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a b s t r a c t 

Because they represent physical systems with propagation delays, hyperbolic systems are well suited for 

feedforward control. This is especially true when the delay between a disturbance and the output is larger 

than the control delay. In this paper, we address the design of feedforward controllers for a general class 

of 2 × 2 hyperbolic systems with a single disturbance input located at one boundary and a single control 

actuation at the other boundary. The goal is to design a feedforward control that makes the system output 

insensitive to the measured disturbance input. We show that, for this class of systems, there exists an 

efficient ideal feedforward controller which is causal and stable. The problem is first stated and studied 

in the frequency domain for a simple linear system. Then, our main contribution is to show how the 

theory can be extended, in the time domain, to general nonlinear hyperbolic systems. The method is 

illustrated with an application to the control of an open channel represented by Saint-Venant equations 

where the objective is to make the output water level insensitive to the variations of the input flow rate. 

Finally, we address a more complex application to a cascade of pools where a blind application of perfect 

feedforward control can lead to detrimental oscillations. A pragmatic way of modifying the control law 

to solve this problem is proposed and validated with a simulation experiment. 

© 2020 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Feedforward control is a technique which is of interest when 

he system to be controlled is subject to a significant input dis- 

urbance that can be measured and compensated before it affects 

he system output. This control technique is used in many control 

ngineering applications, especially in the industrial process sector 

e.g. [30 , Chapter 15]). In ideal situations, feedforward control is 

n open-loop technique which is theoretically able to achieve per- 

ect control by anticipating adequately the effect of the perturba- 

ions. This is in contrast with closed-loop feedback control where 

orrective actions take place necessarily only after the effect of 

he disturbances has been detected at the output. However ideal 

eedforward controllers, which are based on some sort of process 

odel inversion, may not be physically realizable because they can 

e non causal and/or unstable (e.g. [12] ). In such situations, it is 

ommon practice to design approximate low order realizable feed- 
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orward controllers, possibly in combination with feedback control 

e.g. [15,16] ). Furthermore, it is also well known that, in some in- 

tances, feedforward control may be a simple and low cost way of 

voiding loss of stability due to actuator saturations in feedback 

oops (e.g. [8,21] ). For finite dimensional linear systems, the the- 

ry of feedforward control is well established and the basics can 

e found, for instance, in the classical textbooks [27,30] . 

In this paper, we are concerned with the application of the 

eedforward technique to the boundary control of 1-D hyperbolic 

ystems. Our purpose is to address the design of feedforward con- 

rollers for a general class of 2 × 2 hyperbolic systems with a single 

isturbance input located at one boundary and a single control ac- 

uation at the other boundary. This class of systems includes many 

otential interesting applications, including those that are listed in 

he book [3 , Chapter 1] for example. 

Hyperbolic systems generally represent physical phenomena 

ith important propagation delays. For that reason, they are par- 

icularly suitable for the implementation of feedforward control, 

specially when the input/output disturbance delay is larger than 

he control delay. In that case, as we shall see in this paper, it is in-

eed possible to design efficient ideal feedforward controllers that 
rved. 

https://doi.org/10.1016/j.ejcon.2020.11.002
http://www.ScienceDirect.com
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Fig. 1. Configuration of the control system with feedforward. 
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re causal and stable, and significantly improve the system perfor- 

ance. 

For hyperbolic systems with unmeasurable disturbance inputs 

roduced by a so-called exogenous “signal system”, the asymp- 

otic closed-loop rejection of disturbances by feedback of measur- 

ble outputs was extensively considered in the literature in the re- 

ent years, especially in the backstepping framework. Significant 

ontributions on this topic have been published, among others, by 

le Morten Aamo (e.g. [1,2] ) and Joachim Deutsher (e.g. [7,9] ) and 

heir collaborators. It is worth noting that the viewpoint adopted 

n the present paper is rather different, since we consider systems 

aving an arbitrary and measurable disturbance input for which 

t is desired to design an open-loop control of an output variable 

hich is not measured. We show that, for the class of systems 

onsidered in this paper, there exists an ideal causal controller that 

chieves perfect control with stability. 

The feedforward control problem considered in this paper is de- 

ned and presented in the next Section 2 . The physical system to 

e controlled is described by a 2 × 2 quasi-linear hyperbolic sys- 

em with a density H and a flow density Q as state variables. The 

oal is to design a feedforward control law that makes the system 

utput insensitive to the measured disturbance input. The overall 

ontrol system is represented by the simple block diagram shown 

n Fig. 1 . 

In Section 3 , we first examine the simplest linear case, i.e. 

 physical system of two linear conservation laws with constant 

haracteristic velocities. The reason for beginning in this way is 

hat it allows an explicit and complete mathematical analysis of 

he feedforward control design in the frequency domain. Further- 

ore it also allows to derive an expression of the control law in 

he time domain that can then be used to justify the feedforward 

ontrol design in the general nonlinear case. 

Section 4 is then devoted to a theoretical analysis of the feed- 

orward control design in the general nonlinear case. It is first 

hown that there exists an ideal causal feedforward dynamic con- 

roller that achieves perfect control. In a second step, sufficient 

onditions are given under which the controller, in addition to be- 

ng causal, ensures the stability of the overall control system. 

Applications are then presented. First, in Section 5 , generalizing 

he previous results of [6] and [24 , Section 9], it is shown how the

heory can be directly applied to the control of an open channel 

hose dynamics are represented by the Saint-Venant equations. 

he control action is provided by a hydraulic gate at the down- 

tream side of the channel. The control objective is to make the 

utput water level insensitive to the variations of the input flow 

ate at the upstream side. The method is illustrated with a realistic 

imulation experiment. 

Then in Section 6 , we address the more complex application of 

he control of a long canal made up of a cascade of a large number

f successive pools, as it is the case in navigable rivers for instance. 

t is then shown that, in this case, a blind application of perfect 

eedforward controllers leads to oscillations in the downstream di- 

ection that can be detrimental in practice. A pragmatic and effi- 

ient way of modifying the control design to solve this problem is 

roposed and validated with simulation results. 
42 
emark 1. This paper is devoted to the disturbance compensation 

y feedforward control with the objective of output regulation. We 

re in a situation where the control input and the control output 

re collocated at one boundary, while the disturbance input is anti- 

ollocated at the other boundary. In this framework, it is trivial to 

xtend our design to output trajectory planning (see Remark 2 ), i.e. 

or the generation of an input control signal which achieves the 

racking of a time varying output reference signal. However we do 

ot address that issue in this paper so as not to burden the pre- 

entation. It is important to notice here that the trajectory plan- 

ing problem is radically different when the control input and the 

ontrol output are anti-collocated at the two boundaries. In that 

ase, the issue is much more complex and typically addressed us- 

ng differential flatness. To our knowledge, it is a topic which re- 

ains still relatively unexplored in the literature. Typical contribu- 

ions have been published in specific applications to shallow water 

quations [23] and to tubular chemical reactors [34] . Motion plan- 

ing with distributed control for hyperbolic models of water-tank 

ystems is also discussed in [28] . Finally, let us mention that feed- 

orward control for trajectory planning is treated in [29] using a 

arabolic Hayami model of an open channel. 

. The feedforward control problem 

Let us consider a physical system represented by a general 2 ×2 

onlinear hyperbolic system of the form 

 t + Q x = 0 , (1) 

 t + ( f (H, Q )) x + g(H, Q ) = 0 , (2) 

here : 

• t and x are the two independent variables: a time variable t ∈ 

[0 , + ∞ ) and a space variable x ∈ [0 , L ] on a finite interval; 

• (H, Q ) : [0 , + ∞ ) × [0 , L ] → R 

2 is the vector of the two depen-

dent variables (i.e. H(t, x ) and Q(t, x ) are the two states of the

system); 

• f : R 

2 → R and g : R 

2 → R are sufficiently smooth functions. 

The first Eq. (1) can be interpreted as a mass conservation law 

ith H the density and Q the flux density. The second Eq. (2) can 

hen be interpreted as a momentum balance law. 

We are concerned with the solutions of the Cauchy problem for 

he system (1) –(2) over [0 , + ∞ ) × [0 , L ] under an initial condition:

H(0 , x ) , Q(0 , x ) 
)

x ∈ [0 , L ] (3)

nd two local boundary conditions of the form: 

(H(t, 0) , Q(t, 0)) = D (t) , t ∈ [0 , + ∞ ) , (4)

(H(t, L ) , Q(t, L )) = U(t) , t ∈ [0 , + ∞ ) , (5)

here α : R 

2 → R , β : R 

2 → R are sufficiently smooth functions. 

At the left boundary (i.e. x = 0 ), the function D (t) is supposed

o be a bounded measurable time-varying disturbance. At the right 

oundary (i.e. x = L ), U(t) is a control function that can be freely

elected by the operator. 

The control objective is to keep the output density H(t, L ) in- 

ensitive to the variations of the disturbance D (t) . More precisely, 

e consider the problem of finding a feedforward control law U(t) , 

unction of the measured disturbance D (t) , such that the output 

ensity H(t, L ) is identically equal to a desired value H 

∗
L 

(called ‘set

oint’), i.e. H(t, L ) ≡ H 

∗
L 

∀ t . Equivalently it is required that the out-

ut function Y (t) = H(t, L ) − H 

∗
L is identically zero along the solu-

ions of the Cauchy problem. In less technical terms, we want a 

ontrol law which exactly cancels the influence of the left bound- 

ry disturbance D (t) on the right boundary state H(t, L ) . The over-

ll control system configuration is illustrated in Fig. 1 . As we can 
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ee in this figure, we thus have a series interconnection of two dy- 

amical systems: the “Physical System” with output Y (t) and in- 

uts D (t) , U(t) , and the feedforward controller with output U(t) 

nd input D (t) . 

. A preliminary simple linear case 

Let us first examine the special case where the physical system 

s a simple 2 ×2 linear hyperbolic system of the form 

 t + Q x = 0 

 t + 

(
aH + bQ 

)
x = 0 , 

(6) 

here a and b are two real positive constants, with boundary con- 

itions 

(t, 0) = D (t ) , Q(t , L ) − γ H(t, L ) = U(t) , (7)

here γ is a real constant. 

The system is hyperbolic with one positive and one negative 

haracteristic velocity which are defined as 

1 = 

b + 

√ 

b 2 + 4 a 

2 

and − λ2 = 

b − √ 

b 2 + 4 a 

2 

. (8) 

he reason for beginning in this way is that the simple linear sys- 

em (6), (7) allows an explicit and complete mathematical analysis 

f the feedforward control design. It is therefore an excellent start- 

ng point before to address the general nonlinear case for which 

ess explicit and more complicated solutions will be discussed later 

n. 

.1. Feedforward control design in the frequency domain 

In order to solve the feedforward control problem for the linear 

ystem (6), (7) , we introduce the Riemann coordinates defined by 

he following change of coordinates: 

 1 (t, x ) = Q(t, x ) − D (0) + λ2 (H(t, x ) − H 

∗
L ) , 

 2 (t, x ) = Q(t, x ) − D (0) − λ1 (H(t, x ) − H 

∗
L ) , (9) 

here, as mentioned in the introduction, H 

∗
L denotes the set point 

or the output variable H(t, L ) . 

This change of coordinates is inverted as follows: 

H(t, x ) − H 

∗
L = 

R 1 (t, x ) − R 2 (t, x ) 

λ1 + λ2 

, 

Q(t, x ) − D (0) = 

λ1 R 1 (t, x ) + λ2 R 2 (t, x ) 

λ1 + λ2 

. (10) 

ith these Riemann coordinates, the system (6) is rewritten in 

haracteristic form as a set of two transport equations: 

 t R 1 (t, x ) + λ1 ∂ x R 1 (t, x ) = 0 , 

 t R 2 (t, x ) − λ2 ∂ x R 2 (t, x ) = 0 , (11) 

r, equivalently, as the following two delay equations: 

R 1 (t, L ) = R 1 (t − τ1 , 0) with τ1 = L/λ1 , 

 2 (t, 0) = R 2 (t − τ2 , L ) with τ2 = L/λ2 . (12) 

aking the Laplace transform of (12) , the system is written as fol- 

ows in the frequency domain (with “s” the Laplace complex vari- 

ble): 

R 1 (s, L ) = e −sτ1 R 1 (s, 0) , 

 2 (s, 0) = e −sτ2 R 2 (s, L ) . (13) 

oreover, the inputs D (t) and U(t) are represented in the fre- 

uency domain by the following Laplace transforms: 

 

 (s ) = L 

(
U(t) − D (0) + γ H 

∗
L 

)
, ˜ D (s ) = L 

(
D (t) − D (0) 

)
, (14)

here L denotes the Laplace transform operator. 
43 
Then, using the boundary conditions (7) with the change of co- 

rdinates (10) , the system equations (13) and the definitions (14) , 

he input-output system dynamics are computed as follows : 

 (s ) = P o (s ) ̃  U (s ) + P d (s ) ̃  D (s ) , (15)

ith, for τ = τ1 + τ2 , the two transfer functions: 

 o (s ) = − λ1 + λ2 e 
−sτ

λ1 (γ + λ2 ) + λ2 (γ − λ1 ) e −sτ
, (16) 

 d (s ) = 

(λ1 + λ2 ) e 
−sτ1 

λ1 (γ + λ2 ) + λ2 (γ − λ1 ) e −sτ
. (17) 

et us now assume uniform initial conditions at time t = 0 : 

(0 , x ) = H 

∗
L , Q(0 , x ) = D (0) , for all x ∈ [0 , L ] . (18)

hen it follows from (15) that, in order to satisfy the control ob- 

ective H(t, L ) = H 

∗
L ∀ t > 0 , or equivalently in Laplace coordinates

 (s ) = 0 ∀ s, we must select the feedforward boundary control law
 

 (s ) in function of the boundary disturbance ˜ D (s ) such that 

 

 (s ) = P c (s ) ̃  D (s ) with P c (s ) = −P −1 
o (s ) P d (s ) = 

(λ1 + λ2 ) e 
−sτ1 

λ1 + λ2 e −sτ
. 

(19) 

r, in the time domain, as: 

(t) = −λ2 

λ1 

U(t − τ ) + 

(
1 + 

λ2 

λ1 

)
D (t − τ1 ) − γ

(
1 + 

λ2 

λ1 

)
H 

∗
L . 

(20) 

ence, we can see that the feedforward controller P c (s ) seems to 

chieve the desired purpose. There is however an important lim- 

tation: the result is obtained under the assumption that the ini- 

ial condition (18) is uniform and that the initial output density 

(0 , L ) is already at the set point H 

∗
L . If this assumption is not ver-

fied, then initial transients may appear. Obviously, such transients 

ill vanish exponentially only if the system is exponentially stable. 

ence, the practical implementation of the feedforward controller 

learly requires the stability of the transfer functions of the sys- 

em. From (16), (17) we can see that the transfer functions P o (s ) 

nd P d (s ) have the same poles that are stable if and only if λ1 , λ2 

nd γ satisfy the following inequality 

γ − λ1 

γ + λ2 

∣∣∣∣ < 

λ1 

λ2 

. (21) 

oreover the transfer function P c (s ) of the controller has stable 

oles if and only if 

λ2 

λ1 

< 1 . (22) 

hese conditions imply in particular that, starting from any arbi- 

rary initial condition, the states of the physical system and the 

ontroller are bounded and that H(t, L ) asymptotically converges 

o the set point 

lim 

→∞ 

H(t, L ) = H 

∗
L , (23) 

uch that the feedforward control objective is achieved as soon as 

he initial transients have vanished. Remark that in the case where 

ondition (21) is not satisfied, the feedforward controller can be 

ombined with a feedback controller in order to ensure the global 

ystem stability. However, for the sake of simplicity and clarity, we 

ill not study this issue in more detail in this article. 
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.2. Feedforward control design in the time domain 

Let us now show that the same feedforward control law can 

lso be computed in another way, as the output of the following 

opy of the system (1) –(2) : ̂ 

 t + 

̂ Q x = 0 , ̂ 

 t + 

(
a ̂  H + b ̂  Q 

)
x = 0 , (24) 

ith the boundary conditions: ̂ 

 (t, 0) = D (t) , ̂ H (t, L ) = H 

∗
L . (25) 

e are going to show that the control U(t) given by (20) is equiv-

lently given by: 

(t) = 

̂ Q (t, L ) − γ H 

∗
L . (26) 

gain we use the Riemann coordinates 

 

 1 (t, x ) = 

̂ Q (t, x ) − D (0) + λ2 ( ̂  H (t, x ) − H 

∗
L ) , 

 

 2 (t, x ) = 

̂ Q (t, x ) − D (0) − λ1 ( ̂  H (t, x ) − H 

∗
L ) , (27) 

hich are inverted as 

̂ 

 (t, x ) − H 

∗
L = 

̂ R 1 (t, x ) − ̂ R 2 (t, x ) 

λ1 + λ2 

, 

̂ 

 (t, x ) − D (0) = 

λ1 ̂
 R 1 (t, x ) + λ2 ̂

 R 2 (t, x ) 

λ1 + λ2 

. (28) 

n these coordinates, the system (24) is written as follows: 

 t ̂
 R 1 (t, x ) + λ1 ∂ x ̂  R 1 (t, x ) = 0 , 

 t ̂
 R 2 (t, x ) − λ2 ∂ x ̂  R 2 (t, x ) = 0 , (29) 

r equivalently as the delay system: 

 

 1 (t, L ) = ̂

 R 1 (t − τ1 , 0) , (30a) 

 

 2 (t, 0) = ̂

 R 2 (t − τ2 , L ) . (30b) 

In the Riemann coordinates, the boundary conditions (25) are 

ritten: 

 

 1 (t, 0) = −λ2 

λ1 ̂

 R 2 (t, 0) + 

(
1 + 

λ2 

λ1 

)
(D (t) − D (0)) , (31a) 

 

 2 (t, L ) = ̂

 R 1 (t, L ) . (31b) 

From (28), (30a) and (31b) , we have: 

̂ 

 (t, L ) = 

λ1 ̂
 R 1 (t, L ) + λ2 ̂

 R 2 (t, L ) 

λ1 + λ2 

+ D ( 0) = ̂

 R 1 (t, L ) + D (0) 

= ̂

 R 1 (t − τ1 , 0) + D (0) . 
(32) 

ince the boundary condition (31a) is obviously valid at any time 

nstant, and using (32) , we have: ̂ 

 (t, L ) = ̂

 R 1 (t − τ1 , 0) + D (0) 

= −λ2 

λ1 ̂

 R 2 (t − τ1 , 0) + 

(
1 + 

λ2 

λ1 

)(
D (t −τ1 ) −D (0) 

)
+ D (0) . 

(33) 

oreover, using successively (30b), (31b) and (32) , we have: 

 

 2 (t − τ1 , 0) = ̂

 R 2 (t − τ, L ) = ̂

 R 1 (t − τ, L ) = 

̂ Q (t − τ, L ) − D (0) . 
(34) 

hen, combining (33) and (34) , we get: 

̂ 

 (t, L ) = −λ2 

λ1 ̂

 Q (t − τ, L ) + 

(
1 + 

λ2 

λ1 

)
D (t − τ1 ) . (35)
44 
omparing this equation with (20) , we finally conclude that, as an- 

ounced, the control law is given by: 

(t) = 

̂ Q (t, L ) − γ H 

∗
L . (36) 

his expression of the feedforward control law in the time domain 

s of special interest to motivate its extension to nonlinear systems 

s we shall see in the next section. 

. The general nonlinear case 

In this section, we now address the feedforward control design 

roblem stated in Section 2 for the general nonlinear physical sys- 

em 

H t + Q x = 0 , 

Q t + ( f (H, Q )) x + g(H, Q ) = 0 , (37) 

(H(t, 0) , Q(t, 0)) = D (t) , 

β(H(t, L ) , Q(t, L )) = U(t) . (38) 

he objective is to keep the output density H(t, L ) at the set point

 

∗
L despite the disturbance D (t) . 

We assume that all the required conditions are met for this sys- 

em to be well posed and have a unique solution in the domain of 

nterest. The existence and uniqueness of solutions is a topic which 

s the subject of numerous publications. We do not address this is- 

ue in this article but we refer the reader to the paper [32] by

hiqiang Wang (and the references therein) where explicit condi- 

ions for hyperbolic systems of the form (37), (38) are given. 

.1. Feedforward control design 

Obviously the frequency method is not relevant for a nonlinear 

ystem such as (37), (38) . However, from our analysis of the linear 

ase in the previous section, a natural way to generalize the control 

esign to nonlinear systems in the time domain is as follows. We 

se a copy of the system (37) : ̂ 

 t + 

̂ Q x = 0 , ̂ 

 t + ( f ( ̂  H , ̂  Q )) x + g( ̂  H , ̂  Q ) = 0 , (39) 

ith the boundary conditions: 

( ̂  H (t, 0) , ̂  Q (t, 0)) = D (t) , ̂ 

 (t, L ) = H 

∗
L , (40) 

nd with the feedforward control defined as: 

(t) = β(H 

∗
L , ̂

 Q (t, L )) . (41) 

n the next theorem, it is shown that this feedforward controller 

39) , (40) , (41) achieves the desired purpose. 

heorem 1. Assume that both systems (37) , (38) and (39) , (40) are

nterconnected with the control law (41) (see Fig. 1 ) and have the 

ame initial condition 

(0 , x ) = 

̂ H (0 , x ) , Q(0 , x ) = 

̂ Q (0 , x ) , for all x ∈ [0 , L ] , (42)

ith H(0 , L ) = ̂

 H (0 , L ) = H 

∗
L . Then, for all positive t it holds that

(t, L ) = H 

∗
L . 

roof. Let us first observe that the condition (42) implies not only 

hat the two systems have the same initial condition but also that 

hey have identical boundary conditions at the initial time t = 0 : 

 (0) = α(H(0 , 0) , Q(0 , 0)) = α( ̂  H (0 , 0) , ̂  Q (0 , 0)) , (43) 

(0) = β(H 

∗
L , Q(0 , L )) = β(H 

∗
L , ̂

 Q (0 , L )) . (44) 
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hen it is immediately clear that the solution 

̂ H (t, x ) , ̂  Q (t, x ) (witĥ 

 (t, L ) = H 

∗
L 
∀ t) of the system (39), (40) is also a possible solution

f the system (37), (38) , i.e H(t, x ) = ̂

 H (t , x ) and Q(t , x )) = 

̂ Q (t, x )

or all t and x . Since the solution of the system (37), (38) is unique,

he result follows. �

This theorem shows however that the stability issue mentioned 

n the linear case is still present here. The feedforward control 

eads to an exact cancellation of the disturbance for all t � 0 only 

f the physical system and the feedforward controller have exactly 

dentical initial conditions. Otherwise some sort of stability of the 

olutions is required to guarantee an asymptotic decay of the ini- 

ial transients. As already pointed out by T. Glad [12] for finite 

imensional nonlinear systems, Lyapunov theory helps to discuss 

his stability issue as we shall see in the next section. 

emark 2. In this paper, for simplicity and clarity, we limit 

urselves to the use of feedforward control for exact disturbance 

ompensation. It is however worth noting that the feedforward 

ontrol design, as formulated above, can trivially be extended 

o trajectory planning. Indeed, to generate a control input that 

chieves the tracking of a time varying reference output signal 

 

ref 
L 

(t) , we just have to consider in (40) a boundary condition of

he form 

̂ H (t, L ) = H 

ref 
L 

(t) . 

.2. Stability conditions 

Our purpose in this section is to derive sufficient stability con- 

itions for the overall control system (37) –(41) . In particular, we 

ive conditions that guarantee the robustness of the control with 

espect to errors in the initial condition (see Theorem 2 ). 

A steady state is a system solution that does not change over 

ime. We assume that, for any set point H 

∗
L 

and any given constant 

isturbance input D (t) = D 

∗ for all t, the system has a unique well-

efined steady state H(t, x ) = ̂

 H (t, x ) = H 

∗(x ) , Q(t, x ) = 

̂ Q (t, x ) =
 

∗ for all t . The steady state flux density Q 

∗ is uniform on the

omain [0 , L ] and the steady state density function H 

∗(x ) is a so-

ution of the ordinary differential equation 

f (H 

∗, Q 

∗) 
)

x + g(H 

∗, Q 

∗) = 0 , H 

∗(L ) = H 

∗
L , x ∈ [0 , L ] . (45)

n order to linearize the system, we define the deviations of 

he disturbance input D (t) and the states H(t, x ) , ̂ H (t, x ) , Q(t, x ) ,̂ 

 (t, x ) with respect to the steady states D 

∗, H 

∗(x ) and Q 

∗: 

(t) = D (t) − D 

∗, 

 (t, x ) = H(t, x ) − H 

∗(x ) , q (t, x ) = Q(t, x ) − Q 

∗, 
ˆ 
 (t, x ) = 

̂ H (t, x ) − H 

∗(x ) , ˆ q (t, x ) = 

̂ Q (t, x ) − Q 

∗. (46) 

ith these notations the linearization of the physical system (37), 

38) about the steady state is 

 t + q x = 0 , 

 t + a (x ) h x + b(x ) q x + 

(
a x (x ) + 

˜ a (x ) 
)
h + 

(
b x (x ) + ̃

 b (x ) 
)
q = 0 , 

(47) 

ith the boundary conditions 

h h (t, 0) + αq q (t, 0) = d(t) , 

h h (t, L ) + βq q (t, L ) = βq ̂  q (t, L ) . (48) 

n these equations, we use the following notations: 

 (x ) = 

∂ f 

∂H 

(H 

∗(x ) , Q 

∗) , b(x ) = 

∂ f 

∂Q 

(H 

∗(x ) , Q 

∗) , 

˜ 
 (x ) = 

∂g 

∂H 

(H 

∗(x ) , Q 

∗) , ˜ b (x ) = 

∂g 

∂Q 

(H 

∗(x ) , Q 

∗) , 

h = 

∂α

∂H 

(H 

∗(0) , Q 

∗) , αq = 

∂α

∂Q 

(H 

∗(0) , Q 

∗) 
45 
h = 

∂β

∂H 

(H 

∗
L , Q 

∗) , βq = 

∂β

∂Q 

(H 

∗
L , Q 

∗) . (49) 

imilarly, the linearization of the controller (39) , (40) , (41) about 

he steady state is 

ˆ 
 t + 

ˆ q x = 0 , 

ˆ 
 t + a (x ) ̂ h x + b(x ) ̂  q x + 

(
a x (x ) + 

˜ a (x ) 
)

ˆ h + 

(
b x (x ) + ̃

 b (x ) 
)

ˆ q = 0 , 

(50) 

ith the boundary conditions 

h ̂
 h (t, 0) + αq ̂  q (t, 0) = d(t) , 

ˆ 
 (t, L ) = 0 . (51) 

et us now introduce the following notations for the deviations be- 

ween the states of the physical system and the controller: 

˜ 
 (t, x ) = H(t, x ) − ̂ H (t, x ) = h (t, x ) − ˆ h (t, x ) , 

˜ 
 (t, x ) = Q(t, x ) − ̂ Q (t, x ) = q (t, x ) − ˆ q (t, x ) . (52) 

hen, from (47), (48) we have the following linear ‘error’ system 

˜ 
 t + 

˜ q x = 0 , 

˜ 
 t + a (x ) ̃ h x + b(x ) ̃  q x + 

(
a x (x ) + 

˜ a (x ) 
)

˜ h + 

(
b x (x ) + ̃

 b (x ) 
)

˜ q = 0 , 

(53) 

ith the boundary conditions 

h ̃
 h (t, 0) + αq ̃  q (t, 0) = 0 , 

βh ̃
 h (t, L ) + βq ̃  q (t, L ) = 0 . (54) 

his error system has clearly a unique uniform steady-state 
˜ 
 (t, x ) ≡ 0 , ˜ q (t, x ) ≡ 0 . With the definitions 

˜ 
 = 

(
˜ h 

˜ q 

)
, A (x ) = 

(
0 1 

a (x ) b(x ) 

)
, 

 (x ) = 

(
0 0 

a x (x ) + 

˜ a (x ) b x (x ) + ̃

 b (x ) 

)
, (55) 

he system (53) is rewritten in matrix form: 

˜ 
 t + A (x ) ̃ z x + B (x ) ̃ z = 0 . (56) 

ince the system is supposed to be hyperbolic, it is assumed that 

he matrix A (x ) has two real distinct eigenvalues 

λ1 (x ) = 

b(x ) + 

√ 

b 2 (x ) + 4 a (x ) 

2 

and 

λ2 (x ) = 

b(x ) −
√ 

b 2 (x ) + 4 a (x ) 

2 

, (57) 

ith 

 

2 (x ) + 4 a (x ) > 0 for all x ∈ [0 , L ] . (58)

emark that 

1 (x ) > 0 , λ2 (x ) > 0 , (59) 

 (x ) = λ1 (x ) λ2 (x ) , b(x ) = λ1 (x ) − λ2 (x ) , (60) 

 

2 (x ) + 4 a (x ) = 

(
λ1 (x ) + λ2 (x ) 

)
2 . (61) 

herefore, for all x ∈ [0 , L ] , the matrix A (x ) can be diagonalized

ith the invertible matrix N(x ) defined as 

(x ) = 

(
λ2 (x ) 1 

−λ1 (x ) 1 

)
(62) 
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1 The case where both αh and αq would equal zero is pointless in the context of 
uch that 

(x ) A (x ) = �(x ) N(x ) with �(x ) = 

(
λ1 (x ) 0 

0 −λ2 (x ) 

)
. 

(63) 

n order to address the stability of the linear system (53), (54) , we

ntroduce the following basic quadratic Lyapunov function candi- 

ate: 

 = 

∫ L 

0 

(
˜ z T P (x ) ̃ z 

)
dx (64) 

ith P (x ) a symmetric positive definite matrix of the form 

 (x ) = N 

T (x )	(x ) N(x ) , 	(x ) = 

(
p 1 (x ) 0 

0 p 2 (x ) 

)
(65)

here p i : [0 , L ] → R + (i = 1 , 2) are two real positive functions to

e determined. 

We compute the time derivative of V along the C 1 -solutions of 

he system (53), (54) : 

dV 

dt 
= 

∫ L 

0 

(
˜ z T P (x ) ̃ z t + ̃

 z T t P (x ) ̃ z 
)
dx 

= −
∫ L 

0 

(
˜ z T P (x ) 

(
A (x ) ̃ z x + B (x ) ̃ z 

)
+ 

(
˜ z T x A 

T (x ) + ̃

 z T B 

T (x ) 
)
P (x ) ̃ z 

)
dx. (66) 

sing (63) and (65) , we see that the matrix M(x ) = P (x ) A (x ) is

ymmetric: 

(x ) = P (x ) A (x ) = A 

T (x ) P (x ) = N 

T (x )	(x )�(x ) N(x ) . (67)

hen, from (66), (67) and using integration by parts, we have 

dV 

dt 
= 

˜ z T (t, 0) M(0) ̃ z (t, 0) − ˜ z T (t, L ) M(L ) ̃ z (t, L ) 

−
∫ L 

0 

˜ z T 
(

− M x (x ) + B 

T (x ) P (x ) + P (x ) B (x ) 
)

˜ z dx. (68) 

nder the boundary conditions (54) , it can be checked that 

˜  T (t, 0) M(0) ̃ z (t, 0) < 0 if 

(a1) 

(
αh − αq λ2 (0) 

αh + αq λ1 (0) 

)2 

< 

p 2 (0) 

p 1 (0) 

λ2 (0) 

λ1 (0) 
, 

nd that −˜ z T (t, L ) M(L ) ̃ z (t, L ) < 0 if 

(a2) 

(
βh + βq λ1 (L ) 

βh − βq λ2 (L ) 

)2 

< 

p 1 (L ) 

p 2 (L ) 

λ1 (L ) 

λ2 (L ) 
. 

Hence, from (68) , it follows that if the two positive functions 

p i ∈ C 1 ([0 , L ] , (0 , + ∞ )) (i = 1 , 2) can be selected such that condi-

ions (a1) and (a2) are satisfied and 

b) the matrix −M x (x ) + B T (x ) P (x ) + P (x ) B (x ) is positive definite

for all x ∈ [0 , L ] , 

hen d V /d t is a negative definite function along the solutions of the 

ystem (53), (54) , which induces the following stability property 

ecause V is equivalent to a L 2 norm for ˜ z (t, . ) ∈ L 2 ([0 , L ] , R 

2 ) . 

heorem 2. If there exist two functions p i ∈ C 1 ([0 , L ] , (0 , + ∞ )) (i =
 , 2) such that conditions (a1), (a2) and (b) are satisfied, then the sys-

em (53) , (54) is L 2 -exponentially stable, that is there exist two pos- 

tive constants C and ν such that, from any initial condition ˜ z (0 , . ) ∈
 

2 ([0 , L ] , R 

2 ) , the system solution satisfies the inequality 

 ̃

 z (t, . ) ‖ L 2 � Ce −νt ‖ ̃

 z (0 , . ) ‖ L 2 , t ∈ [0 , + ∞ ) . (69)
� t

46 
This theorem tells us that the solution of the (linearized) phys- 

cal system asymptotically tracks the solution of the (linearized) 

ontroller system, independently of the disturbance. In particular 

he theorem implies that the output H(t, L ) asymptotically con- 

erges to the set point: 

lim 

→∞ 

H(t, L ) = H 

∗
L (70) 

hatever the size and the shape of the disturbance. This can be 

iewed as a generalization of the condition (21) which was ob- 

ained in the simple linear case addressed in Section 3 . However, 

his is not sufficient to conclude that the feedforward control ob- 

ective is achieved because we are not yet guaranteed that all the 

nitial transients of the overall system will exponentially vanish 

nder the conditions stated in Theorem 2 . Indeed, we have to ver- 

fy in addition that the solutions of the controller itself are not 

nstable. 

For that purpose, let us thus consider the linearized controller 

ystem (50) with the boundary conditions (51) . It can be observed 

hat the system dynamics are very similar, but not equal, to those 

f the error system. The only difference lies in the boundary condi- 

ions. We can therefore use the same Lyapunov function candidate 

ˆ 
 = 

∫ L 

0 

(
ˆ z T P (x ) ̂ z 

)
dx 

(
where ˆ z := ( ̂ h , ̂  q ) T 

)
(71) 

or which we have 

d ̂  V 

dt 
= 

ˆ z T (t, 0) M(0) ̂ z (t, 0) − ˆ z T (t, L ) M(L ) ̂ z (t, L ) 

−
∫ L 

0 

ˆ z T 
(

− M x (x ) + B 

T (x ) P (x ) + P (x ) B (x ) 
)

ˆ z dx. (72) 

nder the boundary condition (51) , we have 

ˆ z T (t, L ) M(L ) ̂ z (t, L ) = −
(

p 1 (L ) λ1 (L ) − p 2 (L ) λ2 (L ) 
)

ˆ q 2 (t, L ) (73)

hich is negative if and only if 

3) 
p 2 (L ) λ2 (L ) 

p 1 (L ) λ1 (L ) 
< 1 . 

Remark that this condition can be viewed as a generalization of 

ondition (22) which was obtained from a frequency domain ap- 

roach for the simple linear example of Section 3 . 

Let us now assume that αq 
 = 0 (the case αq = 0 will be con-

idered next). Then, under the boundary condition (51) , we have 

ˆ 
 

T (t, 0) M(0) ̂ z (t, 0) = −γ0 ̂
 h 

2 (t, 0) + γ1 ̂
 h (t, 0) d(t) + γ2 d 

2 (t) (74)

ith 

0 =−p 1 (0) λ1 (0) 

(
λ2 (0) − αh 

αq 

)2 

+ p 2 (0) λ2 (0) 

(
λ1 (0) + 

αh 

αq 

)2 

, 

(75) 

1 = 

2 

αq 

[
p 1 (0) λ1 (0) 

(
λ2 (0) − αh 

αq 

)
+ p 2 (0) λ2 (0) 

(
λ1 (0) + 

αh 

αq 

)]
, 

(76) 

2 = 

1 

α2 
q 

(
p 1 (0) λ1 (0) − p 2 (0) λ2 (0) 

)
. (77) 

n the case where αq = 0 and necessarily αh 
 = 0 1 , we have 

ˆ 
 

T (t, 0) M(0) ̂ z (t, 0) = −γ0 ̂  q 2 (t, 0) + γ1 ̂  q (t, 0) d(t) + γ2 d 
2 (t) (78)
his paper because it would correspond to a system without disturbance. 
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Fig. 2. A pool of an open channel with overshot gates at the upstream and down- 

stream sides. 
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ith 

0 = −p 1 (0) λ1 (0) + p 2 (0) λ2 (0) , (79) 

1 = 

2 λ1 (0) λ2 (0) 

αh 

(
p 1 (0) + p 2 (0) 

)
, (80) 

2 = 

λ1 (0) λ2 (0) 

α2 
h 

(
p 1 (0) λ2 (0) − p 2 (0) λ1 (0) 

)
. (81) 

n both cases, it can be verified that γ0 > 0 if and only if condition

a1) is verified. From, (72) –(74) , if conditions (a1), (a3) and (b) are

atisfied, we can write 

d ̂  V 

dt 
�−μ0 

∫ L 

0 

(
ˆ z T ˆ z 

)
dx −γ0 ̂  q 2 (t, 0) + | γ1 || ̂  q (t , 0) || d(t ) | + | γ2 | d 2 (t) 

(82) 

here μ0 > 0 is the infimum over [0 , L ] of the eigenvalues of the

ositive definite matrix −M x (x ) + B T (x ) P (x ) + P (x ) B (x ) . 

Let us now remark that 

 γ1 || ̂  q (t, 0) || d(t) | � 

γ0 

2 

ˆ q 2 (t, 0) + 

γ 2 
1 

2 γ0 

d 2 (t) . (83)

herefore: 

d ̂  V 

dt 
� −μ0 

∫ L 

0 

(
ˆ z T ˆ z 

)
dx − γ0 

2 

ˆ q 2 (t, 0) + 

(
γ 2 

1 

2 γ0 

+ | γ2 | 
)

d 2 (t) (84) 

� −μ0 

μ1 

ˆ V + 

(
γ 2 

1 

2 γ0 

+ | γ2 | 
)

d 2 (t) (85) 

here μ1 is the infimum over [0 , L ] of the eigenvalues of the pos-

tive definite matrix P (x ) . 

Since ˆ V is equivalent to the square of the L 2 norm for ˆ z (t, . ) ∈
 

2 ([0 , L ] , R 

2 ) , if the disturbance input is bounded, this induces the

nput-to-state stability property stated in the following proposition. 

heorem 3. If there exist two functions p i ∈ C 1 ([0 , L ] , (0 , + ∞ )) (i =
 , 2) such that conditions (a1), (a3) and (b) are satisfied, then the 

ystem (53) , (54) is L 2 -input-to-state stable, that is there exist three 

ositive constants C 1 , C 2 and ν such that, from any initial condition 

ˆ  (0 , . ) ∈ L 2 ([0 , L ] , R 

2 ) , the system solution satisfies the inequality 

 ̂

 z (t, ·) ‖ L 2 � C 1 ‖ ̂

 z (0 , . ) ‖ L 2 e 
−νt + C 2 sup 

t� 0 

| d(t) | , t ∈ [0 , + ∞ ) . 

(86) 

�

Hence, if the input disturbance d(t) is bounded, we can con- 

lude from Theorems 2 and 3 that, starting from any arbitrary ini- 

ial condition in L 2 , the states of the (linearized) physical system 

nd the (linearized) controller are bounded in L 2 and that H(t, L ) 

symptotically converges to the set point 

lim 

→∞ 

H(t, L ) = H 

∗
L , (87) 

uch that the feedforward control objective is achieved as soon as 

he initial transients have vanished. 

As it is justified in many recent publications (see e.g. [3 , Theo- 

em 6.6] and [5 , Section 2.1]), it is also worth noting that the con-

itions (a1)–(a3) and (b) for the L 2 -stability of the linearized sys- 

em, may also be sufficient to establish the H 

2 -stability of the over- 

ll nonlinear system in a neighbourhood of the steady-state. In the 

onlinear case, various smallness assumptions have to be made, 

n particular on the initial conditions and on the disturbances. A 

igorous detailed analysis of this generalization is however deli- 

ate and would go far beyond the scope of this article. We will 
47 
imit ourselves here to a more pragmatic approach which consists 

n checking the applicability and the effectiveness of the method in 

he realistic nonlinear applications considered in the rest of the pa- 

er. In these nonlinear applications, it will be seen that the domain 

f stability that emerges empirically from the simulations may be 

airly large. 

To conclude this section, let us also mention that sufficient ISS 

onditions can also be established for the C 1 -norm but the analysis 

s still more intricate. The interested reader is referred, among oth- 

rs, to the recent publications [22 , Section 9.4], [5,11,33] and [26 , 

ections 5.3 and 5.4]. However, it must be said that in many 2 × 2 

hysical control systems of practical interest, the ISS conditions are 

quivalent for the H 

2 and C 1 norms. This will appear for instance 

n the next section where we apply our theory to the example of 

evel control in an open channel. 

. Application to level control in an open channel 

In the field of hydraulics, the flow in open channels is gener- 

lly represented by the Saint-Venant equations which are a typical 

xample of a 2 × 2 nonlinear hyperbolic system. 

We consider the special case of a pool of an open channel as 

epresented in Fig. 2 . We assume that the channel is horizontal 

nd prismatic with a constant rectangular section. 

The flow dynamics are described by the Saint-Venant equa- 

ions 

 t + Q x = 0 , 

 t + 

(
Q 

2 

H 

+ g 
H 

2 

2 

)
x + c f 

Q 

2 

H 

2 
= 0 . (88) 

here H(t, x ) represents the water level and Q(t, x ) the water flow

ate per unit of width in the pool while g denotes the gravitation 

onstant and c f is a dimensionless friction coefficient. This system 

s in the form (1), (2) with 

f (H, Q ) = 

Q 

2 

H 

+ g 
H 

2 

2 

and g(H, Q ) = c f 
Q 

2 

H 

2 
. (89) 

he system is subject to the following boundary conditions: 

(t, 0) = c g 

√ [
D (t) 

]
3 , 

Q(t, L ) = c g 

√ [
H(t, L ) − U(t) 

]
3 . (90) 

hese boundary conditions are given by standard hydraulic models 

f overshot gates (see Fig. 2 ). The first boundary condition imposes 

he value of the canal inflow rate Q(t, 0) as a function of the wa-

er head above the gate D (t) which is the measurable input distur- 

ance. The second boundary condition corresponds to the control 

vershot gate at the downstream side of the canal. The control ac- 

ion is the vertical elevation U(t) of the gate. In both models, c g 
s a constant discharge coefficient. Let us also remark that these 

oundary conditions are written in the form (38) as follows: 

(H(t, 0) , Q(t, 0)) = 

(
c −1 

g Q(t, 0) 
)

2 / 3 = D (t) , 

β(H(t, L ) , Q(t, L )) = H(t, L ) −
(
c −1 

g Q(t , L ) 
)

2 / 3 = U(t ) . (91) 
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2 From now on, when it does not lead to confusion, we often drop the argument 

x to simplify the notations. 
For a constant gate position U(t) = U 

∗ > 0 ∀ t and a constant

nflow rate Q(t, 0) = Q 

∗ > 0 ∀ t, a steady state is a time-invariant

olution H 

∗(x ) , Q 

∗ given by: 

(t, x ) = H 

∗(x ) and Q(t, x ) = Q 

∗ ∀ t, x ∈ [0 , L ] , (92a) 

 

∗(L ) = U 

∗ + (c −1 
g Q 

∗) 2 / 3 , (92b) 

 

∗(x ) solution of ( g H 

∗3 (x ) − Q 

∗2 ) H 

∗
x (x ) + c f Q 

∗2 = 0 (92c) 

The existence of a solution to (92c) requires that g H 

∗3 (L ) 
 = Q 

∗2 .

f g H 

∗3 (L ) > Q 

∗2 , then (92c) has a solution (note that H 

∗(x ) is then

 decreasing function of x over [0 , L ] ) and the steady state flow

s subcritical (or fluvial). In such case, according to the physical 

vidence, H 

∗(x ) is positive : 

 

∗(x ) > 0 for all x ∈ [0 , L ] , (93) 

nd satisfies the following inequality: 

 < g H 

∗3 (x ) − Q 

∗2 , ∀ x ∈ [0 , L ] . (94)

n the case where g H 

∗3 (L ) < Q 

∗2 , the steady state, if it exists, is

aid to be supercritical (or torrential). We do not consider that case 

n the present article. 

The control objective is to regulate the level H(t, L ) at the set 

oint H 

∗
L , by acting on the gate position U(t) . More precisely, it is

equested to adjust the control U(t) in order to have H(t, L ) = H 

∗
L 

 t in spite of the variations of the disturbing inflow rate measured 

y the signal D (t) . 

To solve this control problem, the design of linear feedforward 

ontrollers based on simplified linear models of open channels 

ith uniform steady states, as we have introduced in Section 3 , 

as addressed previously in [6] , [24 , Chapters 9 and 10] and [25] .

n this article, we extend these results to the general case of open 

hannels with non linear Saint-Venant dynamics and non uniform 

teady-states. 

On the basis of our previous discussions, the feedforward con- 

rol law is defined as follows: 

(t) = H 

∗
L − (c −1 

g 
̂ Q (t, L )) 2 / 3 (95) 

here ̂ Q (t, L ) is computed with the auxiliary system dynamics as 

n (39), (40) : ̂ 

 t + 

̂ Q x = 0 , 

̂ 

 t + 

( ̂ Q 

2 ̂ H 

+ g ̂
 H 

2 

2 

)
x 

+ c f 
̂ Q 

2 ̂ H 

2 
= 0 , (96) 

̂ 

 (t, 0) = c g 

√ [
D (t) 

]
3 , ̂ 

 (t, L ) = H 

∗
L , (97) 

o simplify the notations, we define the steady state water velocity 

 

∗(x ) = 

Q 

∗

H 

∗(x ) 
> 0 ∀ x ∈ [0 , L ] . (98)

ith this notation, the subcritical condition (94) is written: 

 H 

∗(x ) − V 

∗2 (x ) > 0 ∀ x ∈ [0 , L ] . (99)

ow, from the linearization of the control system (88), (90), (95) –

97) , we have, in this application, the following matrices A (x ) and

 (x ) : 

 (x ) = 

(
0 1 

g H 

∗(x ) − V 

∗2 (x ) 2 V 

∗(x ) 

)
, (100) 

 (x ) = 

(
0 0 

−3 

g H ∗
V ∗ V 

∗
x (x ) 2 

g H ∗

V ∗2 V 

∗
x (x ) 

)
. (101) 
48 
he eigenvalues of the matrix A (x ) are 

1 (x ) = V 

∗ + 

√ 

gH 

∗(x ) and − λ2 (x ) = V 

∗ −
√ 

gH 

∗(x ) . 

(102) 

sing these eigenvalues in the matrix N(x ) defined in (63) , the 

ext step is to select the functions p 1 (x ) and p 2 (x ) of the matrix

 (x ) defined in (65) to build the Lyapunov function candidate (64) .

In this application we shall see that it is sufficient to take p 1 =
p 2 = constant. With p 1 = p 2 = 

1 
2 , the matrix P (x ) is 

 (x ) = 

(
g H 

∗(x ) + V 

∗2 (x ) −V 

∗(x ) 
−V 

∗(x ) 1 

)
. (103) 

t is readily checked that, for all x ∈ [0 , L ] , this matrix is positive

efinite (since det P (x ) = g H 

∗(x ) ). It follows that 2 

(x ) = P (x ) A (x ) = 

(
−( g H 

∗ − V 

∗2 ) V 

∗ g H 

∗ − V 

∗2 

g H 

∗ − V 

∗2 V 

∗

)
. (104) 

oreover, we have 

 (x ) B (x ) + B 

T (x ) P (x ) = 

(
6 gH 

∗V 

∗
x −5 

gH ∗
V ∗ V 

∗
x 

−5 

gH ∗
V ∗ V 

∗
x 4 

gH ∗

V ∗2 V 

∗
x 

)
, (105)

hile the matrix −M x (x ) is as follows: 

M x (x ) = 

(
−3 V 

∗2 V 

∗
x 

g H ∗+2 V ∗2 

V ∗ V 

∗
x 

g H ∗+2 V ∗2 

V ∗ V 

∗
x −V 

∗
x 

)
. (106) 

hen we have 

M x (x ) + P (x ) B (x ) + B 

T (x ) P (x ) 

= 

( 

(6 g H 

∗ − 3 V 

∗2 ) V 

∗
x 

−4 g H ∗+2 V ∗2 

V ∗ V 

∗
x 

−4 g H ∗+2 V ∗2 

V ∗ V 

∗
x 

(
4 g H ∗−V ∗2 

V ∗2 

)
V 

∗
x 

) 

. (107) 

nder the subcritical condition (99) , this matrix is positive definite 

or all x ∈ [0 , L ] because V ∗x > 0 and the determinant is 

V 

∗
x 

V 

∗2 

[ 
4( g H 

∗) 2 + V 

∗2 (2 g H 

∗ − V 

∗2 ) + 4 g H 

∗( g H 

∗ − V 

∗2 ) 
] 

> 0 . (108)

herefore the stability condition (b) is satisfied. Let us now address 

he boundary stability conditions relative to the boundaries. For 

hat purpose, from (90), (91), (97) , we derive the boundary con- 

itions of the linear error system which are 

˜ 
 (t, 0) = 0 ( i.e. αh = 0 , αq 
 = 0) , 

˜ q (t, L ) = βL ̃
 h (t, L ) with βL = 

3 

2 

(
c 2 g Q 

∗
)

1 / 3 

( i.e. βq 
 = 0 , βh = −βL βq ) . (109) 

e can check that the stability conditions (a1)–(a3) are verified. 

ndeed we have: 

a1) ⇐⇒ 

λ2 (0) 

λ1 (0) 
= 

√ 

gH 

∗(0) − V 

∗(0) √ 

gH 

∗(0) + V 

∗(0) 
< 1 . 

a2) ⇐⇒ 

(
λ1 (L ) − βL 

λ2 (L ) + βL 

)2 

< 

λ1 (L ) 

λ2 (L ) 

⇐⇒ 

( √ 

gH 

∗(L ) + V 

∗(L ) − βL √ 

gH 

∗(L ) − V 

∗(L ) + βL 

) 2 

< 

√ 

gH 

∗(L ) + V 

∗(L ) √ 

gH 

∗(L ) − V 

∗(L ) 

⇐⇒ −V 

∗(L ) β2 
L −

(
gH 

∗(L ) − V 

∗2 (L ) 
)
(2 βL − V 

∗(L )) > 0 . 

This inequality is satisfied if 2 βL > V 

∗(L ) . 
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Fig. 3. Initial water level profile and final water level profiles with and without 

control. 
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Fig. 4. Input and output water flow rates per unit of width. 

Fig. 5. Time evolution of output water level H(t, L ) . 
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a3) ⇐⇒ 

λ2 (L ) 

λ1 (L ) 
= 

√ 

gH 

∗(L ) − V 

∗(L ) √ 

gH 

∗(L ) + V 

∗(L ) 
< 1 . 

urthermore, in this special case of Saint-Venant equations, it is 

orth noting that conditions (a1)–(a3) and (b) ensure exponential 

tability not only in L 2 but also in C 0 for the linearized system (and

hus locally in C 1 for the nonlinear system). This property follows 

irectly from Theorem 3.2 and Corollary 1 in [18] (see also [17] ). 

his means that, if the disturbance D (t) is bounded, then all the 

nternal signals of the control system are also guaranteed to be 

ounded. 

In this example of an open channel, we thus see that the feed- 

orward control can completely remove the effect of the distur- 

ance while maintaining the system stability. This feedforward 

ontrol analysis can be extended to the case of a channel with a 

pace varying slope by using the Lyapunov function proposed for 

nstance in [19] and [20] . It is however important to notice that, 

n real life applications, feedforward control is most often not used 

lone but in combination with feedback control. Indeed feedback 

ontrol may be required to reduce the effect of unmeasured dis- 

urbances and modelling uncertainties that are always present in 

ny real process. For a channel represented by Saint-Venant equa- 

ions, with arbitrary friction and slope, the combination of feedfor- 

ard control and PI feedback control is addressed in reference [19] . 

n this reference, using a local dissipative entropy, explicit stability 

onditions on the PI parameters are given that are independent of 

he slope, the friction and the length of the channel and which 

chieve the asymptotic compensation of input disturbances by a 

eedforward action. 

Let us now illustrate this feedforward control design with a nu- 

erical simulation. The simulation is done with the ‘hpde’ solver 

31] . We consider a pool with the following parameters: 

ength: L = 50 0 0 (m) , 

riction coefficient: c f = 0 . 01 , 

ischarge coefficient: c g = 2 m 

1 / 2 s −1 . 

At the initial time ( t = 0 ), the system is at steady state with a

onstant flow rate per unit of width Q 

∗ = 2 m 

2 / s and a boundary

ater level H(0 , L ) = 5 m. The initial steady state profile H 

∗(x ) of

he water level is shown in Fig. 3 (dotted red curve). 

The system is subject to an isolated input disturbance which 

ccurs around t = 15 min and is shown in Fig. 4 . The inflow rate

er unit of width Q(t, 0) is increased by about 25%, from 2 to 2.5

 

2 / s (red curve). In this figure, we can also see the time evolution
49 
f the output flow rate Q(t, L ) with and without the feedforward 

ontrol. 

The control result is shown in Fig. 5 . With the feedforward con- 

rol we see that the water level H(t, L ) (blue curve) remains con- 

tant at the set point H 

∗
L 

= 5 m despite the inflow disturbance. In

ontrast, without control, the same disturbance leads to an output 

evel increase of about 16 cm (grey curve). The final steady state 

rofile reached after the passage of the disturbance is illustrated 

n Fig. 3 . 

Finally, let us also compute the parameter βL for this example. 

or the initial steady-state, we have: 

 

∗ = 2 m 

2 /s , H 

∗
L = 5 m , V ∗L = 0 . 4 m/s and βL = 

3 

2 

(
c 2 g Q 

∗
)

1 / 3 = 3 . 

(110) 

or the final steady-state, we have: 

 

∗ = 2 . 5 m 

2 /s , H 

∗
L = 5 m , V 

∗
L = 0 . 5 m/s and 

βL = 

3 

2 

(
c 2 g Q 

∗
)

1 / 3 = 3 . 23 . (111) 

n both cases, we see that the stability condition 2 βL > V ∗
L 

holds. 

The above simulation is for an ideal situation where the initial 

ondition is supposed to be perfectly known such that the feed- 

orward controller can be exactly initialized (which is obviously 

nrealistic in real life implementations). Moreover, the disturbance 

rives the system from one steady-state to another one. 

These limitations are removed in the next simulation whose re- 

ults are shown in Figs. 6 and 7 . Here we assume that the control

tarts at time t = −75 min and that, for t � 0 , the physical system



G. Bastin, J.-M. Coron and A. Hayat European Journal of Control 57 (2021) 41–53 

Fig. 6. Input and output water flow rates per unit of width. (For interpretation of 

the references to color in this figure, the reader is referred to the web version of 

this article.) 

Fig. 7. Time evolution of output water level H(t, L ) . 
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s initially at steady-state but the initial condition is unknown so 

hat there is an initial error in the control law, and consequently 

n initial transient occurs. Moreover, we assume that, from t = 0 , 

 persistent oscillating disturbance is applied to the system (red 

urve in Fig. 6 ). The performance of the control can be appreci- 

ted in Fig. 7 . In particular, we can see that the convergence of the

utput water level H(t, L ) to the set point (blue curve in Fig. 7 )

s achieved as soon as the initial transient has vanished, indepen- 

ently of the big permanent oscillating input disturbance shown 

n Fig. 6 (red curve). In contrast, without control, the same distur- 

ance produces an oscillation of the output level with an ampli- 

ude of about 10 cm (grey curve in Fig. 7 ). 

Let us also remark that systematic simulations of this kind 

ould show that the domain of stability that emerges empirically 

s fairly large and that the feedforward control works with quite 

ig disturbances and initial errors. 

. Feedforward control in navigable rivers 

In navigable rivers the water is transported along the channel 

nder the power of gravity through successive pools separated by 

ontrol gates used for the control of the water level as illustrated 

n Fig. 8 . 

In this section, for simplicity, we consider the ideal case of a se- 

uence of n identical pools having the same length L and the same 

ectangular cross section. The channel dynamics are described by 

he following set of Saint-Venant equations 

∂ t H + ∂ x Q = 0 , 
i i 

50 
∂ t Q i + ∂ x 

(
Q 

2 
i 

H i 

+ g 
H 

2 
i 

2 

)
+ c f Q 

2 
i = 0 . i = 1 , . . . , n, (112) 

nd the following set of boundary conditions 

 1 (t, 0) = c g 

√ [
D o (t) 

]
3 , 

Q i (t, 0) = Q i −1 (t, L ) i = 2 , . . . , n, 

Q i (t, L ) = c g 

√ [
H i (t, L ) − U i (t) 

]
3 i = 1 , . . . , n, (113) 

here H i and Q i denote the water level and the flow rate per unit 

f width in the i th pool, U i is the position of the i th gate which

s used as control action, c f and c g are constant friction and gate 

hape coefficients respectively, D o (t) is the water head above the 

nput gate considered here as the external measurable disturbance. 

urthermore it is assumed that the water levels H i (t, L ) are mea- 

urable at the downstream side of the pools. 

Let us now assume that the objective is to find a set of feed- 

orward control laws U i (t) , function of the measured disturbance 

 o (t) and the measurable levels H i (t, L ) , such that each output

 i (t) = H i (t, L ) − H 

∗
L 

is identically zero. 

In this framework, each pool can be considered as a dynamical 

ystem with a controlled output Y i (t) = H i (t, L ) − H 

∗
L 

and a distur-

ance input D i −1 (t) . It is then natural to design the feedforward 

ontrol laws U i for each pool on the pattern of the control which 

as derived in the previous section for a single pool, as follows: 

or i = 1 , . . . , n, 

 t ̂
 H i + ∂ x ̂  Q i = 0 , (114a) 

 t ̂
 Q i + ∂ x 

( ̂ Q 

2 
i ̂ H i 

+ g ̂
 H 

2 
i 

2 

)
+ c f 

̂ Q 

2 
i ̂ H 

2 
i 

= 0 , (114b) 

̂ 

 i (t, L ) = H 

∗
L , (114c) 

̂ 

 i (t, 0) = c g 

√ [
D i −1 (t) 

]
3 , (114d) 

 i (t) = H i (t, L ) − U i (t) , (114e) 

 i (t) = H 

∗
L −

(
c −1 

g 
̂ Q i (t, L ) 

)
2 / 3 . (114f) 

heorem 4. For the control system (112) –(114) , for all i = 1 , . . . , n,

ssume that the initial conditions satisfy 

 i (0 , x ) = 

̂ H i (0 , x ) , Q i (0 , x ) = 

̂ Q i (0 , x ) , ∀ x ∈ [0 , L ] , (115)

ith H i (0 , L ) = ̂

 H i (0 , L ) = H 

∗
L . Then, for all positive t and for all i =

 , . . . , n, it holds that Y i (t) = H i (t, L ) − H 

∗
L 

= 0 . �

The proof of this theorem is clearly an immediate consequence 

f the proof of Theorem 1 . 

In order to discuss the system stability we introduce the follow- 

ng notations: 

For i = 1 , . . . , n, 

h i (t, x ) = H i (t, x ) − H 

∗(x ) , q i (t, x ) = Q i (t, x ) − Q 

∗, 
ˆ h i (t, x ) = 

̂ H i (t, x ) − H 

∗(x ) , ˆ q i (t, x ) = 

̂ Q i (t, x ) − Q 

∗, 
˜ h i (t, x ) = h i (t, x ) − ˆ h i (t , x ) , ˜ q i (t , x ) = q i (t, x ) − ˆ q i (t, x ) , 

˜ z i = 

(
˜ h i 

˜ q i 

)
, ˆ z i = 

(
ˆ h i 

ˆ q i 

)
. 

(116) 
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Fig. 8. Navigable river. 
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he linear error system is written 

 t ̃  z i + A (x ) ∂ x ̃  z i + B (x ) ̃ z i = 0 , i = 1 , . . . , n, (117)

ith the boundary conditions 

˜ 
 i (t, 0) = 0 , 

˜ q i (t, L ) = βL ̃
 h i (t, L ) , i = 1 , . . . , n. (118) 

ere we see that the error subsystems corresponding to each pool 

re decoupled. Therefore the stability of the global error system 

117), (118) directly results from the stability of the error system 

or a single pool which was established in Section 5 . 

On the other hand, the linearization of the controller system is 

ritten 

 t ̂  z i + A (x ) ∂ x ̂  z i + B (x ) ̂ z i = 0 , i = 1 , . . . , n, (119)

ith the boundary conditions 

ˆ 
 1 (t, 0) = α0 d(t) , 

ˆ 
 i (t, L ) = 

ˆ q i +1 (t, 0) − ˜ q i (t, L ) , i = 1 , . . . , n − 1 , 

ˆ 
 i (t, L ) = 0 , i = 1 , . . . , n. (120) 

ere, we remark that the subsystems corresponding to each pool 

re interconnected through the boundary conditions and their re- 

pective stabilities cannot be considered separately. Therefore we 

ntroduce the following Lyapunov function candidate 

 = 

n ∑ 

i =1 

∫ L 

0 

ω i 

(
ˆ z T i P (x ) ̂ z i 

)
dx (121) 

here ω i are positive coefficients to be determined. 

The time derivative of this Lyapunov function along the system 

olutions is then as follows: 

dV 

dt 
= I(t) + B(t) (122) 

ith the “internal” term 

(t) = −
n ∑ 

i =1 

ω i 

∫ L 

0 

ˆ z T i 

(
− M x (x ) + B 

T (x ) P (x ) + P (x ) B (x ) 
)

ˆ z i dx 

(123) 

nd the “boundary” term 

(t) = −
n ∑ 

i =1 

ω i 

[ 
z T i M(x ) z i 

] 
L 
0 . (124) 

he matrices M(x ) and −M x (x ) + B T (x ) P (x ) + P (x ) B (x ) are those

efined in the previous section by Eqs. (104) and (107) respectively. 

t follows directly that the interior term is negative : I(t) < 0 . 

oreover, using the definition of M(x ) and the boundary condi- 

ions (120) , the boundary term B(t) may be written as follows: 

(t) = −ω 1 V 

∗(0)(gH 

∗(0) − V 

∗2 (0)) h 

2 
1 (t, 0) − ω n V 

∗(L ) ̂  q 2 n (t, L ) 

−
n −1 ∑ 

i =1 

(
ˆ q i (t, L ) ˆ h i +1 (t, 0) 

)
�i 

(
ˆ q i (t, L ) 

ˆ h i +1 (t, 0) 

)
+ 2 ω 1 α0 (gH 

∗(0) − V 

∗2 (0)) ̂ h 1 (t, 0) d(t) 

+ ω 1 α
2 
0 V 

∗(0) d 2 (t) 
51 
+ 

n −1 ∑ 

i =1 

ω i +1 V 

∗(0) 
[ 

− 2 ̂

 q i (t, L ) ̃  q i (t, L ) + V 

∗(0) ̃  q 2 i (t, L ) 
] 

(125) 

here for i = 1 , . . . , n − 1 

i = 

(
ω i V 

∗(L ) − ω i +1 V 
∗(0) −ω i +1 (gH 

∗(0) − V ∗2 (0)) 
−ω i +1 (gH 

∗(0) − V ∗2 (0)) ω i +1 (gH 

∗(0) − V ∗2 (0)) V ∗(0) 

)
. 

(126) 

ssume that the positive coefficients ω i are selected according to 

ω i +1 

ω i 

= ε (127) 

here ε is a positive constant to be determined. Then 

i = ω i 

(
V 

∗(L ) − εV 

∗(0) −ε(gH 

∗(0) − V 

∗2 (0)) 
−ε(gH 

∗(0) − V 

∗2 (0)) ε(gH 

∗(0) − V 

∗2 (0)) V 

∗(0) 

)
.

(128) 

sing this expression, it can be seen that, under the subcritical 

ondition (99) , each matrix �i is positive definite provided ε is se- 

ected such that 

 < 

V 

∗(0) V 

∗(L ) 

gH 

∗(0) 
. (129) 

ence it follows that the (linearized) controller system (119), (120) , 

ith inputs d(t) and ˜ q i (t, L ) , is L 2 -input-to-state stable with an es-

imate of the form 

 ̂

 z (t, ·) ‖ L 2 � C 1 ‖ ̂

 z (t , 0) ‖ L 2 e 
−νt + C 2 sup 

t� 0 

[ 
| d(t ) | + 

n −1 ∑ 

i =1 

| ̃  q i (t, L ) | 
] 

(130) 

here ν and C i (i = 1 , 2) are positive constants. Thus, here again,

e can conclude that the state of the system is bounded and that 

he feedforward control objective is achieved. Let us now illustrate 

he control performance through simulation experiments. 

.1. Simulation experiments 

We consider a channel with two identical successive pools as 

hown in Fig. 8 , with the following parameters: 

ength: L = 50 0 0 (m) , 

riction coefficient: c f = 0 . 008 , 

ischarge coefficient: c g = 2 m 

1 / 2 s −1 . 

he results of a simulation of the feedforward control is given in 

ig. 9 with set points H 

∗
L = 5 m in the first pool and H 

∗
L = 4 . 9 m in

he second pool. 

At the initial time ( t = 0 ), the system is at steady state with

 constant flow rate per unit of width Q 

∗ = 2 m 

2 / s and bound-

ry water levels H 1 (0 , L ) = 5 m and H 2 (0 , L ) = 4 . 9 m respectively.

he system is subject to an input disturbance which occurs around 

 = 15 min and is shown in Fig. 9 a (red curve). This disturbance

akes the form of a pulse starting from the steady-state value 2 
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Fig. 9. Simulation of feedforward control in a channel with two successive pools: = disturbance input, = first pool, = second pool. (For interpretation of the 

references to color in this figure, the reader is referred to the web version of this article.) 

Fig. 10. Reduced amplification of the flow oscillations with a modified feedforward controller: = disturbance input, = first pool, = second pool. 
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2 / s, then peaking at 2.5 m 

2 / s (i.e. an increase of about 25%),

nd finally stabilizing at 2.2 m 

2 / s. In this figure, we can also see

he time evolution of the flow rates per unit of width Q(t, L ) in

he two pools under the feedforward control (blue and magenta 

urves). The control actions computed by the two feedforward con- 

rollers are shown in Fig. 9 c. Obviously, as expected, we can see in
52 
ig. 9 b that the feedforward control is perfectly efficient and that 

he water levels H(t, L ) in the two pools are totally insensitive to 

he disturbance. 

The simulation is done with a friction coefficient which is in 

he range of usual values for natural channels and rivers (for a suf- 

ciently wide channel and a water depth of about 5 m, the friction 
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oefficient c f = 0.008 is equivalent to a Manning-Strickler coeffi- 

ient K s 
 27 m 

1 / 3 /s). In this case, there is however a drawback,

hat is very visible in Fig. 9 a, under the form of an amplification

f the oscillations of the flow rates in the downstream direction. 

his can be detrimental in some practical applications. In order to 

itigate this phenomenon, some filtering of the control must be 

pplied. 

A simple very natural and efficient way to implement such fil- 

ering is to fictitiously increase the value of the friction coeffi- 

ient in the feedforward controller. This strategy is illustrated in 

ig. 10 where the control laws (114) are implemented with a fake 

verestimated value of the friction ˆ c f = 0 . 024 . The nice perfor- 

ance of this control can be appreciated in Fig. 10 a and b. Indeed,

t can be observed that, in this case, the flow rates are no longer

mplified in the downstream direction while the water levels re- 

ain nevertheless rather insensitive to the disturbance effect. 

. Conclusions 

In this paper, we have addressed the design of feedforward con- 

rollers for a general class of 2 × 2 hyperbolic systems with a dis- 

urbance input located at one boundary and a control actuation 

t the other boundary. The goal is to design a feedforward con- 

rol that makes the system output insensitive to a measured dis- 

urbance input. 

The problem was first stated and studied in the frequency do- 

ain for a simple linear system. Then, our main contribution was 

o extend the theory, in the time domain, to general nonlinear hy- 

erbolic systems. First it has been shown that there exists an ideal 

ausal feedforward dynamic controller that achieves perfect con- 

rol. In a second step, sufficient conditions have been given under 

hich the controller, in addition to being causal, ensures the sta- 

ility of the overall control system. 

The method has been illustrated with an application to the 

ontrol of an open channel represented by Saint-Venant equations 

here the objective is to make the output water level insensitive 

o the variations of the input flow rate. In the last section, we have

iscussed a more complex application to a cascade of pools where 

 blind application of perfect feedforward control can lead to detri- 

ental oscillations. A pragmatic way of modifying the control law 

o solve this problem has been proposed and validated with a sim- 

lation experiment. 

Finally, we would also like to mention that the application to 

he Saint-Venant equations with hydraulic gates can be transposed 

o gas pipelines with compressors described by the isentropic Euler 

quations. The interested reader can consult the Refs. [4,10,13,14] . 
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