di is always strictly positive. As Di depends continuously on bi, this
implies that there exist K = diag(ki, i ∈ {1, 2, 3}) and (b1, b2, b3)T,
satisfying (18) and (19).
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