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Abstract

The potential lack of robustness to delays and characteristic velocities is a well known feature of boundary feedback control of
hyperbolic systems. We consider the case of a one-dimensional fluid system with the flow rate as control input located at one
boundary and the density as measured output located at the other boundary. Using a simple model where friction and viscosity
are neglected, the system is open-loop unstable but it can be stabilized by a dynamic controller that involves a delayed output
feedback. However this control is not robust with respect to delay uncertainties. Our main contribution is to show that this
lack of robustness is actually an artefact which stems from the assumption that the fluid viscosity is negligible when modelling
the fluid motion. In the presence of a small unknown viscosity in the model, it appears that the non-robust feedback for the
inviscid case is actually a perfectly robust stabilizer for the viscous system and that there is an intrinsic uniform margin of
stability which is independent of the viscosity value even if it is asymptotically small.

Key words: Linear hyperbolic system; Boundary control; Feedback stabilization; Fluid flow system; Robustness; Viscosity;
Diffusion.

1 Introduction

The lack of robustness of boundary feedback stabiliza-
tion of hyperbolic systems when there is a transmission
delay between the output measurement and the control
input is a well known problem (see for instance [2], [3],
[4], [14], [23], [33] and the references therein).When sens-
ing and actuation are not co-located (see e.g. [1], [7], [8],
[15], [22], [25], [28], [29], [32]), a similar lack of robust-
ness may occur with respect to modelling uncertainties.
The problem happens when the stabilization requires a
dynamic feedback control law that includes delayed val-
ues of the output or relies, using a state observer, on the
exact compensation of the characteristic velocities of the
plant. In that case, the lack of robustness means that
arbitrarily small modelling errors or unknown transmis-
sion delays may result in unstable solutions of a closed-
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loop system which is a priori theoretically exponentially
stable.

In a previous paper [7], we have discussed this problem
for a simple unstable transportation system with anti-
located boundary actuation and sensing. For that sys-
tem, we have shown that the presence of a small addi-
tional diffusion term in the model may be sufficient to
guarantee the robustness of the control against delay un-
certainties and to compute an upper bound to the expo-
nential decay of the solutions. Related issues regarding
the diffusion-robustness of feedback control were also re-
cently addressed for an advection-convection process in
[9] and for the viscous nonlinear Saint-Venant equations
in [27]. Depending on the configuration of the boundary
measurement and control devices, it could also be a rel-
evant issue for the control of extended fluid flow systems
represented, for instance, by Saint-Venant-Exner mod-
els as considered in [5, Chapter 5], [16] or [17].

In this article, using a simple model of fluid flow, we go
further in the analysis of the problem by demonstrating
that a strict margin of stability, guaranteed by the diffu-
sion, holds even for an asymptotically small diffusion and
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that we are able to give the exact value of this margin in
the left half complex plane. This means that, in the case
of a liquid fluid flow, the apparent lack of robustness is
actually an artefact which stems from the assumption
that the fluid viscosity is negligible when modelling the
fluid motion.

Our paper is organized as follows. The control problem
is presented and motivated in Section 2. We consider a
classical simple linear model of the motion of fluids when
friction and viscosity are negligible. The control input is
the flow rate at one boundary and the measured output
is the density at the other boundary. It is first shown
that this control system is open-loop unstable and can-
not be stabilized by a simple proportional output feed-
back. Then, it is shown that the system can be stabi-
lized by a dynamic controller that involves a delayed
output feedback. However, this control turns out to be
not robust with respect to delay uncertainties precisely
because the delay requires a (utopian) exact knowledge
of the characteristic velocity.

The main contribution of this paper is to show that
the robustness of the control against delay uncertain-
ties is recovered as soon as an arbitrary small diffusion
is present in the system. For that purpose, in Section 3,
it is assumed that the fluid is slightly viscous and the
model is modified accordingly by introducing a viscosity
coefficient η. The corresponding (unstable) input-output
transfer function is computed. Then in Sections 4 and
5, we show that the dynamic output (non robust) feed-
back designed for the inviscid case stabilizes the viscous
system. Furthermore, in this case, the control proves to
be perfectly robust, even if the (unknown) viscosity is
almost negligible. In addition, and this is a new result
compared to our previous paper [7], using degree the-
ory [10] we are able to determine the exact value of the
stability margin which appears to be uniform with re-
spect to the viscosity coefficient η (i.e. independent of
the value of η when η is small).

Some final conclusions are given in Section 6.

2 Presentation and motivation of the control
problem

Consider hyperbolic systems of two linear conservation
laws over a finite interval in one spatial dimension with
general form:

∂tH + ∂xQ = 0, (1a)

∂tQ+ c1c2∂xH + (c1 − c2)∂xQ = 0, (1b)

where t ∈ [0,+∞) is the time coordinate, x ∈ [0, L] is
the spatial coordinate, c1 and c2 are two real positive
constants. In these equations H(t, x) is the density and
Q(t, x) is the flow density of some extensive quantity of

interest. Therefore, this system is called a “density-flow”
system.

The model (1) can be used to represent many physical
systems. In particular, it can be a valid approximate lin-
earized model for applications in fluid mechanics where
friction and diffusion are neglected. We can mention for
example gas pipelines where H is the gas density and Q
is the gas flow rate (see e.g. [18] and [21]), open chan-
nels where H is the water depth and Q is the water flow
rate (see e.g. [5, Chapter 1], [6] and [26]) or the motion
of liquid fluids in rigid pipes where H is the piezometric
head and Q is the flow rate ([5, Chapter 1], [20], [30]).

In this paper, we are concerned with the solutions of
the Cauchy problem for the system (1) under an initial
condition:

H(0, x), Q(0, x), x ∈ [0, L], (2)

and two boundary conditions of the form

Q(t, 0) = Q0(t), Q(t, L) = Q∗, t ∈ [0,+∞), (3)

where Q0(t) is a time varying input flow which can be
assigned by the operator while Q∗ is a given constant
outflow, arbitrarily imposed by the operating conditions.

Since any pair of constant statesH(t, x) = H∗, Q(t, x) =
Q∗, ∀t and ∀x ∈ [0, L], can be a steady-state, it is clear
that the system (1)-(2)-(3) has a continuum of non-
isolated equilibria which are not asymptotically stable.
It is therefore relevant to study the feedback stabiliza-
tion of this system.

In this paper, for the system (1)-(2)-(3), we address the
boundary control issue where it is assumed that both ac-
tuation and sensing are located at the boundaries. The
objective is to design an output feedback controller that
regulates the density H(t, x) at a desired set point H∗

while keeping the system steady state (H∗, Q∗) expo-
nentially stable.

A fairly common situation in practice occurs when the
control input is the inflow rate Q0(t) and the measured
output is the density H(t, 0), that is a situation where
actuation and sensing are co-located at the same bound-
ary. In that case it is well known that a simple propor-
tional output feedback control is sufficient to stabilize
the system, see e.g. [5, Chapter 2].

In this paper, however, we address the more challenging
situation where actuation and sensing are anti-located,
with the control input Q0(t) at one boundary and the
measured output H(t, L) at the other boundary.

For simplicity, we consider the special case where the
constant outflow Q∗ = 0 and where the two characteris-
tic velocities are identical, i.e. c1 = c2 = c > 0. In that
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case the model (1) becomes the following simple wave
equation

∂tH + ∂xQ = 0, (4a)

∂tQ+ c2∂xH = 0, (4b)

where c is the wave celerity. For instance c =
√
gH∗ in

the case of open channels or c is the speed of sound in
the case of fluids in pipes.

Now, introducing the following notations for the devia-
tions of the system states from the steady state

h(t, x) = H(t, x)−H∗, q(t, x) = Q(t, x)−Q∗, (5)

the open-loop control system (2)-(3)-(4) may be written

∂th(t, x) + ∂xq(t, x) = 0, (6a)

∂tq(t, x) + c2∂xh(t, x) = 0, (6b)

q(t, 0) = U(t), (6c)

q(t, L) = 0, (6d)

Y (t) = h(t, L), (6e)

with control input U(t) and measured output Y (t).

In the frequency domain, the system (6) is written

sh(s, x) + ∂xq(s, x) = 0, (7a)

sq(s, x) + c2∂xh(s, x) = 0, (7b)

q(s, 0) = U(s), (7c)

q(s, L) = 0, (7d)

Y(s) = h(s, L), (7e)

with s ∈ C being the Laplace complex variable. In
these equations h(s, x), q(s, x), Y(s) and U(s) denote
the Laplace transforms of h(t, x), q(t, x), Y (t) and U(t)
respectively.

By differentiating (7a) with respect to x, we have

s∂xh(s, x) = −∂2
xxq(s, x). (8)

Using this relation in (7b), we get

s2q(s, x)− c2∂2
xxq(s, x) = 0. (9)

Then, for any value of s ∕= 0, the solution of this differ-
ential equation (9) is of the form

q(s, x) = A(s)esx/c +B(s)e−sx/c. (10)

Using this expression in the boundary conditions (7c),
(7d), (7e), we have

q(s, 0) = A(s) +B(s) = U(s), (11)

q(s, L) = A(s)esτ +B(s)e−sτ = 0, with τ =
L

c
,

(12)

Y(s) = h(s, L) = −1

s
∂xq(s, L) =

1

c


−A(s)esτ +B(s)e−sτ


.

(13)

Eliminating A(s) and B(s) between these three equa-
tions, we obtain the transfer function of the open-loop
control system (6):

Go(s) =
Y(s)

U(s)
=

2 e−sτ

c(1− e−2sτ )
. (14)

The poles of the system are the roots of the characteristic
equation

e2sτ − 1 = 0. (15)

The open-loop system (6) is therefore clearly not asymp-
totically stable since all poles are located on the imagi-
nary axis.

Despite its apparent simplicity, this unstable system can-
not be stabilized with a simple proportional output feed-
back of the form

U(t) = −kcY (t) (16)

where kc ∕= 0 is a control tuning parameter. Indeed, for
the system (7) with the control law (16) the character-
istic equation of the closed-loop system is:

e2sτ + 2kce
sτ − 1 = 0. (17)

Solving this equation for esτ , we get

esτ = −kc ±

1 + k2c . (18)

Then for any kc ∕= 0 there is an infinity of system poles
σ + iω lying on two vertical lines with real parts:

σ = c ln


1 + k2c + |kc|

> 0 (19a)

or σ = c ln


1 + k2c − |kc|

< 0. (19b)

It follows that the unstable system (6) cannot be stabi-
lized with the static controller (16) since half of the poles
of the closed loop have a strictly positive real part. We
conclude that the feedback stabilization necessarily re-
quires a dynamic controller that involves delayed output
values (this includes full-state feedback control, given
that the output measurement is located at a boundary).
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From (14) it follows that the input-output dynamics of
system (6) in the time domain can alternatively be rep-
resented by the delay-difference equation

Y (t)− Y (t− 2τ) =
2

c
U(t− τ). (20)

Hence the system is exponentially stabilized with a sim-
ple delayed output feedback of the form

U(t) = − c

2
Y (t− τ) (21)

such that the closed-loop dynamics reduce to Y (t) = 0
∀t after the initial transient.

It is however well known that the boundary feedback
stabilization of hyperbolic systems with delayed control
should be considered with caution because it is sensitive
to arbitrarily small delay modeling errors. For our case,
this lack of robustness can be highlighted by rewriting
the model in Riemann coordinates defined as

y1(t, x) :=
1
2 (q(t, x) + c h(t, x)), (22a)

y2(t, x) :=
1
2 (q(t, x)− c h(t, x)). (22b)

In these coordinates, the open-loop control system (6) is
equivalent to

∂ty1(t, x) + c∂xy1(t, x) = 0, (23a)

∂ty2(t, x)− c∂xy2(t, x) = 0, (23b)

y1(t, 0) = −y2(t, 0) + U(t), (23c)

y2(t, L) = −y1(t, L), (23d)

Y (t) =
2

c
y1(t, L). (23e)

Moreover, a time domain representation of the dynami-
cal control (21) may be defined as

∂ty3(t, x) + c∂xy3(t, x) = 0,

y3(t, 0) = Y (t),

U(t) = − c

2
y3(t, L).

(24)

Closing the system (23) with the controller (24), the
boundary conditions of the closed-loop system can be
expressed as





y1(t, 0)

y2(t, L)

y3(t, 0)




=





0 −1 −c/2

−1 0 0

2/c 0 0





  
K





y1(t, L)

y2(t, 0)

y3(t, L)




. (25)

Now, for the matrix K defined in (25), it can be shown
that

ρ̄(K) =
√
2 for all c > 0, (26)

where the function ρ̄(K) is defined as follows:

ρ̄(K) := max

ρ

diag


e−iθ1 , e−iθ2 , e−iθ3


K

; (θ1, θ2, θ3)

T ∈ R3

,

(27)
ρ(M) denoting the spectral radius of the matrix M . For
the computation of ρ̄(K) we refer the reader to [7, Ap-
pendix A].

This is an important point because it is well known (see
[31], [24, Chapter 9, Theorem 6.1] or [5, Chapter 3, The-
orem 3.8 and Corollary 3.10]) that ρ̄(K) < 1 is a neces-
sary (and sufficient) condition to have a stability which
is robust against uncertainties in the characteristic ve-
locities. In the framework of this paper, this means that
the control law (21) (or (24)) is not robust with respect
to uncertainties on the value of the celerity parameter c.
More precisely, if we assume that in the model (1) the
characteristic velocities are c1 = c+ ε1 and c2 = c+ ε2
with ε1 and ε2 representing small modelling uncertain-
ties, then equations (23a)-(23b) in Riemann coordinates
are replaced by

∂ty1(t, x) + (c+ ε1)∂xy1(t, x) = 0, (28a)

∂ty2(t, x)− (c+ ε2)∂xy2(t, x) = 0, (28b)

and the closed-loop system may become unstable, with
poles moving to the right half complex plane even for ar-
bitrarily small εi perturbations. This will be illustrated
in Figure 2 of Section 5.

In this paper, our contribution will be to show that this
lack of robustness is actually an artefact which stems
from the assumption that the viscosity can be neglected
when modelling the fluid system (4). We shall show that
the robustness of the output feedback stabilization is re-
covered as soon as an arbitrary small diffusion is present
in the system even with the simple delay control law (21).

3 The open-loop control system with viscosity

Let us modify the control system (6) by assuming that
the fluid is slightly viscous. For simplicity and without
loss of generality, we assume a unit nominal length L = 1
and a unit nominal delay τ = L/c = 1. The system
dynamics in the time domain are therefore simplified as
follows:

∂th(t, x) + ∂xq(t, x) = 0, (29a)

∂tq(t, x) + ∂xh(t, x)− η∂2
xxq(t, x) = 0, (29b)

q(t, 0) = U(t), (29c)

q(t, 1) = 0, (29d)

Y (t) = h(t, 1). (29e)
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An additional diffusion term η∂2
xxq is introduced in equa-

tion (29b) with the viscosity coefficient η > 0. The other
equations remain unchanged.

Here also it is easily seen that any pair of constant states
h(t, x) = H∗, q(t, x) = 0, ∀t and ∀x ∈ [0, 1], is a steady-
state corresponding to U(t) = 0. Thus the system (29)
has a continuum of non-isolated equilibria which are
therefore not asymptotically stable.

In the frequency domain, the system (29) is written

sh(s, x) + ∂xq(s, x) = 0, (30a)

sq(s, x) + ∂xh(s, x)− η∂2
xxq(s, x) = 0, (30b)

q(s, 0) = U(s), (30c)

q(s, 1) = 0, (30d)

Y(s) = h(s, 1). (30e)

Using equation (8) which also holds for this system, we
have from (30b)

s2q(s, x)− (1 + ηs)∂2
xxq(s, x) = 0. (31)

Then, for any value of s ∕= 0, the solution of this differ-
ential equation (31) is of the form

q(s, x) = A(s)eλ(s)x +B(s)e−λ(s)x (32)

where λ(s) and −λ(s) are the roots of the polynomial

(1 + ηs)λ2 − s2 = 0. (33)

Using the solution (32) in the boundary conditions (30c),
(30d), (30e), we have

q(s, 0) = A(s) +B(s) = U(s), (34)

q(s, 1) = A(s)eλ(s) +B(s)e−λ(s) = 0, (35)

Y(s) = h(s, 1) = −1

s
∂xq(s, 1) (36)

= −λ(s)

s
(A(s)eλ(s) −B(s)e−λ(s)). (37)

Eliminating A(s) and B(s) between these three equa-
tions, the transfer function (see, for example, [12] and
[13, Chapter 7]) of the open-loop control system (29) is
the meromorphic function:

G(s) =
Y(s)

U(s)
=

2 eλ(s)

(
√
1 + ηs)(e2λ(s) − 1)

. (38)

It can be checked that for all η ∕= 0 the transfer function
G(s) has a pole at the origin. Therefore we recover that
the open-loop system (29) is not asymptotically stable
whatever the value of the viscosity η.

4 Stability of the closed-loop system with vis-
cosity

Let us now assume that the system is closed with the
control law (21) i.e. U(t) = − 1

2Y (t−1). In the frequency
domain, this control law is

U(s) = − 1
2e

−sY(s). (39)

It follows that the characteristic equation of the closed-
loop system (38), (39) is:

G(η, s) = es

1 + ηs


es/

√
1+ηs − e−s/

√
1+ηs


+ 1 = 0.

(40)
Our purpose is now to address the spectral stability of
this closed-loop system. For a given value of the viscosity
η, the spectrum Sη of the closed-loop system is the set
of the poles which are the roots of the characteristic
equation (40):

Sη = {s ∈ C : G(η, s) = 0}. (41)

Moreover, the maximal spectral abscissa is defined as the
supremum of the real parts of the spectrum and denoted
as follows:

ση := sup{ℜ(s) : s ∈ Sη}. (42)

Our goal is to know whether this maximal spectral ab-
scissa is negative or, in other words, whether there are no
unstable poles located in the right hand side of the com-
plex plane. The spectrum is illustrated in Figure 1 for
η = 0.005, 0.01 and 0.1. From this figure it can be seen
that, at least for η sufficiently small, it appears that the
maximal spectral abscissa ση ≃ − ln(2) is indeed neg-
ative and seems to be independent of η. This intuitive
observation is in accordance with the following theorem
which is the main contribution of this paper.

⌘ ⌘ ⌘ Im

Re

Fig. 1. The spectrum of the closed-loop system for
η = 0.005, 0.01 and 0.1.
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Theorem 1 For every δ ∈ (0, ln(2)), there exists η∗ > 0
such that

− ln(2)− δ < ση < − ln(2) + δ (43)

for all η ∈ (0, η∗].

With a view to proving Theorem 1, let us now consider
a sequence

(ηn)n∈N with 0 < ηn ∈ R, ∀n ∈ N

and lim
n→+∞

ηn = 0+, (44)

and an associated sequence of system poles

(sn)n∈N such that sn ∈ Sηn , ∀n ∈ N. (45)

Obviously it follows from (40) that

G(ηn, sn) = esnϑn


esn/ϑn − e−sn/ϑn


+ 1 = 0, ∀n ∈ N

(46)
with

ϑn =

1 + ηnsn. (47)

In order to prove Theorem 1, we will look to the adherent
points of the sequences (sn)n∈N when n → +∞ (i.e.
when ηn → 0+). By definition, we know that s̄ is an
adherent point of a sequence (sn)n∈N if and only if there
exists a subsequence which converges to s̄. With a slight
abuse of notation, we will often write

sn −→ s̄ or lim
n→+∞

sn = s̄ (48)

to signify that s̄ is an adherent point of a sequence
(sn)n∈N but it is implied that the convergence in fact
only relies on the adequate subsequence. This holds also
for all other sequences that are introduced later in this
article.

The proof of Theorem 1 is built from the two following
lemmas.

Lemma 1 Let (ηn)n∈N be a sequence of the form (44)
and (sn)n∈N be an associated sequence of the form (45).
Denoting σn = ℜ(sn) and ωn = ℑ(sn), let us consider
induced associated sequences (σn)n∈N and (ηnω

2
n)n∈N.

Then

(i) if σ̄ is an adherence point of the sequence (σn)n∈N, then
σ̄ ∈ [−∞,+∞);

(ii) if σ̄ ∈ (−∞,+∞) and 2θ is an adherence point of the
sequence (ηnω

2
n)n∈N, then 2θ ∈ [0,+∞).

The proof of this lemma is given in Appendix A.

Lemma 2 Let (ηn)n∈N be a sequence of the form (44)
and (sn)n∈N be any associated sequence of the form
(45) with induced associated sequences (σn)n∈N and
(ηnω

2
n)n∈N. Let σ̄ be an adherence point of the sequence

(σn)n∈N. Then
σ̄  − ln(2). (49)

Proof. From Lemma 1, we know that σ̄ ∈ [−∞,+∞).
If σ̄ = −∞ the lemma is obviously satisfied. Hence, ac-
cording to Lemma 1, we assume from now on that

lim
n→+∞

σn = σ̄ ∈ (−∞,+∞) (50a)

and lim
n→+∞

ηnω
2
n = 2θ ∈ [0,+∞). (50b)

From (50), as n → +∞, we have

ϑn =

1 + ηnsn = 1 + o(1), (51)

sn
ϑn

= sn


1− ηnsn

2


+ o(1) = σ̄ + θ + iωn + o(1),

(52)

esn = eσ̄eiωn + o(1). (53)

Then from (46), (51), (52) and (53), we get

eσ̄eiωn

eσ̄+θ+iωn − e−σ̄−θ−iωn


+ 1 = o(1), (54)

which implies that


e2σ̄+θ+2iωn − e−θ


+ 1 = o(1). (55)

Looking at the imaginary part of the left and right hand
side of (55), we obtain that either

e2iωn = 1 + o(1) as n → +∞, (56)

or

e2iωn = −1 + o(1) as n → +∞. (57)

Let us first assume that (56) holds. From (55) and (56),
we get 

e2σ̄+θ − e−θ

+ 1 = 0, (58)

which implies that

e2σ̄ = e−2θ − e−θ. (59)

Since θ ∈ [0,+∞), (59) leads to e2σ̄ ≤ 0 which is im-
possible. Hence (56) cannot hold and therefore we must
have (57). As above we now get

e2σ̄ = e−θ − e−2θ. (60)

Note that

max{e−θ − e−2θ; θ ∈ [0,+∞)} =
1

2
− 1

4
=

1

4
. (61)
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Moreover the maximum is achieved for θ = ln(2). Then,
from (60) and (61), we finally get that

σ̄  1

2
ln


1

4


= − ln(2). (62)

This completes the proof of Lemma 2.

Proof of Theorem 1.

Now, denoting σ = ℜ(s) and ω = ℑ(s) and introducing
the following change of variables

γ2 = η, ϕ = ωγ, γ ∈ [0,+∞), (63)

we have from (40) and (63):

G(η, s) = eσ+iϕ/γ ϑ̃

e(σ+iϕ/γ)/ϑ̃ − e−(σ+iϕ/γ)/ϑ̃


+ 1

= G(γ,σ,ϕ) (64)

with
ϑ̃ :=


1 + γ2σ + iγϕ. (65)

Let B ∈ C∞(R;C) be defined by

B(ϕ) := −e−ϕ2/2 + 1 (66)

and A : (0,+∞)× R× R → C be defined by

A(γ,σ,ϕ) := (G(γ,σ,ϕ)−B(ϕ))e−2iϕ/γ . (67)

From (64), (66) and (67), we can show that there exists
γ0 > 0 such that:

A can be extended as a continuous function

on [0, γ0)× (−2 ln(2),+∞)× R.

Indeed, there exists γ0 > 0 such that for any (γ,σ,ϕ) ∈
[0, γ0)× (−2 ln(2),+∞)× R,

ℜ(ϑ̃2) = ℜ(1 + γ2σ + iγϕ) > 0, (68)

and therefore the map (γ,σ,ϕ) → 1/

1 + γ2σ + iγϕ

is continuous (since the square root is holomorphic on
C \ R−). From (67) this means that A is continuous on
[0, γ0)× (−2 ln(2),+∞)× R. Therefore, in order to get
(4), it only remains to look at the behavior of the map
A as γ → 0+. From (64), (66) and (67), we have

A(γ,σ,ϕ) = eσ(1+1/ϑ̃)e−i(ϕ/γ)(1−1/ϑ̃)ϑ̃

− eσ(1−1/ϑ̃)e−i(ϕ/γ)(1+1/ϑ̃)ϑ̃+ e−ϕ2/2e−2iϕ/γ , (69)

The right hand side of the first line of (69) tends to

e2σ+ϕ2/2 when γ → 0+. For the terms in the second line

of (69) we have, as γ → 0+,

− eσ(1−1/ϑ̃)e−i(ϕ/γ)(1+1/ϑ̃)ϑ̃+ e−ϕ2/2e−2iϕ/γ

= e−ϕ2/2e−2iϕ/γ

− (1 + o(1))e−i(ϕ/γ)(2−(γ2σ+iγϕ)/2+o((γ2σ+iγϕ)))

= e−ϕ2/2e−2iϕ/γ − (1 + o(1))e−2i(ϕ/γ)−ϕ2/2+o(1)

= (e−ϕ2/2e−2iϕ/γ)o(1)
(70)

which clearly tends to 0 when γ → 0+, irrespective of σ
and ϕ. Still denoting by A this continuous extension, we
then have

A(0,σ,ϕ) = e2σ+ϕ2/2, ∀σ ∈ (−2 ln(2),+∞), ∀ϕ ∈ R.
(71)

Note that, by (66) and (71), we have

A(0,− ln(2),

2 ln(2)) =

1

2
, B(


2 ln(2)) =

1

2
(72)

and consequently

−A(0,− ln(2),

2 ln(2)) +B(


2 ln(2)) = 0. (73)

In order to prove Theorem 1, the idea is then to look for
a solution (σ̃, ϕ̃) of the characteristic equation (see (67))

G(γ, σ̃, ϕ̃) = e2iϕ̃/γA(γ, σ̃, ϕ̃) +B(ϕ̃) = 0, (74)

such that σ̃ is close to − ln(2), ϕ̃ is close to

2 ln(2)

and e2iϕ̃/γ is close to −1 if γ is sufficiently small. We
can look for this solution by using the degree theory
(see [10, Appendix B]). Actually we shall see that the
condition e2iϕ̃/γ ≃ −1 must not be imposed a priori but
is a consequence of the requirements that σ̃ ≃ − ln(2),

ϕ̃ ≃

2 ln(2) and (74) are satisfied.

In order to use the degree theory, we consider an open
rectangular domain Ωγ ⊂ R2 defined by

Ωγ =

−ln(2)−δ,− ln(2)+δ


×

k(γ)πγ, (k(γ)+1)πγ



(75)
and the function

φγ : (σ,ϕ) → e2iϕ/γA(γ,σ,ϕ) +B(ϕ) ∈ C ≡ R2 (76)

defined on the closure Ωγ of the domain Ωγ , with the
function k(γ) defined as

k(γ) :=


2 ln(2)

πγ


. (77)

We then have the following lemma.
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Lemma 3 There exists γ1 > 0 such that, for every γ ∈
(0, γ1),

degree

φγ ,Ωγ ,0


= 1. (78)

Proof. According to the degree theory (see [10, Ap-
pendix B]), equality (78) just means that, if (σ,ϕ) fol-
lows the boundary of the rectangle Ωγ clockwise, then
the function φγ describes a curve in R2 that does not
pass through the origin 0 but encircles the origin ex-
actly once and in the clockwise direction. This is shown
in Appendix B.

It follows from Lemma 3 (see, for example, [10, Propo-
sition B.10]) that, for any δ ∈ (0, ln(2)) and any γ ∈
(0, γ1], there exists

(σ̃, ϕ̃) ∈ (− ln(2)−δ,− ln(2)+δ)×(k(γ)πγ, (k(γ)+1)πγ)
(79)

such that (74) holds. Let

s̃ = σ̃ + i
ϕ̃

γ
. (80)

It follows from (64), (74) and (80) that for any γ ∈ (0, γ1]

G(γ2, s̃) = 0. (81)

Hence, we have shown that, for any η ∈ (0, γ2
1 ], there

exists s̃ ∈ Sη with ℜ(s̃) ∈ (− ln(2)− δ,− ln(2) + δ) and
consequently that

− ln(2)− δ < ση. (82)

Moreover (see the proof of Theorem 1 in [7]) Lemma 2
implies that there exists η1 > 0 such that

ση < − ln(2) + δ ∀η ∈ (0, η1]. (83)

We conclude that Theorem 1 is satisfied with η∗ =
min{γ2

1 , η1}.

Remark 1 Since, for every η > 0, there exists δη > 0
such that the function s → G(η, s) is holomorphic on
{z ∈ C | ℜ(z) > δη}, then its degree gives exactly the
number of zeroes of G (see, for example, [19, pages 45 and
46]). In particular, if η = γ2 > 0 is sufficiently small,
there is one and only one s̃ satisfying (81) such that

ℜ(s̃) ∈ (− ln(2)− δη,− ln(2) + δη), (84)

ω̃ := ℑ(s̃) ∈ (k(γ)π, (k(γ) + 1)π). (85)

Note that (77) and (85) imply that

lim
η→0+

ηω̃2 = 2 ln(2). (86)

Remark 2 The degree theory was also used in [11] to
study the spectrum of a closed-loop partial differential
equation control system to deal with high frequency issues,
but in a simpler situation.

Remark 3 Our proof of the existence of (σ̃, ϕ̃) as above
uses very mild assumptions on the mapsA andB, namely
that they are simply two continuous functions. The proof
can be extended to more general continuous functions
A : [0,+∞)×R×R → R2 andB : [0,+∞)×R×R → R2.
Assume that there exists σ∗ ∈ R, δ∗ ∈ (0,+∞) and
ϕ∗ ∈ (0,+∞) such that

A(0,σ∗,ϕ∗) = B(0,σ∗,ϕ∗) ∕= 0, (87)

and the map

σ → |A(0,σ,ϕ∗)|− |B(0,σ,ϕ∗)| (88)

is strictly monotone on [σ∗ − δ∗,σ∗ + δ∗].

Then the above proof can be adapted to get that, for every
δ0 ∈ (0, δ∗), there exists γ0 such that, for every γ ∈
(0, γ0), there exists σ̃ ∈ R and ϕ̃ ∈ R such that

G(γ, σ̃, ϕ̃) = e2iϕ̃/γA(γ, σ̃, ϕ̃) +B(γ, σ̃, ϕ̃) = 0, (89)

(σ̃, ϕ̃) ∈ (σ∗ − δ0,σ∗ + δ0)× (k(γ)πγ, (k(γ) + 1)πγ),
(90)

where the function k is defined by

k(γ) :=


ϕ∗
πγ


. (91)

This generalization can be used, for instance, to solve
Conjecture 1 in our previous paper [7] where we addressed
the output feedback stabilization of an unstable intercon-
nection of transport systems with anti-located sensing and
control.

Remark 4 In this section, to simplify the calculations,
we addressed the special case where the model is normal-
ized with a unit celerity c = 1 and a unit length L = 1.
In that case we found that, with a small viscosity η, there
is a stability margin SM = ln(2) which is independent
of the value of η. But obviously, by following the same
approach, the stability margin can also be determined in
the general case where c and L have arbitrary positive
real values. Considering the control system (with the no-
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tations defined in Section 2)

∂tH + ∂xQ = 0, (92a)

∂tQ+ c2∂xH − η∂xxQ = 0, (92b)

Q(t, 0) = U(t), (92c)

Q(t, L) = Q∗, (92d)

Y (t) = H(t, L), (92e)

under an output feedback control law

U(t) =
c

2


H∗ −H(t− τ, L)


with τ =

L

c
, (93)

it can be shown that the stability margin is

SM =
c

L
ln(2) (94)

for the closed-loop system (92), (93). As one might intu-
itively expect, we see that the stability margin increases
with the celerity c and decreases with the length L.

5 Robustness analysis.

In order to analyze the robustness of the control, we now
assume that there is some parameter uncertainty in the
fluid flow model. We therefore introduce an additional
perturbation ε such that the normalized open-loop sys-
tem (29) in the time domain is now written with a celer-
ity term c2 = 1 + ε instead of c2 = 1:

∂th(t, x) + ∂xq(t, x) = 0, (95a)

∂tq(t, x) + (1 + ε)∂xh(t, x)− η∂2
xxq(t, x) = 0, (95b)

q(t, 0) = U(t), (95c)

q(t, 1) = 0, (95d)

Y (t) = h(t, 1). (95e)

We suppose, as before, that the system is closed with
the control law (21):

U(t) = − 1
2Y (t− 1). (96)

Remark that this control law depends on the theoretical
delay (τ = 1), ignoring the uncertainty represented by ε
corresponding to a delay τ = 1/

√
1 + ε.

The characteristic equation of the closed-loop system in
the frequency domain is then modified as follows:

Gε(η, s) =

es

1 + ε+ ηs


es/

√
1+ε+ηs − e−s/

√
1+ε+ηs


+ 1 = 0.

(97)

Im

Re

<latexit sha1_base64="WzDq/pLiaJngbs3uEnJIinJrILc="></latexit>

⌘ = 0.01

" = 0.1

<latexit sha1_base64="YqoMOufEFPvdyBbyN62Rd9EeKsE="></latexit>

⌘ = 0.01

" = 0

<latexit sha1_base64="pG2SxFYfGomgQjgx4HCKVQ8LJ28="></latexit>

⌘ = 0

" = 0.1

Fig. 2. Spectrum of the closed-loop system: influence of vis-
cosity on stability in case of parameter uncertainty.

As in the previous section, we introduce the spectrum
Sη,ε and the maximal abscissa ση,ε defined by

Sη,ε := {s ∈ C : s is solution of (97)}, (98)

ση,ε := sup{ℜ(s) : s ∈ Sη,ε}. (99)

We remark that, by definition, we have

Sη,0 = Sη and ση,0 = ση. (100)

We then have the following robustness theorem.

Theorem 2 Let δ > 0 and η > 0 be such that Theorem
1 holds, i.e.

ση,0  −ln(2) + δ. (101)

Then there exists ε1 > 0 such that for any ε ∈ (−ε1, ε1)
the maximal spectral abscissa ση,ε satisfies

ση,ε  −ln(2) + 2δ. (102)

The proof of this theorem is omitted because it is quite
similar to the proof of Theorem 2 in [7].

The theorem is illustrated in Figure 2. In this figure,
we can see what happens in the situation where there is
no viscosity (η = 0) but a slight parameter uncertainty
(ε = 0.1) such that the actual delay is τ = 0.95 instead
of τ = 1. Although the ideal system (without modelling
uncertainty) should be exponentially stable, it appears
that it becomes unstable with poles (represented by or-
ange dots in Figure 2) moving to the right-half complex
plane, showing clearly the lack of robustness.

In contrast, when there is some viscosity (η = 0.01) and
no uncertainty (ε = 0), we know from Theorem 1 that
the closed-loop system must be exponentially stable as
it can be seen with the spectrum of green dots (actually
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reprinted from Figure 1) which is entirely strictly located
in the left half plane.

Finally, illustrating Theorem 2, the robustness to mod-
elling uncertainty (ε = 0.1) in the presence of a small
viscosity (η = 0.01) is clearly evidenced by the spectrum
of blue dots which, resulting from a small shift of the
green spectrum, remains entirely in the left half plane.

6 Conclusion

We have discussed the output feedback stabilization of
an unstable fluid system with anti-located boundary
sensing and actuation. We have shown that the system
can be stabilized by a dynamic controller that involves
a delayed output feedback which is non-robust with re-
spect to delay uncertainties. Then, we have shown that
the designed control law can, however, stabilize the sys-
tem in a robust way when there is a small unknown vis-
cosity. Furthermore, there is an intrinsic uniform margin
of stability which is independent of the viscosity value
even if it is asymptotically small.
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A Proof of Lemma 1

For convenience, let us first recall the characteristic
equation (46):

G(ηn, sn) = esn

1 + ηnsn


esn/

√
1+ηnsn

− e−sn/
√
1+ηnsn


+ 1 = 0, ∀n ∈ N. (A.1)

Proof of (i)

Let us assume by contradiction that σ̄ = +∞ and there-
fore that σn > 0 if n is sufficiently large, which is always
assumed from now on. This implies that

|esn | → +∞ and |

1 + ηnsn|  1. (A.2)

Then it follows from (A.1) that

lim
n→+∞


esn/

√
1+ηnsn − e−sn/

√
1+ηnsn


= 0. (A.3)

This can be written as limn→+∞

Xn −X−1

n


= 0 with

Xn = esn/
√
1+ηnsn and implies that both Xn and X−1

n
are bounded. Therefore, since ||Xn| − |Xn|−1| ≤ |Xn −
X−1

n |, (A.3) implies that 1 is the only possible adherence
value for |Xn| and therefore

|esn/
√
1+ηnsn | → 1. (A.4)

We denote zn = 1/
√
1 + ηnsn. One has

zn =

√
1 + ηnσn − iηnωn

(1 + ηnσn)2 + (ηnωn)2
, (A.5)

which implies that, since 1 + ηnσn > 0,

0 ≤ |ℑ(zn)| ≤
1√
2

1

((1 + ηnσn)2 + (ηnωn)2)1/4
=

1√
2
|zn|

and therefore that

0 ≤ |ℑ(zn)| ≤
1√
2
|zn|  ℜ(zn)  |zn|. (A.6)

With these notations (A.4) implies

|eσnℜ(zn)−ωnℑ(zn)+i(σnℑ(zn)+ωnℜ(zn))| → 1, (A.7)

thus
σnℜ(zn)− ωnℑ(zn) → 0. (A.8)

We restrict to a subsequence such that ωn converges in
[−∞,+∞]. The case where ωn → 0 can be discarded
because, in this case, from (A.6), ωnℑ(zn) → 0 and
σnℜ(zn) → +∞ which is in contradiction with (A.8).
Thus we can assume that n is large enough such that
ωn > 0 (resp. ωn < 0). From (A.5), one can see that if
ωn > 0 (resp. ωn < 0) then ℜ(zn) > 0 and ℑ(zn) < 0
(resp. ℑ(zn) > 0). Hence since σn > 0 we deduce from
(A.8) that

|σnℜ(zn)|+ |ωnℑ(zn)| → 0. (A.9)

Using (A.9) together with (A.6) gives

|σn||zn|+ |ωnℑ(zn)| → 0. (A.10)

If there exists C > 0 such that for n sufficiently large
|ηnωn| ≤ C(1 + |ηnσn|) then

|σn||zn| =
σn

((1 + ηnσn)2 + (ηnωn)2)1/4

≥ σn

(1 + C2)1/4(1 + ηnσn)1/2
→ +∞, (A.11)

and this is in contradiction with (A.10). Thus, for n
sufficiently large we can assume that |ηnωn| > 1+ |ηnσn|
(at least up to a subsequence) and therefore, using (A.5),
there exists a c > 0 independent of n such that |ℑ(zn)| ≥
c|zn|. This, combined with (A.10), gives

(|σn|+ |ωn|)|zn| → 0. (A.12)

From the definition of zn, we have sn/
√
1 + ηnsn → 0.

Taking the square, this leads to

|sn| 1
sn

+ ηn


→ 0. (A.13)

Since |sn| ≥ σn → +∞ and ηn is bounded, we have a
contradiction. This concludes the proof of (i).

Proof of (ii)

Since (ηnω
2
n) is non-negative for all n it follows directly

that 2θ  0. Let us assume by contradiction that 2θ =
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+∞. We have

sn√
1 + ηnsn

=
(σn + iωn)

√
1 + σnηn − iωnηn

(1 + ηnσn)2 + (ωnηn)2
. (A.14)

Let α denote an adherence point of the sequence (ηnωn).
We consider successively the case where α ∈ [−∞,+∞]\
{0} and the case where α = 0.

• If α ∈ [−∞,+∞] \ {0}, then the sequence (ωn) is un-
bounded since ηn → 0 and we can restrict to a subse-
quence (σn,ωn) such that ωn → +∞ (resp. ωn → −∞)
and, from (A.14),

sn√
1 + ηnsn

=
ωn

|ωn|
(o(1) + i)


1 + o(1)− iωnηn
o(1) + η2n

,

(A.15)
where the o(1) are real valued. Thus

ℜ


sn√
1 + ηnsn


= − ωn

|ωn|


ℑ


1 + o(1)

|ωnηn|
− i

ωnηn
|ωnηn|



+ o(1)ℜ


1 + o(1)

|ωnηn|
− i

ωnηn
|ωnηn|


|ωnηn|

o(1) + η2n
.

(A.16)

We then have, for α ∈ R \ {0},


1 + o(1)

|ωnηn|
− i

ωnηn
|ωnηn|

→


1− iα

|α| (A.17)

and for α = ±∞


1 + o(1)

|ωnηn|
− i

ωnηn
|ωnηn|

→
√
∓i (A.18)

such that, since α ∕= 0,

lim
n→+∞

ℜ


1

|ωnηn|
+ o(1)− i

ωnηn
|ωnηn|


∈ (0,+∞),

lim
n→+∞

ℑ


1

|ωnηn|
+ o(1)− i

ωnηn
|ωnηn|


∈ (−∞,+∞) \ {0}.

(A.19)

From (A.16) and (A.19) we deduce that

ℜ


sn√
1 + ηnsn


→ −∞ or ℜ


sn√

1 + ηnsn


→ +∞,

(A.20)
which implies that

lim
n→+∞

esn/
√
1+ηnsn − e−sn/

√
1+ηnsn

 = +∞. (A.21)

Since σ̄ ∈ (−∞,+∞) by assumption, we deduce that
|eσn+iωn | → eσ̄ ∈ (0,+∞) and |

√
1 + ηnsn|2 ≥ 1/2 for

n sufficiently large. Hence, using (A.21),

lim
n→+∞

esn

1 + ηnsn


esn/

√
1+ηnsn − e−sn/

√
1+ηnsn



= +∞, (A.22)

which is in contradiction with (46).

• If α = 0, then ηnsn → 0. Recall that ω2
nηn → +∞ by

assumption thus the sequence (ωn) is again unbounded
and we can select a subsequence such that ωn → +∞
(resp. −∞). Then, we have

sn√
1 + ηnsn

= sn


1− ηnsn

2
+ o(ηnsn)



= (σn + iωn)


1− ηn(σn + iωn)

2
+ o(ηnsn)


,

(A.23)

where the function o(ηnsn) can be complex valued.
Hence

ℜ


sn√
1 + ηnsn


= (1+o(1))σn+

ω2
nηn
2

(1+o(1)) → +∞,

(A.24)
where we use that σn/ωn → 0. This means that we have
again (A.21)–(A.22) and a contradiction.

This completes the proof of Lemma 1.

B Proof of Lemma 3

Recall that δ ∈ (0, ln(2)) and γ ∈ (0, γ0]. Since A and B
are continuous on [0, γ0)× (− ln(2)− δ,− ln(2)+ δ)×R,
we have

φγ(σ, k(γ)πγ) = 2e2σ +
1

2
+ o(1), (B.1)

φγ(− ln(2) + δ,ϕ) =
1

2
(e2iϕ/γe2δ + 1) + o(1), (B.2)

φγ(σ, (k(γ) + 1)πγ) = 2e2σ +
1

2
+ o(1), (B.3)

φγ(− ln(2)− δ,ϕ) =
1

2
(e2iϕ/γe−2δ + 1) + o(1), (B.4)

where o(1) refers to functions that tend to 0 in the
C0-norm when γ → 0+. These estimates are direct con-
sequences of (66), (71) and (76). When (σ,ϕ) follows
the boundary of the rectangle (− ln(2) − δ,− ln(2) +
δ)× (k(γ)πγ, (k(γ) + 1)πγ) one has:

• on the left and right boundaries, the function 2e2σ+1/2
remains on the half real line (0,+∞);
• on the upper boundary σ = − ln(2) + δ, as ϕ/γ
increases from k(γ)π to (k(γ) + 1)πγ, the function
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(1/2)(e2iϕ/γe2δ+1) never meets 0 but describes a closed
curve independent of γ > 0 which encircles 0 exactly
once and in the clockwise direction since 2ϕ/γ− 2k(γ)π
increases from 0 to 2π and e2δ ∈ (1,+∞);
• on the lower boundary σ = − ln(2) − δ, the func-
tion (1/2)(e2iϕ/γe−2δ + 1) does not pass through 0
but describes a curve independent of γ > 0 which re-
mains in the strict right-hand side of the complex plane
{z ∈ C | ℜ(z) > 0} since |e2iϕ/γe−2δ| < 1.

Hence, using also (B.1) to (B.4), there exists γ1 ∈ (0, γ0)
such that, for every γ ∈ (0, γ1), when (σ,ϕ) follows the
boundary of the rectangle Ωγ in the clockwise direction,
the whole curve described by φγ does not pass through
the origin 0 but encircles the origin exactly once and
in the clockwise direction, which means that (78) holds.
This completes the proof of Lemma 3.
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