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Abstract
We consider the problem of boundary feedback control of single-input-single-output
one-dimensional linear hyperbolic systems when sensing and actuation are anti-
located. The main issue of the output feedback stabilization is that it requires dynamic
control laws that include delayed values of the output (directly or through state
observers) which may not be robust to infinitesimal uncertainties on the character-
istic velocities. The purpose of this paper is to highlight some features of this problem
by addressing the feedback stabilization of an unstable open-loop system which is
made up of two interconnected transport equations and provided with anti-located
boundary sensing and actuation. The main contribution is to show that the robustness
of the control against delay uncertainties is recovered as soon as an arbitrary small
diffusion is present in the system. Our analysis also reveals that the effect of diffusion
on stability is far from being an obvious issue by exhibiting an alternative simple
example where the presence of diffusion has a destabilizing effect instead.
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1 Introduction

Theoutput feedback stabilizationof single-input-single-output (SISO)one-dimensional
linear hyperbolic systems is a subject that has been widely studied in the scientific
literature since the nineties when both actuation and sensing are located at the bound-
aries. In the case where the control input and the measured output are co-located at
the same boundary, the problem is now relatively well understood and has given rise
to numerous publications, both in the linear case [1, 3] and in the nonlinear case [5,
13], in particular in fluid mechanics for Saint-Venant equations [5, 10, 16] or Euler
equations [14], to name just a few of the many publications on the subject.

In contrast, when the actuator acts through one boundary, whereas the sensor is
placed at the other boundary, the output feedback stabilization problem can become
much more complicated and remains largely unexplored in the literature. As Krstic et
al. pointed out in [18], the difficulty arises from the fact that “the input–output oper-
ator is no longer passive (…) which precludes the application of simple controllers”.
Anti-located sensing and actuation requires to use dynamic compensators that include
delayed values of the output (directly or through state observers). Ameaningful exam-
ple is the output feedback stabilization of a simple unstable wave equation addressed
in [18] using a separation principle that combines a state feedback control with a state
observer. This approach is extended to the adaptive stabilization of more general lin-
ear hyperbolic systems with unknown parameters in [2, 7]. Recently, an experimental
application to the control of hydraulic waves is reported in [23], where the actuation
is provided by a moving boundary, while the water level is measured at the other
boundary.

We can also mention references [4, 17] which deal with MIMO systems with
anti-located multivariable sensors and actuators for n × n linear hyperbolic systems
expressed in a characteristic form having a very specific input/output structure.

It is important to note that the use of control laws containingdelayedoutput feedback
or state observers can, however, prove to be problematic because it can be strongly
sensitive to uncertainties on the characteristic velocities of the plant model [8, 12, 20].
This happens when the control design relies on a (supposed) exact knowledge of some
characteristic velocities that must be exactly compensated in the control law such that
the stability can be destroyed by arbitrarily small modelling uncertainties.

In this paper, our purpose is to highlight some features of this problemby addressing
the feedback stabilization of an unstable open-loop system which is made up of two
interconnected transport equations and provided with anti-located boundary sensing
and actuation.

Our paper is organized as follows. The control problem is described in Sect. 2. It
is first shown that the considered control system is open loop unstable and cannot be
stabilized by a simple proportional output feedback. Then, it is shown that the system
can be stabilized by a dynamic controller that involves a delayed output feedback.
However, this control turns out not to be robust with respect to delay uncertainties
precisely because the control requires a (utopian) exact knowledge of the transport
velocity.

The main contribution of this paper is to show that the robustness of the control
against delay uncertainties is recovered as soon as an arbitrary small diffusion is
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Fig. 1 The structure of the open-loop control system considered in this paper

present in the system. For that purpose, in Sect. 3, it is first assumed that the considered
plant is subject to a slight phenomenon of diffusion, interpreted as a viscosity and the
corresponding (unstable) input–output transfer function is computed. Then, in Sects. 4
and 5,we show that the dynamic output (non-robust) feedback designed for the inviscid
case also stabilizes exponentially the viscous system when the (unknown) diffusion
is small, and that, in this case, the control proves to be perfectly robust, even if the
diffusion is almost negligible. Interestingly, an upper bound on the decay rate appears
when adding a small viscosity, and this upper bound is uniform with respect to the
diffusion parameter η when it is small, while for the unperturbed system with η = 0
the decay rate is infinite (the system is finite-time stable).

Our analysis in Sects. 4 and 5 also reveals that the effect of diffusion on stability is
far from being an obvious issue, contrary to what one might expect. It is indeed well
known that, in hyperbolic systems, the presence of diffusion (or friction) can have a
destabilizing as well as a stabilizing effect (see, for instance, the references [11, 22]).
This issue is further discussed in Sect. 6 where we present an example of another
simple hyperbolic system which simplifies the previous case and for which, however,
the same diffusion term destroys the stability instead of strengthening it.

Some final conclusions are given in Sect. 7.

2 Description of the control problem

We consider the open-loop control system represented in Fig. 1. The system is made
up of the positive feedback interconnection of two identical transport systems. The
system dynamics are described in the time domain by the following equations:

∂t y1(t, x) + υ∂x y1(t, x) = 0, (1a)

∂t y2(t, x) + υ∂x y2(t, x) = 0, (1b)

y1(t, 0) = y2(t, 1) +U (t), (1c)

y2(t, 0) = y1(t, 1), (1d)

Y (t) = y1(t, 1). (1e)

whereU (t) is the control input and Y (t) is the measurable output. In the classical pure
transport equations (1a) and (1b), the parameter υ > 0 denotes the transport velocity.
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In the frequency domain, it is well known that the transfer function of the transport
systems (1a) and (1b) is

fo(s) = e−sτ with the time delay τ = 1

υ
, (2)

where s denotes the Laplace complex variable.
It follows that the overall input–output transfer function of the open-loop system

(1) is

G(s) = Y(s)

U(s)
= fo(s)

1 − f 2o (s)
= esτ

e2sτ − 1
, (3)

where Y(s) and U(s) denote the Laplace transforms of the output Y (t) and the input
U (t), respectively.

The poles of the system are the roots of the characteristic equation

e2sτ − 1 = 0. (4)

This open-loop control system is clearly not asymptotically stable since all the poles
are located on the imaginary axis.

In order to illustrate the challenge that arises when actuation and sensing are anti-
located, we shall first show that, despite its apparent simplicity, this unstable system
cannot be stabilized with a simple proportional output feedback, i.e. with a static
proportional controller of the form

U (t) = −2kpY (t) (5)

where kp �= 0 is a control tuning parameter.
In the frequency domain, for the system (3)with the control law (5) the characteristic

equation of the closed-loop system is:

e2sτ + 2kpe
sτ − 1 = 0. (6)

Solving this equation for esτ , we get

esτ = −kp ±
√
1 + k2p. (7)

Then, for any kp �= 0 there is an infinity of system poles σ + iω lying on two vertical
lines with real parts:

σ = υ ln
(√

1 + k2p + |kp|
)

> 0

and σ = υ ln
(√

1 + k2p − |kp|
)

< 0. (8)
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It follows that the unstable system (3) cannot be stabilized with the static controller
(5).

Let us now show that the system can actually be stabilized by a dynamic controller
that involves a delayed output feedback.

From (3), it follows that the input–output dynamics of the system (1) in the time
domain can alternatively be represented by the delay-difference equation

Y (t) − Y (t − 2τ) = U (t − τ). (9)

A simple and natural candidate for a stabilizing feedback control law is then

U (t) = −2k1Y (t) − k2Y (t − τ) (10)

where k1 and k2 are control tuning parameters. With this control law, the closed-loop
dynamics are

Y (t) + 2k1Y (t − τ) + (k2 − 1)Y (t − 2τ) = 0. (11)

Clearly, we can conclude that the controller (10) exponentially stabilizes the system
(1) if the tuning parameters k1 and k2 are selected such that the roots of the polynomial

w2 + 2k1w + (k2 − 1) (12)

are located inside the unit circle. However, this should be considered with caution
because it is well known that boundary feedback stabilization of hyperbolic systems
with delayed control may be sensitive to delay modelling errors (see e.g. [20]). To
clarify this point we consider the time domain representation of the dynamical control
law (10) defined as

∂t ŷ2(t, x) + υ∂x ŷ2(t, x) = 0,

ŷ2(t, 0) = y1(t, 1), (13)

U (t) = −2k1y1(t, 1) − k2 ŷ2(t, 1), (14)

where the transport equation (13) with transport velocity υ = 1/τ is equivalent to the
time delay τ of the control law (10). With this definition, the closed-loop system (1),
(13), (14) is then represented as follows:

∂t y1(t, x) + υ∂x y1(t, x) = 0, (15a)

∂t y2(t, x) + υ∂x y2(t, x) = 0, (15b)

∂t ŷ2(t, x) + υ∂x ŷ2(t, x) = 0, (15c)⎛
⎝
y1(t, 0)
y2(t, 0)
ŷ2(t, 0)

⎞
⎠ =

⎛
⎝

−2k1 1 −k2
1 0 0
1 0 0

⎞
⎠

︸ ︷︷ ︸
K

⎛
⎝
y1(t, 1)
y2(t, 1)
ŷ2(t, 1)

⎞
⎠ . (15d)
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Now, as proved in Appendix A, for the matrix K defined in (15d), it can be shown
that

ρ̄(K) = |k1| +
√
1 + k21 + |k2| � 1 for all (k1, k2) ∈ R

2, (16)

where ρ̄(K) is defined as follows:

ρ̄(K) := max
{
ρ(diag

{
e−iθ1 , e−iθ2 , e−iθ3

}
K); (θ1, θ2, θ3)

T ∈ R
3
}

, (17)

ρ(M) denoting the spectral radius of the matrix M . By [21] (see also [15, Chapter
9, Theorem 6.1] and [5, Chapter 3]), we know that ρ̄(K) < 1 is a necessary (and
sufficient) condition to have a stabilitywhich is robust against small uncertainties in the
characteristic velocities. Although the ideal closed-loop system (15) is exponentially
stable (with all the poles strictly located in the left half complex plane provided k1
and k2 are chosen accordingly), the stability can be destroyed by an arbitrarily small
difference in characteristic velocities between the plant equations (15a), (15b) and
the controller equation (15c). More precisely, if we assume that the physical transport
velocities are υ+ε1, υ+ε2 with ε1, ε2 representing uncertainties in the plant equations
(15a), (15b) rewritten as follows:

∂t y1(t, x) + (υ + ε1)∂x y1(t, x) = 0, (18a)

∂t y2(t, x) + (υ + ε2)∂x y2(t, x) = 0, (18b)

then the closed-loop system (15) with (15a), (15b) replaced by (18a), (18b) may
become unstable, with polesmoving to the right half complex plane even for arbitrarily
small εi perturbations.

Should this necessarily mean that the control law (10) with delayed feedback could
not be applied in practice? Our objective, in this paper, is exactly to prove the opposite!
Indeed, our main contribution will be to show that, even with the simple control law
(10), the robustness of the output feedback stabilization against delay uncertainties
can be recovered as soon as an arbitrary small diffusion is present in the system. Our
analysis will also reveal, however, that the effect on stability of adding an arbitrarily
small diffusion is far from obvious, contrary to what one might expect. Indeed, while
diffusion strengthens the robustness of the exponential stability for the 2× 2 problem
(18), it can also destroy the stability of similar simpler systems aswewill see in Sect. 6.

We shall consider the special case of a dead beat control where k1 = 0 and k2 = 1.
In that case the characteristic equation of the closed-loop inviscid system reduces to
e2sτ = 0, meaning that all the poles of the system have negative real parts that are
moved off to infinity. However, for that system we have

ρ̄(K) = √
2 (19)

showing a strict lack of robustness of the control w.r.t. delay inaccuracy.
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3 The open-loop control systemwith diffusion

We consider again a control system as represented in Fig. 1. However, we assume here
that the two transport systems are subject to a slight phenomenon of diffusion. The
system is therefore made up of the feedback interconnection of two identical transport
systems that are perturbed by a diffusion term which can be interpreted, for example,
as a viscosity in the case of a fluid. For simplicity and without loss of generality,
we assume a unit nominal transport velocity υ = 1. The dynamics of the open-loop
control system are therefore described in the time domain by the following equations:

∂t y1(t, x) + ∂x y1(t, x) − η∂2xx y1(t, x) = 0, (20a)

∂t y2(t, x) + ∂x y2(t, x) − η∂2xx y2(t, x) = 0, (20b)

y1(t, 0) = y2(t, 1) +U (t), (20c)

y2(t, 0) = y1(t, 1), (20d)

∂x y1(t, 1) = ∂x y2(t, 1) = 0 (20e)

Y (t) = y1(t, 1). (20f)

As above U (t) is the control input and Y (t) is the measurable output, while η > 0 is
the viscosity coefficient.

In the frequency domain, with y1(s, x) and y2(s, x) denoting the Laplace transforms
of y1(t, x) and y2(t, x), the system is written

sy1(s, x) + ∂xy1(s, x) − η∂2xxy1(s, x) = 0, (21a)

sy2(s, x) + ∂xy2(s, x) − η∂2xxy2(s, x) = 0, (21b)

y1(s, 0) = y2(s, 1) + U(s), (21c)

y2(s, 0) = y1(s, 1), (21d)

∂xy1(s, 1) = ∂xy2(s, 1) = 0 (21e)

Y(s) = y1(s, 1). (21f)

For any value of s, the solutions of the differential equations (21a), (21b) are written

yi (s, x) = Ai (s)e
λ1(s)x + Bi (s)e

λ2(s)x , i = 1, 2, (22)

where λ1(s), λ2(s) are the roots of the polynomial

ηλ2 − λ − s = 0, (23)

which implies that

λ1(s) = 1 + √
1 + 4ηs

2η
, λ2(s) = 1 − √

1 + 4ηs

2η
. (24)
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In (24) and in the following
√· denotes the principal value of the square root, which

is well defined except when 1+ 4ηs ∈ R−; however this particular case implies that s
is real and s ≤ −1/4η and therefore is negative and converges to −∞ when η → 0+.
We will see later on that this case can be considered separately. Using the solution
(22) and the boundary condition (21e), we have for each i = 1, 2,

Ai (s) + Bi (s) = yi (s, 0), (25)

λ1(s)Ai (s)e
λ1(s) + λ2(s)Bi (s)e

λ2(s) = 0, (26)

yi (s, 1) = Ai (s)e
λ1(s) + Bi (s)e

λ2(s). (27)

Eliminating Ai (s) and Bi (s)between these three equations,weget the transfer function
fη(s) of each viscous transport system:

fη(s) = yi (s, 1)

yi (s, 0)
= λ1(s) − λ2(s)

λ1(s)e−λ2(s) − λ2(s)e−λ1(s)
. (28)

Remark that in the notation fη, we use a subscript to emphasize the dependency on
the viscosity parameter η. Remark also that in the limit, in the absence of a viscosity
term (i.e. η = 0), we recover the transfer function (2): fo(s) = e−sτ .

It follows that the system (21) is equivalent to:

y1(s, 1) = fη(s)y1(s, 0), (29a)

y2(s, 1) = fη(s)y2(s, 0), (29b)

y1(s, 0) = y2(s, 1) + U(s), (29c)

y2(s, 0) = y1(s, 1), (29d)

Y(s) = y1(s, 1). (29e)

Eliminating yi (s, 0), yi (s, 1), (i = 1, 2), between these equations, we get that the
overall input–output transfer function of the open-loop system (20) is

G(s) = Y(s)

U(s)
= fη(s)

1 − f 2η (s)
. (30)

The poles of the system are the roots of the characteristic equation

f 2η (s) − 1 = 0. (31)

In particular, it can be checked that fη(0) = 1 for all η �= 0, which means that there is
a pole at the origin. Therefore, as in the inviscid case, the open-loop system (20) is not
asymptotically stable whatever the value of the viscosity η. As a matter of illustration,
in Fig. 2, we present the spectrum of the system for η = 0.1.

In the next section, we shall show that the system can be stabilized by output
feedback when the (unknown) viscosity is small and even almost negligible.
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Fig. 2 The spectrum of the open-loop system with viscosity η = 0.1

4 Output feedback stabilization of the viscous system

We now assume that the open-loop control system (20) is closed with a dead beat
output feedback controller

U (t) = −Y (t − 1). (32)

Note that this corresponds to the special case of the controller (10) where k1 = 0,
k2 = 1 and τ = 1/υ = 1. We know from Sect. 2 that, in this case, the inviscid
system is exponentially stable, but the stability is not robust to small perturbations in
the propagation speeds. We shall show here that the exponential stability remains in
the viscous system, and we shall check in Sect. 5 that, in addition, the exponential
stability is robust with small variations in the propagation speeds. In the frequency
domain, the closed-loop system (20), (32) is then:

y1(s, 1) = fη(s)y1(s, 0), (33a)

y2(s, 1) = fη(s)y2(s, 0), (33b)

ŷ2(s, 1) = e−s ŷ2(s, 0) (33c)

y1(s, 0) = y2(s, 1) − ŷ2(s, 1), (33d)

y2(s, 0) = y1(s, 1), (33e)

ŷ2(s, 0) = y1(s, 1), (33f)

From these equations, it follows that the characteristic equation of the closed-loop
system is:

f 2η (s) − fη(s)e
−s − 1 = 0. (34)
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Fig. 3 The spectrum Sη of the closed-loop system for η = 0.1

Our purpose is now to address the stability of this closed-loop system. For a given
value of the viscosity η, the spectrum Sη of the closed-loop system is the set of the
poles which are the roots of the characteristic equation (34):

Sη = {s : f 2η (s) − fη(s)e
−s − 1 = 0}. (35)

Moreover, the maximal spectral abscissa is defined as the supremum of the real parts
of the spectrum and denoted as follows:

ση = sup{Re(s) : s ∈ Sη}. (36)

As a matter of illustration, we present in Fig. 3 the spectrum of the closed-loop
system for η = 0.1.

The stability of the closed-loop system (33) can be deduced using the spectral
mapping theorem. See [15, Chapter 9, Theorem 3.5] and [19] in the case η = 0, and
reference [6] for the case η �= 0. In particular the system is exponentially stable if
(and only if) ση < 0.

Then, one of themain results of this paper is given in the following stability theorem.

Theorem 1 For any δ > 0, there exists η1 > 0 such that, for all η ∈ (0, η1), the
maximal spectral abscissa satisfies
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ση � − ln(2) + δ. (37)

�	
Conjecture 1 The bound ln(2) on the decay rate is optimal. More precisely, for any
δ > 0 and η1 > 0 there exists η ∈ (0, η1) such that the maximal abscissa satisfies

− ln(2) − δ � ση � − ln(2) + δ. (38)

�	
Remark 1 (Loss of continuity of the spectral abscissa)Conjecture 1 seems to beverified
when looking at the spectrum numerically (see Fig. 4). This would imply a loss of
continuity in the sense that any decay rate is achievable when η = 0. However, there
is a bound ln(2) as soon as η > 0, even if η is arbitrarily small.

In order to prove Theorem 1, it is useful to define the complex variable

z = √
1 + 4ηs, (39)

where we recall that
√· is the principal value of the square root. The functions λ1 and

λ2 become

λ1 = (1 + z)

2η
and λ2 = (1 − z)

2η
. (40)

Then, defining the function

Xη(z) = 1 + z

2
e−(1−z)/2η − 1 − z

2
e−(1+z)/2η, (41)

we get, using (28), that the characteristic equation (34) is equivalent to

X2
η(z) + ze−(z2−1)/4ηXη(z) − z2 = 0. (42)

Let us now observe that Xη(0) = 0. Consequently z = 0 is a root of equation (42) for
all η. This implies obviously that s = −1/4η ∈ Sη is a pole of the system (i.e. a root
of the characteristic equation (34)). Note that this pole tends to −∞ as η → 0+ so
this is a very stable pole for small (positive) η.

LetZη denote the set of nonzero roots of equation (42). Then, using definition (41)
and solving equation (42) with respect to Xη, we have that every z ∈ Zη satisfies the
equation

(1 + z)

z
e−(1−z)/2η − (1 − z)

z
e−(1+z)/2η = −e−(z2−1)/4η ±

√
e−(z2−1)/2η + 4. (43)

We now consider a sequence

(ηn)n∈N with 0 < ηn ∈ R, ∀n ∈ N and lim
n→+∞ ηn = 0+, (44)
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and an associated sequence

(sn)n∈N such that sn ∈ Sηn ,∀n ∈ N. (45)

In order to prove Theorem 1, we will look to the adherent points of the sequences
(sn)n∈N when n → +∞ (i.e. when ηn → 0+). By definition, we know that s̄ is an
adherent point of a sequence (sn)n∈N if and only if there exists a subsequence which
converges to s̄. With a slight abuse of notation, we will write

sn −→ s̄ or lim
n→+∞ sn = s̄ (46)

to signify that s̄ is an adherent point of a sequence (sn)n∈N, but it is implied that the
convergence in fact only relies on the adequate subsequence. This holds also for all
other sequences that are introduced later in this article.

The proof of Theorem 1 is built from the two following lemmas.

Lemma 1 Let (ηn)n∈N be a sequence of the form (44) and (zn)n∈N be any associated
sequence of elements ofZη. Let z̄ be an adherent point of the sequence (zn)n∈N. Then,

a) Re(z̄2) � 1
(
precisely: Re(z̄2) ∈ [−∞, 1] ); (47)

b) if Re(z̄2) = 1 then (Re(z̄))2 = 1 and Im(z̄) = 0. (48)

Proof The proof of this lemma is given in Appendix B. �	
Lemma 2 Let (ηn)n∈N be a sequence of the form (44) and (sn)n∈N be any associated
sequence of the form (45). Let s̄ be an adherent point of (sn)n∈N. Then,

Re(s̄) � − ln(2)
(
precisely: Re(s̄) ∈ [−∞,− ln(2)] )

. (49)

Proof Let s̄ be an adherence point of the considered sequence (sn)n∈N. We restrict to
a subsequence (still denoted (sn)n∈N) such that (sn)n∈N converges to s̄. Consider the
sequence

(zn)n∈N such that zn = √
1 + 4ηsn,∀n ∈ N. (50)

By definition zn ∈ Zη for any n ∈ N. Let z̄ be an adherence value of this sequence
(zn)n∈N and let us again restrict to a subsequence (still denoted (zn)n∈N) that converges
to z̄. Note that since it is a subsequence, we still have sn → s̄. From Lemma 1, we
know that necessarily Re(z̄2) ∈ [−∞, 1].

Let us first assume that Re(z̄2) is strictly smaller than 1, i.e. Re(z̄2) ∈ [−∞, 1). In
that case, from the definition of sn in (45), we have

Re(s̄) = lim
n→+∞Re(sn) = lim

n→+∞
Re(z2n) − 1

4ηn

= limn→+∞ Re(z2n) − 1

limn→+∞ 4ηn
= Re(z̄2) − 1

limn→+∞ 4ηn
. (51)
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Since, by the definition (44), we know that limn→+∞ 4ηn = 0+, we can conclude

Re(s̄) = −∞ (52)

and the lemma is proved.
Let us now assume that Re(z̄2) = 1. From Lemma 1 we know that, if Re(z̄2) = 1,

then necessarily Re(z̄) = ±1 and Im(z̄) = 0; hence, z̄ = ±1. We address the case
where z̄ = 1 (the reader can easily handle the case z̄ = −1 by symmetry), and we
introduce the notations

yn = zn − 1, an = Re(yn), bn = Im(yn). (53)

With these notations we have

Re(sn) = Re(z2n) − 1

4ηn
= Re((yn + 1)2) − 1

4ηn
= a2n − b2n

4ηn
+ an

2ηn
. (54)

Here, the determination of adherent points of the sequence (Re(sn))n∈N, induced by
the limit Re(zn) → 1, is clearly more delicate because it cannot be directly derived
from formula (54) and requires a development which is detailed hereafter.

With the notation (53), the function Xη defined in (41) becomes

Xη =
(
1 + yn

2

)
eyn/2ηn + yn

2
e−1/ηn−yn/2ηn , (55)

such that the characteristic equation (42) is written

((
1 + yn

2

)
eyn/2ηn + yn

2
e−1/ηn−yn/2ηn

)2

+ (1 + yn)e
−yn/2ηn−y2n/4ηn

[(
1 + yn

2

)
eyn/2ηn + yn

2
e−1/4ηn−yn/2ηn

]
= (1 + yn)

2.

(56)

Now, because ηn → 0+ and yn → 0 (since zn → z̄), we have

(
1 + yn

2

)2
eyn/ηn + o(e−1/ηn )

+ (1 + yn)
(
1 + yn

2

)
e−y2n/4ηn + o(e−1/4ηn−yn/ηn−y2n/4ηn ) = (1 + yn)

2. (57)

This implies that, for n → +∞,

eyn/ηn + 1 + yn
1 + yn

2

e−y2n/4ηn −→ 1. (58)

With (54), (58) becomes

ean/ηn eibn/ηn
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+ (1 + an + ibn)(1 + an/2 − ibn/2)

|1 + yn
2 |2 e−a2n/4ηn eb

2
n/4ηn e−ianbn/2ηn → 1, (59)

or, separating the real and imaginary parts,

ean/ηn cos( bn
ηn

) + e−a2n/4ηn eb
2
n/4ηn

[(
1 + 3an+a2n+b2n

2

)
cos

(
anbn
2ηn

)
+ bn

2 sin( anbn2ηn
)
] 1

|1 + yn
2 |2 → 1, (60)

ean/ηn sin
(
bn
ηn

)
+ e−a2n/4ηn eb

2
n/4ηn

[
−

(
1 + 3an+a2n+b2n

2

)
sin

(
anbn
2ηn

)
+ bn

2 cos
(
anbn
2ηn

)] 1

|1 + yn
2 |2 → 0. (61)

Let us now denote ā an adherence point of the sequence (an/2ηn)n∈N.We shall discuss
successively the three cases : ā = −∞, ā ∈ (−∞,+∞) and ā = +∞.
The case ā = −∞. In this case, the lemma is trivial because, since an → 0 and
an/2ηn → ā = −∞, then a2n/4ηn + an/2ηn → −∞ and therefore, from (54),
Re(s̄) = −∞.
The case ā ∈ (−∞,+∞).

In this case a2n/2ηn → 0 and anbn/2ηn → 0 because an + ibn = yn → 0 while
an/2ηn → ā ∈ R. Then, from (60), we have

ean/ηn cos
(
bn
ηn

)
+ eb

2
n/4ηn (1 + o(1)) −→ 1. (62)

Let us now denote c̄ ∈ [0,+∞] an adherence point of the sequence (b2n/4ηn)n∈N and
κ̄ ∈ [−1, 1] an adherent point of the sequence (cos( bn

ηn
))n∈N. Then, taking the limit,1

we have from (62)

e2ā κ̄ + ec̄ = 1. (63)

Because eā is bounded and eā > 0, and b2n/4ηn ≥ 0 for any n ∈ N, this implies
necessarily that

c̄ ∈ [0,+∞) and ec̄ � 1 and κ̄ ∈ [−1, 0]. (64)

Then, it means in particular that b2n/ηn is bounded when ηn → 0+, and from (61) we
deduce that

ean/ηn sin
(
bn
ηn

)
+ o(1) −→ 0 (65)

which implies that sin( bn
ηn

) → 0 and therefore that the only possible adherence points

for cos( bn
ηn

) are κ̄ = ±1. Since κ̄ ∈ [−1, 0], we deduce that κ̄ = −1. Therefore, from

1 This can be done by restricting to a subsequence where both (b2n/4ηn)n∈N and (cos( bnηn ))n∈N converge,
using a diagonal argument.
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(63),

ec̄ = 1 + e2ā . (66)

Let us now consider the function e−Re(sn) with Re(sn) given by (54):

e−Re(sn) = e(b2n−a2n )/4ηn−an/2ηn −→ ec̄e−ā = e−ā + eā = 2 cosh(ā) � 2. (67)

It follows directly that

Re(s̄) � − ln(2) (68)

and the lemma is proved.

The case ā = +∞.

In this case, we first observe that e(a2n−b2n)/4ηn−an/2ηn → 0. Then, multiplying both
sides of (60) by this quantity, we get:

e(a2n−b2n)/4ηn+an/2ηn cos
(
bn
ηn

)
+ e−an/2ηn

×
[(

1 + 3an+a2n+b2n
2

)
cos

(
anbn
2ηn

)
+ bn

2 sin
(
anbn
2ηn

)] 1

|1 + yn
2 |2

− e(a2n−b2n)/4ηn−an/2ηn → 0, (69)

From this expression, we deduce that

e(a2n−b2n)/4ηn+an/2ηn cos( bn
ηn

) −→ 0. (70)

A similar manipulation of (61) gives

e(a2n−b2n)/4ηn+an/2ηn sin( bn
ηn

) −→ 0. (71)

Combining (70) and (71) we obtain

e(a2n−b2n)/2ηn+an/ηn = e2Re(sn) −→ 0 (72)

which implies that Re(sn) → −∞ and the lemma is proved. �	
Based on Lemma 2, we can now give the following proof of Theorem 1.

Proof of Theorem 1 We assume by contradiction that the theorem does not hold:

For any δ > 0, � η1 > 0 such that ση � − ln(2) + δ ∀η ∈ (0, η1). (73)

123



174 Mathematics of Control, Signals, and Systems (2023) 35:159–185

Fig. 4 The spectrum Sη of the closed-loop system for η = 0.02 (red circle) and η = 0.2 (green circle)

This implies that

For all η > 0, ∃η1 ∈ (0, η) such that ∃s ∈ Sη1 with Re(s)

> − ln(2) + δ.Re(s) > − ln(2) + δ. (74)

It follows that we can build a sequence (ηn)n∈N of the form (44) and an associated
sequence (sn)n∈N with sn ∈ Sηn . For this sequence we deduce from (74) that neces-
sarily Re(s̄) > − ln(2) + δ, which is in contradiction with Lemma 2. �	

The theorem is illustrated in Fig. 4 where the spectrum is represented for the values
η = 0.02 and 0.2, and where the effectiveness of the stability margin − ln(2) can be
appreciated.

5 Robustness analysis

We consider again the control problem of the previous section. However, because
we want to explicitly account for the sensitivity to delay uncertainties, we introduce
an additional perturbation ε to the nominal transport velocity υ = 1. The open-loop
system is therefore written in the time domain as follows:

∂t y1(t, x) + (1 + ε)∂x y1(t, x) − η∂2xx y1(t, x) = 0, (75a)

∂t y2(t, x) + (1 + ε)∂x y2(t, x) − η∂2xx y2(t, x) = 0, (75b)

y1(t, 0) = y2(t, 1) +U (t), (75c)

y2(t, 0) = y1(t, 1), (75d)

∂x y1(t, 1) = ∂x y2(t, 1) = 0 (75e)

123



Mathematics of Control, Signals, and Systems (2023) 35:159–185 175

Y (t) = y1(t, 1), (75f)

We suppose, as before, that the system is closed with the dead beat output feedback
controller

U (t) = −Y (t − 1). (76)

Remark that this control law depends on the theoretical delay (τ = 1), ignoring the
uncertainty represented by ε.

Remark also that for simplicity we assume here that we have the same uncertainty
ε on both physical subsystems represented by transport equations (75a) and (75b).
This may seem like a simplification, but, actually, it can be shown that this single
perturbation, even if it is arbitrarily small, is sufficient to destroy the closed-loop
stability when η = 0 (see Fig. 5 hereafter).

In this case, the transfer functions of the two transport subsystems become

fη,ε(s) = λ1(s) − λ2(s)

λ1(s)e−λ2(s) − λ2(s)e−λ1(s)
. (77)

with the function fη,ε now depending on both η and ε because the functions λ1 and
λ2 are modified as follows:

λ1(s) = (1 + ε) + √
(1 + ε)2 + 4ηs

2η
,

λ2(s) = (1 + ε) − √
(1 + ε)2 + 4ηs

2η
. (78)

With this definition, the characteristic equation of the closed-loop system is now

f 2η,ε(s) − fη,ε(s)e
−s − 1 = 0. (79)

As in the previous section, we introduce the spectrum Sη,ε and the maximal abscissa
ση,ε defined by

Sη,ε = {s ∈ C : s is solution of (79)}, (80)

ση,ε = sup{Re(s) : s ∈ Sη,ε}. (81)

We remark that, by definition, we have

Sη,0 = Sη and ση,0 = ση. (82)

We then have the following robustness theorem.

Theorem 2 Let δ > 0 and η > 0 be such that Theorem 1 holds, i.e.

ση,0 � −ln(2) + δ. (83)
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Then, there exists ε1 > 0 such that for any ε ∈ (−ε1, ε1) themaximal spectral abscissa
ση,ε satisfies

ση,ε � −ln(2) + 2δ (84)

Proof We proceed by contradiction, and we assume that Theorem 2 does not hold.
This implies that for any ε1 > 0 there exists ε ∈ (−ε1, ε1) such that

ση,ε > −ln(2) + 2δ, (85)

and therefore that there exists s ∈ Sη,ε such that

Re(s) > −ln(2) + 2δ. (86)

Hence we can define a sequence

(εn)n∈N with lim
n→+∞ εn = 0, (87)

and an associated sequence (sn)n∈N such that

Re(sn) > −ln(2) + 2δ, with sn ∈ Sη,εn ∀n ∈ N. (88)

• If the sequence (sn)n∈N is bounded, then we can extract a subsequence that con-
verges to a limit s̄ ∈ C. We still denote this subsequence by (sn)n∈N. As εn → 0,
we can pass to the limit in (79) and deduce that s̄ ∈ Sη,0 = Sη and therefore, from
the assumption on δ and η, that

Re(s̄) � −ln(2) + δ. (89)

On the other hand, again passing to the limit, we deduce from (88) that

Re(s̄) � −ln(2) + 2δ > −ln(2) + δ, (90)

which is in contradiction with (89).
• If the sequence (sn)n∈N is unbounded, then we can extract a subsequence such that

|sn| → +∞. We still denote this subsequence by (sn)n∈N. We denote sn = rneiθn ,
with rn ∈ R+ and θn ∈ [−π, π), for n ∈ N. Since rn = |sn| → +∞ and (88)
holds, we deduce that for n sufficiently large θn ∈ (−5π/8, 5π/8). Denoting
(1 + εn) + 4ηsn = r1n e

iθ1n with r1n ∈ R+ and θ1n ∈ [−π, π) we deduce that for n
sufficiently large (depending on η), r1n → +∞ and θ1n ∈ (−3π/4, 3π/4). Thus,

√
(1 + εn) + 4ηsn =

√
r1n e

iθ1n /2, (91)
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Fig. 5 The spectrum Sη,ε of the closed-loop system: influence of viscosity on stability in case of delay
uncertainty

where θ1n /2 ∈ (−3π/8, 3π/8), which implies that Re(
√
1 + 4ηsn) → +∞. From

the definition of λ1 and λ2, we deduce that

Re(λ1(sn)) → +∞, Re(λ2(sn)) → −∞, (92)

and

fη,εn

= 2

[(
(1 + εn)√

(1 + εn) + 4ηsn
+ 1

)
e−λ2(sn) +

(
(1 + εn)√

(1 + εn) + 4ηsn
− 1

)
e−λ1(sn)

]−1

.

(93)

Using (92) and observing that ( (1+εn)√
(1+εn)+4ηsn

+ 1) → 1, we obtain that fη,εn → 0.

Moreover, from (88), e−sn is bounded. Hence, we deduce that

f 2η,εn
(sn) − fη,εn (sn)e

−sn − 1 −→ −1 (94)

and, from (79), we obtain again a contradiction.

In both cases, we obtain a contradiction, which means that there exists ε1 > 0 such
that (84) holds for any ε ∈ (−ε1, ε1). This concludes the proof of Theorem 2. �	

The theorem is illustrated in Fig. 5. In this figure, we can see what happens in
the situation where there is no diffusion (η = 0) but a slight uncertainty (ε = 0.1)
of the transport velocity: υ = 1 + ε = 1.1 instead of υ = 1. Although the ideal
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system (without modelling uncertainty) should be exponentially stable, it appears that
it becomes unstable with poles (represented by green dots in Fig. 5) moving to the
right-half complex plane.

In contrast, when there is some diffusion (η = 0.1) and no uncertainty (ε = 0), we
know from Theorem 1 that the closed-loop system must be stable as it can be seen
with the spectrum of blue dots (actually reprinted from Fig. 3) which is entirely strictly
located in the left half plane.

Then, illustrating Theorem 2, the robustness of the control in presence of diffusion
is clearly evidenced by the spectrum made up of red dots which results from a small
shift of the initial blue spectrum but remains entirely in the left half plane.

6 Comparison with a simpler system

In this section, we consider the case of a systemwhich is very close to the previous one
but slightly simpler. Somewhat surprisingly, wewill see that in this case the addition of
a diffusion term does not seem to strengthen the system stability but instead destroys
the stability.

We start with an ideal system without diffusion nor modelling uncertainty which
is clearly a simplified form of the physical system (15) that we have considered in
Sect. 2 and is written as follows:

∂t y(t, x) + ∂x y(t, x) = 0, (95a)

∂t ŷ(t, x) + ∂x ŷ(t, x) = 0, (95b)(
y(t, 0)
ŷ(t, 0)

)
=

(
1 −1
1 −1

)

︸ ︷︷ ︸
K

(
y(t, 1)
ŷ(t, 1)

)
. (95c)

In the frequency domain, the characteristic equation reduces to e2s = 0, meaning that
the system is exponentially stable (for any decay rate). In fact, one can observe easily
that the system is finite time stable: for any time t ≥ 1, ŷ(t, ·) = y(t, ·) on [0, 1], thus
from the boundary condition at x = 0, y(t, 0) = 0, which means that y(t, ·) ≡ 0 for
t ≥ 2. However, in this case also, the exponential stability is not robust w.r.t. to delay
inaccuracy because ρ̄(K) = √

2.
On the basis of our previous results in this paper, it seems natural to conjecture

that the addition of a diffusion term in equation (95a) should allow to strengthen the
system stability. To address this issue, the system dynamics (95) are modified with an
additional diffusion parameter η as follows:

∂t y(t, x) + ∂x y(t, x) − η∂xx y(t, x) = 0, (96a)

∂t ŷ(t, x) + ∂x ŷ(t, x) = 0, (96b)

y(t, 0) = y(t, 1) − ŷ(t, 1), (96c)

ŷ(t, 0) = y(t, 0), (96d)

∂x y(t, 1) = 0. (96e)
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Fig. 6 The spectrum Sη of the system (96) with η = 0.1

For this system in the frequency domain, after calculations similar to those in Sects. 3
and 4, it can be shown that the characteristic equation is

Fη(s) − 1 = 0 with Fη(s) =
(
λ1(s)eλ1(s) − λ2(s)eλ2(s)

)
(1 + e−s)

(λ1(s) − λ2(s))eλ1(s)+λ2(s)
, (97)

where λ1(s) and λ2(s) are given by (24) and repeated here for convenience:

λ1(s) = 1 + √
1 + 4ηs

2η
, λ2(s) = 1 − √

1 + 4ηs

2η
. (98)

For a given value of η, as in Sect. 4, we use the following notations for the spectrum
and the maximal spectral abscissa:

Sη = {s ∈ C : Fη(s) − 1 = 0}, (99)

ση = sup{Re(s) : s ∈ Sη}. (100)

We then have the surprising observation that a slight diffusion in the system has, in
this case, a clear destabilizing effect. This is graphically illustrated in Fig. 6 and leads
to the following conjecture.

Conjecture 2 For all ε > 0, there exists η1 > 0 such that for all η ∈ (0, η1) the
maximal spectral abscissa satisfies the inequality ση > −ε. �	
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7 Conclusion

We have discussed the output feedback stabilization of an unstable open-loop sys-
tem which is made up of two interconnected transport equations and provided with
anti-located boundary sensing and actuation. We have shown that the system can be
stabilized by a dynamic controller that involves a delayed output feedback which turns
out to be non-robust with respect to delay uncertainties. Then, we have shown that the
designed control law can, however, stabilize the system in a robust way when there is
a small unknown diffusion in the plant.
Our work in progress on this topic [6] will be focused on the output feedback stabiliza-
tion of the motion of a viscous fluid represented by 2 × 2 hyperbolic PDEs when the
control input is the flow rate at one boundary while the measurable output is the fluid
density at the other boundary. There is, in this case, an important difference which lies
in howviscosity affects themodel, inducing a distributed internal coupling between the
two partial differential equations. This implies that the system can no longer be con-
sidered as a feedback interconnection of two independent scalar transport equations
which may lead to additional difficulties for the stability analysis.

Acknowledgements The authors would like to thank the Bernoulli center for fundamental studies (CIB)
and Joachim Krieger for their hospitality and their support, as well as the project PEPS JCJC 2022 of
CNRS-INSMI.

A Computation of �̄(K) � 1.

In this appendix, we consider the matrix K defined in Eq. (15d) as follows:

K =
⎛
⎝

−2k1 1 −k2
1 0 0
1 0 0

⎞
⎠ . (101)

From [9, Proposition 3.7] and [5, Theorem 3.12], we have

ρ̄(K ) = ρ2(K ) (102)

with

ρ2(K) := inf{‖DKD−1‖2; D is a positive diagonal matrix} (103)

= inf

{√
λmax

[(
DKD−1

)T (
DKD−1

)]; D is a positive diagonal matrix

}
.

(104)

With the (normalized) matrix

D =
⎛
⎝
1 0 0
0 θ2 0
0 0 θ3

⎞
⎠ , θ2 > 0, θ3 > 0, (105)
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we have

M = (
DKD−1)T (

DKD−1)

=
⎛
⎝
4k21 + θ22 + θ23 −2k1θ

−1
2 2k1k2θ

−1
3

−2k1θ
−1
2 θ−2

2 −k2θ
−1
2 θ−1

3
2k1k2θ

−1
3 −k2θ

−1
2 θ−1

3 k22θ
−2
3

⎞
⎠ . (106)

Then, we have

det
(
λI3 − M) = λ(λ2 − βλ + γ ) (107)

with

β = 4k21 + (θ22 + θ−2
2 ) + (θ23 + k22θ

−2
3 ), (108)

γ = 1 + θ−2
2 θ23 + k22 + k22θ

2
2 θ−2

3 . (109)

From (107), we see that the eigenvalues of the matrixM are

λ = 0 and λ = β ± √
β2 − 4γ

2
. (110)

From (108) we know that β � 0. Moreover, β2 − 4γ � 0 because the matrix M is
symmetric. It follows that

ρ2(K) = inf
θ2,θ3

√
β + √

β2 − 4γ

2
. (111)

From (108) and (109), after some computations, we get

β2 − 4γ = 16 k41 + 8k21(θ
2
2 + θ−2

2 ) + 8k21(θ
2
3 + k22θ

−2
3 ) + (θ42 + θ−4

2 ) + (θ43 + k42θ
−4
3 )

+ 2(θ22 θ23 + k22θ
−2
2 θ−2

3 ) − 2 − 2k22 − 2(θ−2
2 θ23 + k22θ

2
2 θ−2

3 ). (112)

From (108) and this latter expression it can be verified that β +√
β2 − 4γ is minimal

if and only if

θ22 = 1 and θ23 = |k2|. (113)

With these values, we then have

ρ2(K) = inf
θ2,θ3

√
β + √

β2 − 4γ

2
(114)

= |k1| +
√
1 + k21 + |k2| � 1 for all (k1, k2). (115)
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B Proof of Lemma 1.

Part a
Assume by contradiction that Re(z̄2) ∈ (1,+∞]. Then,

e−(Re(z2n)−1)/4ηn −→ 0 (116)

and it follows that the right-hand side of (43) converges to ±2. Then, denoting an =
Re(zn) and bn = Im(zn), (43) implies

1

2

((
an − ibn
a2n + b2n

+ 1

)
e−(1−an−ibn)/2ηn

−
(
an − ibn
a2n + b2n

− 1

)
e−(1+an+ibn)/2ηn

)
→ ±1. (117)

Since Re(z̄2) ∈ (1,+∞] by assumption, it follows that there exists a positive constant
c such that a2n > c+ 1+ b2n for n sufficiently large, and in particular that |Re(z̄)| > 1.
Let us consider successively the two possibilities Re(z̄) > 1 and Re(z̄) < −1.

The case (Re(z̄) > 1.)
In this case, if n is sufficiently large, we have

Re

(
an − ibn
a2n + b2n

+ 1

)
≥ 1 and e(an−1)/2ηn −→ +∞. (118)

Thus,

∣∣∣∣
1

2

(
an − ibn
a2n + b2n

+ 1

)
e(an−1)/2ηn

∣∣∣∣ −→ +∞, (119)

while

1

2

(
an − ibn
a2n + b2n

− 1

)
e(−an−1)/2ηn e−ibn/2ηn −→ 0. (120)

This implies

∣∣∣∣
1

2

(
an − ibn
a2n + b2n

+ 1

)
e(an−1)/2ηn eibn/2ηn

−1

2

(
an − ibn
a2n + b2n

− 1

)
e−(1+an+ibn)/2ηn

∣∣∣∣ −→ +∞, (121)

which is in contradiction with (117).

The case (Re(z̄) < −1.)
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Similarly, in this case we have

e(−an−1)/2ηn −→ +∞ and∣∣∣∣
(
an − ibn
a2n + b2n

− 1

)
e(−an−1)/2ηn e−ibn/2ηn

∣∣∣∣ −→ +∞, (122)

while

∣∣∣∣
1

2

(
an − ibn
a2n + b2n

+ 1

)
e(an−1)/2ηn eibn/2ηn

∣∣∣∣ −→ 0. (123)

So we get again (121) and a contradiction with (117). This concludes the proof of
Lemma 1, Part a).

Part b
We assume that

Re(z̄2) = 1. (124)

We have

Re(z̄2) = (
Re(z̄)

)2 − (
Im(z̄)

)2
. (125)

From this expression and (124), either |Re(z̄)| = 1 and Im(z̄) = 0, or |Re(z̄)| > 1.
We shall show by contradiction that |Re(z̄)| > 1 is actually not possible. Let us thus

assume that Re(z̄) > 1 (the case Re(z̄) < −1 can be easily handled by symmetry).
In that case, using again the notations an = Re(zn) and bn = Im(zn) and multiplying
both sides of (43) by e(1−an)/4ηn , we obtain:

(
an − ibn

a2n + b2n
+ 1

)
e(an−1)/4ηn+ibn/2ηn −

(
an − ibn

a2n + b2n
− 1

)
e−(1+3an+2ibn )/4ηn

= −e(2−a2n+b2n−an−2ianbn )/4ηn ±
√
e(2−a2n+b2n−an−2ianbn )/2ηn + 4e(1−an )/2ηn .

(126)

Since

1 − an → 1 − Re(z̄) < 0 (127)

and, by (124), 2 − a2n + b2n − an → 1 − Re(z̄) < 0, the right-hand side of (126)
converges to 0 when ηn → 0+. This implies that the left-hand side of (126) also
converges to 0, namely

(
an − ibn
a2n + b2n

+ 1

)
e(an−1)/4ηn+ibn/2ηn

−
(
an − ibn
a2n + b2n

− 1

)
e−(1+3an+2ibn)/4ηn → 0. (128)
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Then, since the e−(1+3an+ibn)/2ηn → 0, we should have

∣∣∣∣
(
an − ibn
a2n + b2n

+ 1

)∣∣∣∣ e(an−1)/4ηn → 0, (129)

but it can be shown that this is impossible. Indeed, by (127), we know that an > 0 if
n is large enough, which implies that

∣∣∣∣
(
an − ibn
a2n + b2n

+ 1

)∣∣∣∣ e(an−1)/4ηn � e(an−1)/4ηn . (130)

From (127), e
(an−1)

4η → +∞ which leads to a contradiction with (129) and (130).
This concludes the proof of Lemma 1. �	
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