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Traffic  Modeling  and  State Feedback Control 
for Metro Lines 

Vi Van Breusegem, G. Campion, and G .  Bastin 

Abstract-This  paper  deals  with  traffic  modeling  and  control 
design for high-frequency  metro  lines. A complete  discrete-event 
traffic  model pointing out the  natural  instability of metro  lines  is 

to-implement  state  feedback  traffic  control  algorithms  are  de- 
presented.  The  traffic  stability  properties  are  analyzed  and  easy- 

signed,  which  guarantee  the  system  stability.  Simulations illus- 
trate  the  methodology. 

H 
I. INTRODUCTION 

IGH-FREQUENCY metro lines are well  known to be 
naturally  unstable. This means  that  any  deviation  with 

respect to the nominal schedule of  a  given train is  amplified 
with time and disturbs the operation  of the other trains. The 
phenomenon is explained as follows. On a  high-frequency 
line, the passengers arrive randomly at the stations. Hence, 
the number of passengers  waiting  at  a  platform to get on the 
next train increases  with the time elapsed  since the departure 
of the  preceding train. If  a train is delayed, this  time interval, 
and therefore the number of passengers, become greater than 
nominally expected. The staying time of  the train at the 
platform  depends  on the number  of  passengers  exchanged 
between  platform and train and naturally  increases too. 
Hence, the delay  of the train is  increased  from one platform 
to the next. Conversely, if the next train operation  is  not 
delayed, this  train  will  be  ahead  of  schedule  since the time 
interval  will be shorter than expected due to the number of 
passengers at a  platform and the corresponding train staying 
times  being  less  than  their  nominal values. The same argu- 
ment  shows  that the next train is delayed. . . and so on. 

Traffic  control is therefore necessary in order to prevent 
such  instabilities.  A  minimal  traffic  control  is  always  imple- 
mented on metro lines, by  use  of  traffic  lights and other 
protection  devices  in order to ensure, according to the secu- 
rity rules, a  minimal  distance  between  successive trains and 
to avoid  collisions. The resulting  traffic  conditions are, how- 
ever, far from being  ideal: the time deviations  with  respect to 
the nominal  time  schedule are large, the distribution of 
passengers  among the trains is  excessively  nonuniform  and 
the commercial speed  is reduced. Thus, more efficient  traffic 
control  strategies are therefore necessary, both  from  a  pas- 
senger and company  viewpoint. 
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Currently, on most commercial lines, traffic control con- 
sists  only  of  resetting the time  deviations to zero at  selected 
platforms  (generally those of  the end of each line)  by  use  of 
time margins. This solution however requires operating more 
trains than  necessary and consequently, at each instant, sev- 
eral trains are in  standby.  In  this paper, we shall  show  how 
efficient control algorithms can be designed  which ensure the 
stability of the operation, do not  need  time  margins  and 
therefore  allow  operation  with a minimal  number of trains. 

Control algorithms for a string of  moving  vehicles have 
been proposed, by Levine and Athans [l] and others [2 ] - [5 ] .  
The approach  in [ l ]  is  based  on the optimal  control theory, 
but it is  inconvenient for traffic  control  of  metro  lines; the 
vehicle  stopping  at  fixed  points  (platforms)  is  not  taken  into 
account. Moreover, the control algorithms are elaborated 
from mathematical  models  which are deduced from the mo- 
tion  equations. Therefore, the position, velocity, and acceler- 
ation of each vehicle have to be evaluated  at  each  instant. 

A more suitable class of mathematical  models is obtained 
from  a  discrete-event approach. Such  models  account  only 
for discrete events occurring on the line, e.g., arrival or 
departure of trains at  or from platforms. The corresponding 
variables are related to both trains and platforms. This ap- 
proach  which  is  used  in this paper, has  already  been  used  in 
order to design  optimal-time  schedules by means of optimiza- 
tion  techniques [6] or  to examine  the  traffic  dynamics  of an 
automated  transit  system [7]. 

The purpose of this paper  is to present a complete 
discrete-event  traffic  model  pointing  out  the  natural  instability 
of metro lines, to analyze the  traffic  stability properties, and 
to design  easy-to-implement  traffic control algorithms which 
guarantee the system  stability. 

The paper is organized as follows. The description of the 
traffic on sequential metro lines is  given  in  Section II. TWO 
different  kinds of lines are considered:  open  and loop lines. 
In  Section 111, the basic linear model  of the traffic  obtained 
from a  discrete-event approach is presented. This model 
describes the transfer of  a train between two successive 
platforms. The traffic on open  lines  is  analyzed  in  Section IV. 
The concepts  of  nominal time schedule and time deviations 
are introduced  and  a  global  state-space  description of the 
traffic on open  lines is presented. This state-space approach is 
used to analyze the natural  instability of the line and to design 
traffic control algorithms using  state feedback. The stability 
properties of  these algorithms are demonstrated.  Section V is 
devoted to analyzing the traffic  on loop lines. The concept of 
natural  interval  which is induced  by the cyclic structure of 
the line is  introduced and a  global  state-space  representation 
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Fig. 1. Example of open  line. 
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N-1'w4 Fig. 2. A Imp line with N platforms. 

accounting for this structure  is deduced from the linear  traffic 
description. Instability properties and traffic control algo- 
rithms are presented. Traffic description, when there  is no 
reference time schedule, is  then presented and traffic control 
algorithms valid for this situation are  designed, An estimation 
technique which allows the model  to  cope  with inaccurate 
prior knowledge of the  natural  interval  is also proposed. 
Simulation results are given in Section VI to illustrate the 
methodology. 

II. TRAFFIC DESCRIPTION 
Consider an ordered set  of trains running on a metro line 

constituted by a sequence of platforms where each train has 
to stop in order to allow passengers to get on and off. Each 
train and each platform are  characterized, respectively, by a 
number referred  to  as the train index and the platform index. 
In this paper, we restrict  ourselves to sequential line  struc- 
tures and operating conditions and therefore exclude branch- 
ing  and tree  structure  lines.  This means that: 

1) the sequence of platforms encountered by a given train 
is ordered and the same for all trains on the  line; 

2) at each platform, the sequence of trains is ordered and 
the same for  all  platforms. 

The class of sequential lines can be divided into two 
subclasses: open lines and loop lines which are defined  as 
follows. 

Open  Lines: An open line is defined as  a sequence of N 
platforms where M trains  are  operated. The platform indexes 
and  the train indexes vary, respectively, from (1) to ( N )  and 
from (1) to ( M ) ,  The  trains  are injected at  the  first platform 
((1)) independently of  the  past  traffic evolution, and leave the 
line after platform (N) (see Fig. 1). 

Loop Lines: A loop  line  is defined  as a closed line with 
N platforms (indexes (1) to (N)) where platform (N) is 
connected to platform (l), and where  a given  set of trains 
(indexes (1)  to ( M ) )  is periodically operated (see Fig. 2). 

For each platform, the ordered sequence of crossing trains 
is 

{1 ,2;**  M , 1 , 2 ; - *   M , 1 , 2 . - . , }  

and the  ordered sequence of platforms crossed by a given 
train is 

{1,2;.* ,  N, 1 ,2 ;** ,  N, l ,".,}. 

Due to the closed structure of the  line,  the variables relative 
to  a given train at platform (1) depend on the past traffic 
evolution and namely on the variables relative to  the preced- 
ing platform (N) . 

This difference between open and loop  lines motivates the 
two different global traffic descriptions presented in Sections 
IV and V. However, the analysis of the traffic on open metro 
lines which  will  be performed in Section IV has to be seen as 
an introductive ideal study because most commercial lines are 
actually operated as loop  lines. Consider for instance the 
classical configuration of a 2-track line between two terminus 
stations A and B (one track in each direction) (Fig. 3). On 
course AB the platform numbers are (l), (2), . . . , ( Nl) and  on 
course BA (N,), (N, + l ) ,  . (2N, - 2 ) ,  (1). The (N, - 2) 
couples of platforms { ( a ) ,  (2N,  - 2)), . . . , ( (N,  - l), (N, 
+ 1))) constitute (Nl - 2) physical stations (2 platforms) 
while A and B are  two  terminus stations with track crossing 
sections. If a sequence of M trains is operated periodically 
on the circuit ABA, this line can be considered as a loop line 
with (2 Nl - 2) platforms. 

Notation: Throughout this paper we use a two-indexes 
notation to identify the variables relative  to a given train at a 
given platform: the upper index refers  to the train number 
and the lower index to the platform number. For example t: 
will denote the  departure instant of the  ith train from the kth 
platform. These indexes however have to  be interpreted, 
respectively, modulo M and modulo N.  With this conven- 
tion the indexes of two successive trains can  be denoted, 
without loss of generality, (i) and ( i  + l),  with (I s i d M ) ,  
(the train ( M )  is followed by train (l)), and two successive 
platforms by the indexes ( k )  and (k + 1),  with (1 5 k 4 N), 
(platform (N) is followed by platform (1)). 

III. TRAFFIC MODELING 
In this section, we derive the mathematical model relating 

the departure instants of  the different  trains from the dierent 
platforms. 

According to the aforementioned notation, let us denote t i  
as the departure instant of train ( i )  from platform ( k ) .  
Obviously, the departure instants of train ( i )  from two SUC- 

cessive platforms { k )  and ( k  + 1) are related by 

where ri is  the running time of train ( i )  from (k) to ( k + 1) 
and s: is the staying time of train ( i )  at platform (k). 

In order  to  further model r: and sb, we introduce four 
basic assumptions. 
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Basic Assumptions 
AI:  The operating conditions (number of trains, desired 

interval between successive trains, number of passengers 
arriving at  a given platform per second, . . . ) are constant. 

A2: The running time of a  train between  two successive 
platforms ( r ; )  does not depend on the number of passengers 
on  the train. 

A3: The staying time of a  train  at  a platform depends 
linearly on the number of passengers getting on the train. 

A4: The number of passengers to be embarked on train ( i )  
at platform ( k )  is proportional to  the interval between  the 
departure instants of the successive trains ( i  - 1) and ( i )  
from platform ( k ) .  

Assumption A1 is introduced only  in order to simplify the 
analysis and can easily be relaxed.  The three assumptions 
A 2 ,  A3, A4 can be replaced by more sophisticated modeling 
assumptions. It  is possible,  for instance, to take into account 
the load (i.e.,  the numbers of passengers) on  the trains and to 
relate the staying time  not  only  to the number of embarking 
passengers (like  in A3) but also  to  the number of passengers 
getting off the train (see [8], [9]). Simulation results obtained 
with  such more sophisticated models are, however, not sig- 
nificantly different, as  far as traffic analysis is  concerned. 

From A1 and A 2 ,  the running time  can be expressed as 
follows 

r; = R k  + u i  + wl: (2) 

where R ,  is the nominal running time from ( k )  to ( k  + l), 
ui is the control action applied to  train ( i )  between ( k )  and 
( k  + 1) in order  to  increase ( u i  z 0) or to decrease (ui < 0) 
the running time, and wl’, is  a disturbance term. 

From Al ,  A3,  A4, the staying time can be modeled  as 

SA+, = s + Ck+l(ti+l - t:::) + w2:+, (3) 

where S is the minimal staying time at a platform, when  no 
passenger gets on the train and the  doors  are closed as soon 
as possible, c , + ~  is the delay rate representing the effect  of 
the time interval between the departure instants of two suc- 
cessive trains (A4), and w2:+,  is a disturbance term. 

In relations (2) and (3), S, R k ,  and c ,  are parameters to 
be estimated. S and R k  can be evaluated from the operating 
conditions while the ck have to be estimated by linear 
regression on a  large number of observations ( t : ,  s:) at each 
platform, according to (3). Usual values of ck are in the 
range 0.01 to 0.05 (see [8] for examples relative  to Brussels 
metro lines). 

Using (2) and (3), the relation (1) can be rewritten as 

(1 - Ck+l ) t i+ l  = t i  - ~ k + ~ t i i \  + S + R ,  + U :  + W: 

(4) 

where w; = wl’, + w2i+, .  
This relation between the departure instants of the trains is 

used throughout the paper. It must be pointed out that the 
admissible control  actions and disturbances are bounded in 
order  to always satisfy the security requirements which are  in 
place to prevent collisions between trains. 

Equation (4) gives a local description of the traffic behav- 

1 

ior relating to two successive trains and  two successive 
platforms. The complete set  of departure times t: ( i  = 
1,. . a ,  M ;  k = 1, - * ,  N )  corresponds  to  a global descrip- 
tion of the traffic. 

IV. TRAFFIC ANALYSIS FOR OPEN LINES 
To begin the analysis, we consider the simple case of  an 

open line, constituted by a sequence of N platforms (see Fig. 
1). We  first introduce in Section IV-A the concept of a 
nominal schedule and  we describe the traffic dynamics in 
terms of the time deviations between the actual system  behav- 
ior  and this nominal schedule.  The  intrinsic instability of the 
system  is then analyzed in Section IV-B . Finally, stabilization 
of the traffic dynamics by state feedback is discussed in 
Section N - C .  

A .  Tr&c Description with Reference to a  Nominal 
Schedule 

Nominal Schedule: We assume that an ideal traffic plan 
has  been established for the line under consideration. It takes 
the form of a nominal time schedule which  is  defined as the 
set  of the nominal departure instants Tl for each train at each 
platform on the  line.  This nominal  time schedule is character- 
ized by a constant time interval H between successive trains, 
l.e., 

H =  Ti+, - TL. ( 5 )  

It  must  be coherent with the natural dynamics of the line, 
Le., it  must satisfy the basic relation (4) in the absence of 
control and disturbances ( u ;  = w; = 0). 

TL+, = TL + Ck+lH + s + Rk (6)  

Initial Conditions: For consistency in our subsequent 
developments, some care must be taken  with the initial 
conditions of (4). We  need to introduce a “fictitious initial 
train” and a  “fictitious initial platform.” The fictitious initial 
train, with index ( i )  = 0, is supposed to be “exactly on 
time” at each station, Le., t i  = T f ,  V k .  The fictitious initial 
platform, with index ( k )  = 0, is such that all the trains  are 
supposed to be. exactly “on time” at this platform, i.e., 
t: = T;, V i .  

Time  Deviations: Define x: as the deviation of the actual 
departure instant t i  from its  nominal value Tk, i.e., 

x; t; - T i .  
Then, the basic dynamical equation (4) is rewritten as fob 
lows: 

(1 - C k + I ) X : + l  + ck+lX;;’l = x: + ui f w:, 

k 2 0, i 2 1. (7) 

For given sequences of control actions and disturbances (u; 
and w;), (7) describes completely the evolution of the set  of 
time deviations { x i } .  

B. Intrinsic Instability of the Trqffic Behavior 
We  now  use (7) to emphasize the natural instability of a 

metro line. Define the I-dimensional vector X f  of the time 

~~~ ~ ~~ - 
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deviations of the first I trains on the line, at a given platform 
(k) 

x;a [x: ... x: ]  =. 

This vector will serve as the  state  vector of a state-space 
representation (8) which will be referred  to  as the “station 
sequential model” (see [SI). From (7), it is easily shown that, 
without control  or disturbances (u: = wi = 0), the evolution 

where 

A$ = 

- I  

AI is lower triangular with diagonal elements 1/(1 - c k + , )  
> 1. As the system (8) is not stationary, we cannot immedi- 
ately conclude concerning its stability. Define the mean-square 
value of the time deviations of the I trains at a given 
platform (k) 

This  index reflects the quality of the  line operation: if all 
trains are running under nominal operation mode, this index 
is equal to  zero. With this definition and using  the state-space 
representation (8), we have the following instability result. 

Theorem I :  For ck > 0, if the mean-square value of the 
time deviations at a given platform is greater than zero, then 
this mean-square value increases from platform to platform, 
Le., 

rkfl  > rk, k L 1. 

ProoS: See the Appendix, A. 1. 
This theorem clearly shows that a  metro  line  is intrinsically 

an unstable system, whatever the traffic dynamics (Le,, what- 
ever the positive values of the ck’s): any  initial time deviation 
at the first platform is propagated and exponentially amplified 
along  the line. 

C. Trafic  Control Using State  Feedback 
In this section, we shall present a feedback control law 

which guarantees system stabilization. The control law  will 
be designed by minimizing a performance index  which re- 
flects the operational objectives. Since the traffic description 
equation (7) is linear with respect to  the time deviations, we 
choose a  quadratic performance index in  order  to reduce the 
problem to a standard LQ problem resulting in a  linear 
state feedback control. It can be seen,  however, that the 
state-space representation (8) is not suited for an on-line 
state feedback control implementation: since  the state vector 
components ( x ; ,  i = 1, - * , I )  are relative to the I trains, 

the control to be applied to train ( i )  at platform ( k )  would be 
a function of the I corresponding time deviations including 
the future (and therefore unknown) time deviations. Before 
formulating a convenient alternative  state model, we intro- 
duce the following matrix notation. 

Matrix  Notation: Dl(  N ;   a , ,   a , ,  . . . , a,) denotes a diag- 
onal matrix of dimension N parametrized by the successive 
values of the diagonal components a , ,  . . . , a,  

a1 

D , ( N ; a , , a , , * ~ ~ , a , )  I [n a2 0 .  1 
11; .4‘ . . .  0 1 

ON 

D,(N, a , ,   a 2 ; .  ., a,; b , ;  . ., bN- ,) is a  square matrix of 
dimension N of the following form: 

~ ~ ( N ; U , , U , , ” ’ , U N ; b , , b , , ” ’ , b N - , )  

01 

bN- l  ‘N 

parametrized by the successive values of the diagonal compo- 
nents a, to a,  and by the successive values  of the subdiago- 
nal components b,  to bN- 1 .  

State-Space  Formulation: We  first introduce the follow- 
ing definitions of state, control input, and disturbance input 
vectors: 

We notice that the state vector Xi is  made  up of the time 
deviations x; such that the sum  of their indexes is precisely 
equal to the state index j :  Xi = { x ;  I i + k = j } .  

It then follows from the basic traffic dynamics equation (7) 
that X,,, is generated by Xj (Le., x:, is generated by x: 
and x:;’, for all ( i )  and (k)). This is expressed in the 
compact matrix form by the following state-space model: 

X,,, = A X j  + BUj + B Wj (9) 

with 

. 
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Performance  Index: For  a given Xi ,  the control law u/ 
is  computed in order to minimize, under the linear constraint 
(9), the following criterion: 

J ,  = PXjrIXj+l + 4 ( X j + ,  - x j ) T ( x ; + l  - x ; )  

+ q’q (10) 

where p and q are two positive constant design variables at 
the  user’s  disposal.  The motivation for this criterion  is as 
follows. The first term Xj’+ X j +  I penalizes the deviations 
with respect to the nominal schedule while the second term 
penalizes the deviations of the  intervals between successive 
trains from the nominal value ( H )  and  is therefore related to 
the average waiting time for  the passengers at  a  platform. 
This  term may be. used to enhance the traffic regularity, 
irrespective of the nominal time table. The third term penal- 
izes control actions that are too large. The values of p and q 
depend on the  control  purpose and reflect a trade-off between 
the regulation objectives (Le., time table versus regularity). 
The choice of the criterion (10) and of the specialized state- 
space formulation (9) is primarily justified by the fact that 
their combination leads to a very simple, meaningful, and 
stabilizing control  law,  as we shall now demonstrate. 

Feedback Control Law: The  control minimizing ( 1 0 )  
under constraint (9) is  linear in Xi and is written 

where I ,  denotes the identity matrix of dimension N .  The 
components of q, can also be expressed as follows: 

where g k + l  = 
P + 4  

P + 4 + (1 - C k + J 2  
and 

f k + l  = 
4 + PC,+ 1 

P + 4 + (1 - C k + d 2 <  

This means that the control applied to train ( i )  between 
platforms (k) and (k + 1) is a linear combination of two 
time deviations: the  time deviation of train (i) at platform { k) 
and the time deviation of the preceding train ( i  - 1) at the 
next platform (k + 1). 

Closed-Loop  Sfability: The  state  matrix of the closed-loop 
system corresponding to the state-space formulation (9) cou- 
pled  with the feedback control law [ 11) is easily seen to be 
exponentially stable.  The closed-loop system  is therefore 
“bounded-input bounded-state” stable. On  the other hand, it 
is more interesting,  from  a practical point  of view,  to exam- 
ine the variations of  the mean-square value of the time 
deviations at  a given platform in the closed-loop system. In 
absence of disturbances, the  time deviations at  two successive 
platforms are related by the following nonstationary closed- 
loop equation: 

0.10 O”* E 

Fig. 4. Instability region for = 0.1. 

where = xi ‘Bk is lower triangular with eigenvalues 

Since the model (12)  is not stationary, no  definite general 
conclusion can be drawn immediately from the structure of 
the matrix concerning the evolution of the mean-square 
deviation at a given platform. We  can, however, state the 
following result. 

Theorem 2: For p and q such that 

the mean-square value of the time deviations at any platform 
decreases exponentially from platform to platform. 

This theorem is easily proved by using similar arguments 
as for Theorem 1. The conditions (13)  are satisfied for  a wide 
range of positive p and q. To illustrate  this, the domain of 
the [ p ,  q )  plane wherein these conditions are achieved, for 
ck+1  = 0.1, is represented in Fig. 4. 

Comment: The simple one-step-ahead performance index 
(10) is attractive because, under the constraint (9), it leads to 
a simple stabilizing control  law. We could also consider a 
multistep index of the following form: 

The corresponding optimal control  law will be  linear in the 
state vector X j ,  with a gain matrix obtained from the solu- 
tion of a Riccati equation. In this case, the control  to be 
applied to train (i) at platform (k) involves all the time 
deviations xf; relative  to index j such that i + k = j .  

V. TRAFPIC ANALYSIS FOR Loop LINES 
This section deals with the description and control of the 

traffic on loop  lines whereon the sequence of platforms 
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crossed by every train  is  periodic.  We consider a set  of M 
trains which are operated simultaneously on a  loop  line with 
N platforms ( M  c N )  [see Fig. 2). Without traffic control, 
the time deviations with respect to a nominal operation are 
cumulated from circuit  to  circuit.  Currently, on  most com- 
mercial loop lines, traffic control consists only of resetting 
the time deviations to  zero at selected platforms (generally 
the terminus stations) by use  of time margins.  This  solution, 
however, requires operation of more  trains than necessary 
and consequently, at each instant, several trains  are in 
standby. The aim of this section is then to design efficient 
traffic control laws which are adapted to the periodic struc- 
ture of  the line, which ensure the stability of  the operation, 
do  not  need time margins and allow therefore  to  operate  a 
minimal number of trains. 

We  first introduce in Section V-A the concept of natural 
interval between successive trains which characterizes the 
nominal operation of a  loop  line. In Section V-B, we  show 
how the traffic description w.r.t. a nominal  time schedule has 
to be modified in order  to account for the periodic structure 
of the line. Then, we design in Section V-C a generalized 
performance index specific for  loop lines which allows us  to 
compute a  stibilizing  control law having the same properties 
as that for open lines. In Section V-D, we extend the  traffic 
description when there is  no reference schedule and  in Sec- 
tion V-E we design traffic’control algorithms valid for this 
situation.  Finally, Section V-F presents an attractive solution 
incorporating estimation to cope with the possibly inaccurate 
knowledge of the natural interval. 

To simplify the presentation of the following sections, we 
make the following additional assumption. 
fi5: The ck are identical for all platforms, i.e., ck = c ,  

k = I ; . . ,  N .  

A .  Natural Interval Between Successive Trains 
The objective is to  control the traffic regularity, i.e., to 

maintain the line at  a nominal steady-state situation character- 
ized by a constant time interval H between successive trains. 
It  must  be  pointed out that for  a given loop line (char- 
acterized by s, R k ,   c , )  with a given number of trains, this 
nominal interval cannot be chosen arbitrarily (unlike open 
lines). To see  this, consider a loop line operated at  the 
nominal situation, with a constant time interval H between 
successive trains. The transfer time for  a full circuit, i.e., the 
trip time of any train between  two successive departures from 
the same platform of the line, is obviously equal to M 
(number of trains) times H. Indeed, between two successive 
departures of a  train from a  platform, all the other trains 
operated on the line have also left this platform, each sepa- 
rated by the time interval H.  But, on the other hand, this 
transfer time is also equal to the sum of the transfer times 
between the N platforms and the staying times at the plat- 
forms modeled by (3). Hence 

M H = N [ S + c ]  + R k .  
N 

(14) 
k =  1 

For  a given line, the value of H satisfying (14) is called ‘‘the 
natural interval. ’ ’ 

B. Trafic Description with Reference to a Nominal 
Schedule 

The basic dynamical equation (4) holds for  loop  lines, 
provided the two indexes ( i )  and ( k )  are  interpreted, respec- 
tively, modulo M and modulo N :  train ( M )  is followed by 
train (1) and platform { N )  by platform (1). With this inter- 
pretation, Equation @), where H is  the natural interval, 
defines the nominal time table.  The perturbation equation (7) 
holds also for  loop  lines.  However, the combination of these 
scalar equations in order  to define a global state-space formu- 
lation must reflect the periodicity of the structure. 

Operation  Quality Index: We define 

1 M  , 2  

M 
n k  = - ( x i - ( )  (15) 

as a quality index for loop lines.  This index is defined as the 
mean-square value of the time deviations of the M operating 
trains (indexes (1) to ( M ) )  at M successive platforms (inde- 
xes ( k  - 1) to ( k  - M ) ,  modulo N ) .  Notice that this index 
is equal to  zero in nominal operation. 

Matrix Notation: Before defining  a convenient state-space 
formulation to study the  traffic instability properties of loop 
lines, we introduce the following matrix notation. 

&(a, b)  is  an N X N matrix of the following form: 

} N -  M 

1 M .  

- 
N - M  

- 
M 

This matrix is parametrized by the real values Q and b .  Its 
characteristic polynomial is p ( A )  = A N - M ( A  - a ) M  - bM. 

D4(a) denotes an N x M matrix of the following form: 

0 } N -  M 1; a ’ . .  :j }Ma 

_ _ _ _ _ _ _ _ _ _ _ _ _ _  

Intrinsic Instability of Loop Lines: For each train ( i ) ,  
we define, respectively,  as  state,  control, and disturbance 

- .  
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M 

where i E { 1,2, * 4 ,  M } .  The state  vector X;, associated 
with train (i), is the N-vector whose  components have the 
following  meaning. 

1) The ( N  - M )  first  components are the time deviations 
of train (i) at ( N  - M )  successive  platforms  (index ( j  - N) 
to ( j  - M - 1)). 

2) The last M components are the time deviations  relative 
to the M trains and characterized by the same  value j for the 
sum of their upper  and lower indexes (interpreted, as usual, 
respectively,  modulo M and  modulo N) .  

The control  and  disturbance  vectors (v' and W:) are 
M-vectors whose  components are relative to the M trains 
and  characterized  by the same  value j for the sum of their 
upper and lower indexes. With the definitions (16), we  obtain 
from the basic equation (7), the following  state-space formu- 
lation: 

X;+l = A , X : + B , [ Y +  W i ] ,  i ~ { 1 , 2 ; * * , M }  

(17) 

where 

Remark: It follows from (16)  and  (17)  that for a loop line 
with M operating trains there exist M equivalent  state-space 
representations  with  identical  state-space  matrices. More- 
over, it  must be noticed  that  the  values of I I k  for two 
successive circuits can be related  using (16), Le., 

1 M  
~ k + N - ~ , = - C [ I I ~ / + l l 1 2 - I I ~ ; 1 1 2 ] .  M i = l  

The free system, without disturbances and  control  actions, 
associated  with  (17)  is  written (i E { 1, * * ,  M } )  

For c = 0, the eigenvalues  of A ,  are 0 and 1, whose 
algebraic  multiplicity ( M )  is equal to the geometric  multi- 
plicity. This implies  that the free system  is  stable  but not 
asymptotically. There is therefore no  guarantee  of  bounded- 
ness of the solutions  in the presence of  bounded  disturbances. 
For c > 0, one eigenvalue is equal to 1, with  a correspond- 
ing  eigenvector of the form [ l  * * * 1IT. The situation  where 
all the deviations  have the same value (i.e., a state vector of 
the form a[l  * * * I]=, for any a) is therefore an equilibrium 
which  is  however  not  stable: for any  perturbation  affecting 

the state vector, its norm as well as the index IIk tend to 
infinity. 

Theorem 3: For c > 0, for any  perturbation  of the equi- 
librium, there exists j o  ( E N )  and I, ( E N )  such  that V i  
( i = l ; * . , M ) , v k ( k =   l , ~ ~ ~ , N ) , v j r j o , v l r l ,  

1) II x;+1 II > II Xjl l  
2) l-h+(,+l)*N ' n k + r * N *  

Proof: See the Appendix,  Section A.2. 

and justifies the need for traffic  control strategies. 
This result  illustrates  the  natural  instability  of  a loop line 

C. Traflc Control  with  a  Nominal  Time Schedule 
As for the open  line case (Section IV), the feedback 

control  is  designed  in order to minimize  a  quadratic perfor- 
mance index, under the linear constraint (17). 

Performance Index: By analogy  with the performance 
index  of  open  lines J, (lo), we define the following perfor- 
mance  criterion: 

J; = (Xj+JTP(xj+J + (x;+l - S N X f  

* Q(Xj+, - S N X j )  + (uJ')TLs: ,  (19) 
where 

- 

P =  

0 
0 

- 
0 

Q =  

- 

0 

0 
0 

P 
P 

0 

0 

0 
4 

4 

0 

P and Q are diagonal  weighting  matrices  of  dimension N 
whose ( N  - M )  first  components are equal to zero. The 
remaining  components are equal, respectively,  to p and 
which are two nonnegative  design parameters. S, is the 
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N x N permutation  matrix 

l o  
I 

The first term of J i  penalizes the M time  deviations of the 
M operated trains and the second term, as in J , ,  the M 
interval  deviations from the nominal value H between  suc- 
cessive trains. The third term penalizes  control  actions  that 
are  too large. 

Remark: J ,  accounts for N (number  of  platforms) time 
deviations  while J i  accounts for M (number of  trains) time 
deviations. This reflects  a structural difference  between open 
and loop lines. Indeed, an open line can be  conceptually  seen 
as a line with  a  finite  number ( N )  of  platforms  and  an  infinite 
number of operated trains while  a loop line can be repre- 
sented  with  a  finite  number ( M )  of operating trains and  an 
infinite  number of platforms  obtained  by the periodic  repeti- 
tion of their  initial sequence. 

Feedback Control Law: The control  minimizing (19) 
under  the  linear  constraint (17) is linear in X; 

= [ Z M  + B l ( P  + Q ) B , ] - '  

. [ B l (  P + Q) A, - B,TQSN] X:. (20) 

The components  of q' can also be  expressed  as  follows: 

u: = gx: + fx:;-,: ( 2 1 )  

where g = ( p  + q ) / [ p  + q + ( 1  - c)*]  and f= -(PC 
+ q ) / [ p  + q + (1 - c ) * ] .  This control  law has the same 
form as  for  the open line case: the control to be applied to a 
given train ( i )  at  a  given platform ( k )  is  a linear combination 

of the time deviation of this train ( i )  at  the  same 
platform ( k )  (weighting  coefficient g); 

of the time deviation of the preceding  train ( i  - 1) at the 
next  platform ( k  + 1) (weighting  coefficient f ). 

Closed-Loop Behavior: With the state  feedback (20), the 
closed-loop  behavior  is  described  by the following  equation: 

X;+, = ALxj + B,w;, j c  ( 1 , 2 , . . . ,  M }  (22) 

where xL = &[(I - g ) / ( l  - c) ,  - ( c  + f ) / ( l  - c ) ]  and 
B, = D,[1/(1 - c ) ] .  From (22), we can state the following 
result. 

Theorem 4: For q > c(1 - c) ,  at  any  platform ( k )  
1 )  if p > 0, all the eigenvalues of are strictly  inside 

the unit circle; 
2) if p = 0, all the eigenvalues are strictly  inside the unit 

circle  except one, equal to 1, with  a corresponding eigenvec- 
tor of the form [I * . . 11'. 

Proofi See the Appendix,  Section A.3. 
For p > 0, this  result  implies the asymptotic  stability of 

the  closed-loop  system and therefore the monotonic  conver- 
gence to zero of  the  mean-square  deviation rIk: 

V k  > 0, I Ik+,, ,  5 I I k  and lim I I k + , . N  = 0.  
1+m 

For p = 0, the solution  of the closed-loop  system converges, 
in the absence  of disturbances, to a  steady-state  situation 
characterized by  a  constant time deviation  with  respect to the 
nominal schedule, i.e., 

IA such  that lim r I k +  = A*. 
I*.% 

This means  that if the interval  regulation ( p  = 0) is the only 
control 'objective, a  nominal time schedule  is  no longer 
necessary, as we shall see in the next  section. 

D. Tr@c Description  Without Reference to a Nominal 
Time Schedule 

So far, in the preceding section, we have analyzed the 
traffic dynamics in terms of time  deviations  between the 
actual  system  behavior  and  a  given  nominal  schedule. On the 
other  hand,  it  is clear that  a  nominal  schedule  is  not  really 
required for fully  automated  high-density  lines.  In  this  sec- 
tion, we show  how to cany out the description and the 
analysis of the traffic  in this case. 

Znterval Equation: We define y :  t: - t;-' - H as 
the deviation, with  respect to H, of the nominal  time  interval 
between trains ( i )  and ( i  - 1 )  at platform ( k ) .  Thus, from 
(4), the traffic dynamics are rewritten as follows: 

(1 - c ) y i + ,  + cy:;: = y ;  + sug + s w : ,  
k r  1, i z  1 (23) 

with Sui 6 ub - ui- '  and 6w: w: - wi-'. Equation 
(23)  is called "interval equation." It holds for loop lines, 
provided the two indexes (i) and ( k )  are interpreted, respec- 
tively,  modulo M and modulo N. This equation  is  initialized 
with y i  = 0, V k  and Su; = 6wi = 0, V k .  

State-Space Formulation: Similarly to Section V-B, we 
define,  respectively, as state, control, and disturbance vec- 
tors: 

and  we  obtain from the interval  equation (23), the  following 
state-space  formulation: 

rji+' = A , y ' + B L ( A U J I ' + A W ; ) ,  i c { l ; * * , M }  

( 2 5 )  

where A ,  = D , [ l / ( l  - c ) ,  - c / ( l  - c)] and B,  = 
D , [ l / ( l  - c)]. Again, due to the loop structure, there exist 
M equivalent  state-space  formulations  with  identical  state- 
space  matrices  and  which can be distinguished  by the upper 
index  of y', AY', or A Wi. 

In order to describe the  evolution of the control actions  and 
of the disturbances, we define  two  augmented N-vectors qi 
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.N - M Ii4 
(26)  

The evolution  of q! and is  then  described  by 

= S&, + D4(1) A q ;  i e{ l ; . . ,  M }  (27a) 

F! = S,T-, + D4(1) A T ' ;  i c  { l ; . . ,  M }  (27b) 

with S, defined  in (19). The vectors I;', UJ', "t;' are not 
independent:  they are related by a linear compatibility  condi- 
tion as stated  in the following lemma. 

Lemrnalt  For any j and for any i E { 1, * * a ,  M }  , qi, q-, and W;.' , satisfy 
b y V +  b T ( q - ,  + w;-l) = 0 (28) 

- .   - .  

where b,  and b, are the following N-vectors: 

b,  = [,c c : * a  c ~ ( c  - 1) ... ( c -  l)] '  and 
d 

N - M  M 
b, = [ 1 1 1 I T .  

___c_ 

N 

Setpoint: The operational objective is to keep the time 
interval  between  any  pair  of  successive trains as close as 
possible to the natural  interval H. The corresponding  desired 
setpoint is therefore defined  by 

V i e  {I; . . ,  M } ,  ~ j ,  yii = q-, = 0. 

Proof: See the Appendix,  Section A.4. 

Operation  Quality Index: We define 

as a  quality  index for loop lines  when the goal is to ensure the 
regularity  between  successive trains. This index  is  defined as 
the mean-square  value  of the M deviations,  with  respect to 
the natural  interval H of the  nominal interval, corresponding 
to the M operating trains (indexes (1) to ( M ) )  arranged in 
pairs  at M successive platforms (indexes (k - 1) to ( k  - 
M ) ) .  This index  is equal to zero at the setpoint  which, 
however,  is  unstable as shown hereafter in Theorem 5 .  As 
for the l I k  index, the evolution  of a, from circuit to circuit 
is  related to the evolution of the state  vectors rJi 

1 M  
M i = l  

O k + N  - uk = - [ 11 V+lII' - 11 ? l 1 2 ] '  
Intrinsic Instability: Consider the free system corre- 

sponding to (25). As  pointed out in  Section V-B, for c > 0, 
A ,  has  an  eigenvalue equal to 1, with  a  corresponding 
eigenvector of the form [ l  * * * l]? This means  that  the 
situation where all the components  of y' are equal, say to 
a, is an equilibrium point. From the compatibility  condition 

(28), the corresponding [q + v j ]  is a vector whose  ele- 
ments are all  equal to a( N - M - c)/N. Each  of  these 
equilibrium  points  (characterized  by CY) corresponds to a 
constant  time  interval  between  successive trains, but  which  is 
different from H .  Furthermore, these equilibrium points are 
unstable, as stated  in the following theorem. 

Theorem 5: For c > 0, for any perturbation  (compatible 
with  (24)), there exists j , (E  N )  and IO(€ N )  such  that 

V i   ( i  = l ; . . ,  M ) ,  v k  ( k  = l ; . . ,  N ) ,  
V j  2 j , , ,  V I  2 1 ,  

1) II V+l II ' I/ VI1 
2, u'c+(I+l)*N > Ok+l*N* 

Proof: Similar  to the proof  of Theorem 3 .  

E. TrcEqic Control Without Nominal  Time Schedule 

minimize  a  quadratic performance index. 

considered: 

Once again, the feedback control is designed  in order to 

Performance Index: The following performance index  is 

where Q is the same diagonal weighting  matrix  of  dimension 
N as those  defined  in J;' (19). The two termsof Jl  penalize, 
respectively, the deviations  of q+ , and Uj from the set- 
point. 

Feedback Control Law: The control  minimizing (29) 
under the linear constraints (25) and (27a)  is  linear  in y' and 
q- 1 
- .  

AV = K,V + ~~q (30) 

where K ,  = - [ BIQB, + IM]  - IBzQA,  

K ,  = - [ BZQB, + I M ]  -'[ D4( l ) ]  'S, 

where I, is the identity  matrix  of  dimension M .  The control 
action to be applied  to train ( i )  at platform ( k )  is therefore 
given  by 

u: = (1 + h)ui - '  + gy: +fYLi-,: (31) 

q + (1  - c)' ' q + (1 - c ) 2 '  

qc 
where f =  

- 4  
g =  

- ( 1  - c)' 

q + (1 - c ) 2 .  
h =  

This  control  action  is  a  linear  combination o f  
the control  action  applied to the preceding  train ( i  - 1) 

at the same  platform (k) (weighting  coefficient 1 + h);  
the time  deviation w.r.t. the natural  interval  of the time 

interval  between trains ( i )  and ( i  - 1)  measured at the same 
platform (k) (weighting  coefficient g); 

the time deviation w.r.t. the natural  interval  of the time 
interval  between trains ( i  - 1) and ( i  - 2)  measured at the 
next platform ( k  + 1) (weighting  coefficient f ). 

Remark: It is  interesting to notice  that this control  law 
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coincides with the control law (21), with p = 0, provided 
that a  reference time schedule compatible with the natural 
interval H is used. Indeed, in that case, we have 

ul; = t; - ti-1 - fg = x: - $1 
. .  

and (31) can be rewritten as 

u; = [.:-I - ' 4 
q + ( 1  - c)' q + (1 - c)' x;] + 

which  is the control deducted from (23) for p = 0. 

the closed-loop behavior is  described by 
Closed-Loop Behavior: With the feedback control (30) 

+ O N - M , M  AT! (32) [:I 
where O N - M .  denotes the ( N  - M )  X M null matrix. 
Consider first  the disturbance  free  case,  i.e., W;i = 0 and 
AW; = 0, for each j and for each i .  We  have  the following 
result. 

Theorem 6: For ";i = 0 and AT! = 0, for each j and 
for each ie { 1, - * ., M }  and for  trajectories (v', q') com- 
patible with the line  structure in  the sense of (28), the 
feedback control law (30) with q > c(1 - c) g u a r a n t e e s  

1) that the operation quality index uk is decreasing asymp- 
totically and converges to zero  from  circuit  to  circuit 

v k ~ { ( l ) ; - * ,  ( N ) } , v l > O ,  u k t p N < u k  and 

2) that the  corresponding  control converges asymptotically 

lim (l,i = 0. 

to  zero 

j - 0  

Proof: See the Appendix, Section A.5. 
This result can be exploited to characterize  the  structure of 

the eigenvalues and the eigenvectors of the closed-loop ma- 
trix (32) by the following lemma. 

Lemma 2: If b is  the  vector b' = [b,b,]' defined by 
(28), then the closed-loop matrix defined  in (32) with q > 
c(1 - c) 

1) has an eigenvalue equal to one, The corresponding 
eigenvector is of the form [- ( I  - c ) / q , * * - ,  - (1 - c ) / q ,  
1, * * ,l]' which is not orthogonal to the vector b; 

2) the other eigenvalues are  strictly inside the unit circle 
and the corresponding eigenvectors are orthogonal to b. 

Proof: See the Appendix, Section A.6. 
These technical results allow us to prove the boundedness 

of the operation quality index uk in  the presence of bounded 
disturbances. 

Theorem 7: For q > c(l - c) ,  in presence of bounded 
disturbances, the feedback control law  (30) ensures the 
boundedness of the operation quality index 0, and of the 
corresponding control vector. 

Proof: See the Appendix, Section A.7. 

F. Unknown Natural  Interval 
The implementation of the feedback control law (30) re- 

quires an accurate howledge of the natural interval H.  On 
the other hand, as  the number of operating trains on  the line 
varies  during an operation day, the value of the natural 
interval may change.  Therefore, in this section, we  first 
investigate the influence on the control performance of a 
modeling. error on H. Then, we present an asymptotic 
estimator designed in order to track the value of the natural 
interval H when the number of trains  is changing. This 
estimation, combined with the  control law (30) guarantees 
closed-loop convergence. 

Influence of a Modeling  Error: Assume that the napral 
interval H is approximated by H and define  the  offset H as 

A = H - f i  (33) 

Defining to be the estimate of v, we  have 

= yi" + fib, (34) 

where b, is the N vector (28). T h y ,  the components of 
denoted 9; are 9: = I: - tk-' - H = y: t H .  The control 
law (30) is implemented with the estimate yi' 

Theorem 8: In the absence of disturbances, the system 
defined by (25)-(27) coupled with the control law (35) 
converges to  an  equilibrium point characterized by 

a steady-state interval H* 

H * = H  
(1 - c)(Nc - M )  

(1 - c ) ( N c  - M )  - qM 

- A  qM 
( 1  - c ) ( N c  - M )  - qM' 

a steady-state control u" 

u* = - ( H -  A)q 
( N c  - M )  

(1 - c ) ( N c  - M )  - qM 

Proof: SeeAthe Appendix, Section A.8. 
When H = N, this equilibrium point is  the desired set- 

point r j i  = 0, = 0). In the presence of bounded distur- 
bances it can easily be shown, as in Theorem 7, that the 
deviations with respect to  the  equilibrium point (H*, u*) are 
bounded. 

Estimation of the  Natural  Interval H: The natural inter- 
val H can be estimated recursively. Let H, be the estima- 
tion used  in the implementation of the control law, Le., 
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= qi + f i j b2 .  Then, using (28) and (34) we obtain 

b r q  + brq!- ,  = bTb2fij - bTR?-, 

= (cN - M ) g j  - b r F j - l .  

This suggests the following estimator of H :  

HI+ = H j  + a[ br + b T q -  (36) 

where a is  a design parameter.  The estimation error dynam- 
ics  are written 

f i , + l  = [ l  - ~ ( c N -  M ) ] f i , +  c t b r v - , .  (37) 

For a chosen such that 

11 - ~ ( c N  - M )  1 < 1  (38) 

the estimator  is asymptotically stable, independent of the 
control law. This is summarized in  the following theorem. 

Theorem 9: The control law (35) with y' and the adap- 
tation law (36) for Hi with a satisfying (38) ensures the 
asymptotic stability of the closed-loop system around y' = 0, 
q = O , a n d H = O .  

This algorithm ensures  therefore the convergence of the 
system to the natural setpoint, even when  the natural interval 
is unknown. 

VI. SIMULATION RESULTS 
The preceding linear stability analysis holds only for traffic 

conditions close to the nominal setpoint. In case of large 
deviations, nonlinear constraints have to be introduced mainly 
due to security requirements. In order to test the robustness 
of our linear approach under nonlinear conditions, we have 
developed a simulation software SIMETRO, which accounts 
for the nonlinearities and is based on  a discrete-event ap- 
proach where realistic security constraints are implemented. 
A full description of SIMETRO can be found in [12]. 

Our purpose in this section is to show through simulation 
results the economical performance of the proposed'on-line 
traffic control. We consider a loop line with 30 platforms. 
One of these platforms is a terminus where the train staying 
time is adapted  in order  to  ensure the periodicity of the 
nominal schedule. On the  other  hand, the train staying time  at 
the terminus platform is also bounded below due to con- 
straints on the line operation. 

The  traffic conditions are the following: 
the parameter c = 0.02; 
the minimum staying time S = 15 s (except for the 

the nominal running times are between 60 and 100 s; 
the minimal staying time at the terminus platform is 3 

the natural interval H is 3 min. 

We consider three case studies. 

terminus platform); 

min; 

250 1 
Tm Deviations (sec) 

r, 

200 4 f 
150 - 

100 - 

1 1 1  21 31 4 1  5 1  
Platforms Index 

Fig. 5 .  Time  deviations of train (1). 

Case I :  
the total staying time at the terminus is 6 min constituted 

number of trains: 15 
the total nominal  time for a full circuit  is  therefore 15*3 

Case 2: 
the total staying time  at the terminus is 3 min 
no time margin 
number of trains: 14. 

The total nominal time for  a full circuit is therefore  14*3 
min = 42 min. The reduction with respect to Case 1 is due to 
the suppression of the time margin at the terminus station. 
This allows us to  operate the line with 14 trains instead of 15. 

Case 3: 
same conditions of operation as in Case 2 except that 

traffic control law (21) is implemented with p = q = 1. 
We simulate these three situations with the same sequence 

of stochastic disturbances applied to the system: the staying 
time  at each train stop is disturbed with  white noise having a 
mean of 3 s and standard deviation of 7 s. In Fig. 5 ,  we 
compare the evolution of the time deviations of train (1) 
during its trip along the line.  The platform numbers have to 
be interpreted modulo 30. 

Case I :  Due to the disturbances all the trains are delayed. 
The delay is increasing progressively along the circuit but the 
time margin is allowed to recover the nominal schedule at 
platform (1) 

Case 2: Since there is  no time margin the deviations are 
continuously increasing,  from  circuit to circuit. 

Case 3: Due to the traffic regulation the delays are bounded 
(less than 40 s) and are not increasing from circuit  to  circuit, 
even without a time margin at the terminus station. 

These simulation results show the following. 
1) The proposed traffic control law allows reduction in the 

terminus time margins and therefore the number of trains 
necessary to ensure a given nominal operation mode. This 

by the minimal  time (3 min) and the time margin (3 min) 

min = 45 min. 

T- - 



shows the economic benefit to be expected from efficient 
control. 

2) The quality of the line operation (evaluated by the 
quality index II,) is better with  traffic control than in Case 1 
(exploitation with time margin at the terminus station). 

VII. CONCLUSIONS 
In this paper, we have  shown  how  efficient  traffic control 

algorithms for high-frequency metro lines can be designed by 
means of a complete traffic  model obtained from a  discrete 
event approach. 

1) We  have developed a complete traffic analysis for  se- 
quential metro lines with or without reference to a nominal 
time schedule. The intrinsic instability of metro lines has 
been pointed out.  We have shown how well chosen state-space 
formulations allow design of state-feedback control algo- 
rithms ensuring the stability of  the system. The proposed 
traffic control algorithms have simple forms and are easy to 
implement in real-life systems. 

2) Simulations have  shown the robustness of the proposed 
traffic control algorithms against disturbances occumng ran- 
domly  on a  loop line and their efficiency  when compared to  a 
classical time margin strategy.  Other simulation studies, in- 
cluding applications to the Brussels Metro network can be 
found,  e.g., in [8], [9], [ll],  and [12]. 

APPENDIX 
A.1. Proof of Theorem I 

Consider the matrix Hi = ( Ai)TAi .  
Its inverse ( I f f ) - '  is given by 
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0 I 

Since ( H i ) - '  is symmetric, its eigenvalues are  real. 
1) No eigenvalue of ( H i ) - '  is equal to 1 

det[ I,  - ( H i ) - ' )  = c i + l ( l  - c ~ + ~ ) '  

"2 - C & + l )  - (1 -  1)(1 - . , + I ) ]  # 0 

for 0 < c k + ,  < 1 ,  where I,  is the unity matrix of dimension 
I .  

2) By the theorem of Gershgorin  (see, e.g. [13]), we  know 
that the eigenvalues of (Hi)- are located in a set  of three 
circles characterized by 

Therefore,  for any real z inside the first  circle (Al)  
if z 2 (1 - ck+] ) *  =) 0 (1 - ck+l)2 5 z I (1 - 

c k + l )  
if z < (1 - ck+l)2 * 0 < (1 - C ~ + ~ ) ( I  - 2 . c k + , )  s 

z 5 (1 - C k + $  < 1. 
For any real z inside the second circle (A2) 

if z 2 c;+, + (1 - =) z I 1 
if z < c:+~ + (1 - =) o < (1 - 2c,+,)* z 

< c;+l + (1 - C k + ' ) 2  < 1 .  

z s 1 - Ck+l ( l  - C k + l )  1 

z s 1 - 2Ck+,(l - C k + ] )  < 1. 

For any real z inside the  third  circle (A3) 
if z 2 c;+~ + (1 - ck+l)2 =) 1 - - c ~ + ~ )  I 

if z 2 c:+~ + (1 - ck+l)2 =. 1 - 3 ~ ~ + ~ ( l  - c k + ' )  5 

These three  circles  are  therefore contained in.the unit circle 
and the eigenvalues of (Hi)-' are, in absolute value, less 
than 1 (see 1)). This implies that the eigenvalues of Hf are 
in absolute value strictly greater than 1. 

3) Let & be the eigenvalue of Hf with the smallest 
absolute value ( I )mi, I > 1). Then 

A.P. Proof  of Theorem 3 
1) Any realistic perturbation affecting the state vector is 

compatible with (16), i.e., it  only  affects  the M last  compo- 
nents  of this vector. 

2) We first characterize the eigenvalues of A,. Consider 
a first vector U'(E R"') of the form 

E R ~ - ~ ,  V z 0. 
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Consider a second vector U2(e R N )  of the form Therefore b = 11 X, - 1 1 1 1  and X, = 1. This means that 
for p > 0, all the eigenvalues are strictly inside the unit 

u2= [L] with V =  ( u 1 , u 2 , . - - r u M ) T E R M ,  V * o .  circlewhichimpliesthat 

~ ~ A , ~ 2 ~ ~ Z = u ~ $ ~ ~ ~ 2 2 ' ~ ~ ~ 2 ~ ~ ~ A 2 2 ~ ~ ~ 2 > ~ ~ ~ ~ ~ 2  ~ ~ ~ + l ~ ~ ~ \ ~ ~ ~ ~ ~  n k + N < n k $  j - 0  l imIIE; ' I I= '  and 

= I I 4 I l 2  lim r I k + I . N  = 0 
where 

I + -  

( l / ( l  - c )  - c / ( l  - c )  0 
1/(1 - c )  1 

= I 
1 0 

is an ( M  x M )  matrix. 
This shows that A ,  has at least one eigenvalue strictly 

inside and at least one eigenvalue strictly outside the unit 
circle. 

3) Let Y ,  denote the eigenvector corresponding to the 
eigenvalue 1 (vo = [I - llT), v i  ( i  = 1, n,) the eigenvec- 
tors corresponding to the stable eigenvalues and T~ ( i  = 1, n,) 
the eigenvectors corresponding to the unstable eigenvalues. 
Consider a state vector X ,  obtained by perturbing the equi- 
librium with a perturbation compatible with (16). X ,  is also 
expressed as 

XO = ( ~ 0 ~ 0  + & p i  + Pjq j  where ai, o j e R .  

As the perturbation is of the form of U, (see 2)), at least one 
of  the  coefficients p j  is different from  zero and the result 
follows immediately. + 
A.3. Proof of Theorem 4 

" 1  n2 

i =  1 j =  1 

The characteristic equation of A ,  (22) is 
A N - M ( X  - a ) M  - bM = 0 

where u = (1 - c ) / [ p  + q + (1 - c)'] and b = [ q  - c(1 
- C)l / [P  + Q + (1 - C Y ] .  

For q > c(1 - c),  it can be easily checked that 
l ) f o r p = O , a < l , a n d b = l - o  
2 ) f o r p > O , a c l a n d b c l - u .  
Assume that there exists X,, with 11 X, 1 1  2 1 satisfying the 

characteristic  equation. Then 
bM 

1 II h l I N - M  = )I X, - all M (*). 
In this case 

for p = 0, b2 = ( a  - 1)2 s 1 1 0 .  - and 

bM 

I1 X, - all hi 
c 1, which contradicts (*) 

for p = 0, b2 = ( u  - 1) 5 ) l a  - Xi1I2 and 2 

bM 
( ( A ,  - allM 

. .  - c / ( l  - c) 

1/(1 - c) I 
for p = 0, all the eigenvalues are strictly inside the unit 

circle except one, equal to 1, with a corresponding eigenvec- 
tor of the form [ l  * 1IT. Without perturbation, the system 
converges therefore to a steady-state situation where all the 
deviations are equal and l I k  is constant. 

A.4. Proof  of Lemma I 
In order to  make the proof more comprehensible, we 

consider a simple loop  line with 5 platforms and 3 trains. 
This proof can easily be extended to  the general case at  the 
price of tedicus index_m@pulations. Consider a  given step 
j ,  with I;.', v,l and y- defined as 

I;.'= [ ) ) 3  3 3 2 I T  - '  I Y z Y ~ Y ~ Y ~ ]  q-I = [u5u1u2u3%] 
3 3 3 2 1 7  

- .  yLl = [w:w:w:w:w;]T. 

Obviously, these vectors are defined  in relation with train 3. 
The components of r j i  are related to the departure times t: 
by 

y :  = t: - t: - H ,  Y: = ti - t i  - H ,  

y: = t i  - t: - H ,  y i  = ti - ti - H ,  

= ti - t: - H ( * ) .  

On the other hand, these 10 values ti satisfy a set of 5 
transfer equations (4) denoted (**) 

C ( t : - t : - H ) =   - c H + t : - t : - S - R 5 - u 3 - - 3  5 5  

C ( t :  - t; - H )  = -cH + t: - t :  - S - R ,  - u: - w: 
C ( t :  - t: - H )  = -cH + t: - ti - S - R - u3 - w3 2 2 2  

C(t: - tl - H )  = - cH + ff - t: - S - R 3  - u: - w i  

C ( t :  - t: - H) = -cH + t: - t: - S - R ,  - u: - wi 

The relations (*) and (**) constitute a set of 10 linear 
relations between these10 ti and the vectors q- , and 
y!- ,. The vectors y', v7 , and W/- , are compatible with 
the structure  of the line If there exists a solution, in the 
unknown t i ,  for this linear nonhomogeneous equations sys- 
tem. Obviously, this solution is not uniaue: the t!. me defined 

- - 1  
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modulo an additive constant. This means  that the (10 X 10) 
matrix  of the coefficients t i  is  not full-rank (it  can  be 
checked  that the rank is 9). Thereexists therefore  a  compati- 
bility  condition  between $, crjl_ and WjL R i  ( i  = 
1, e ,  5 ) ,  H and S.  This condition is obtained by summing 
the relations (**). Using (*), we obtain 

[ c  c c - 1  c - 1  c - l ] I ; . ' + [ l  1 1  1 11 
5 -(q-, + vi-l) = - R ,  + 5s + 5cH = 0 1 

or 

bfrj'  + b:[ q!-l + Fj-l] = 0. + 
A S .  Proof  of Theorem 6 

The control  law (31) coincides  with  the  control  law (21), 
with p = 0 provided  that  a reference time schedule  compati- 
ble  with the natural  interval H is used. Let  us therefore 
analyze the closed-loop behavior in the time  deviations (X;) 
formulation. 

A. 7. Proof  of Theorem 7 
Let X i  and u i ( i  = 1,- - . , 2  N )  denote the eigenvalues  of 

the closed-loop  matrix  defined  in (32). The initial  condition 
as  well as the input vector can be  expressed in terms  of the 
eigenvectors ui .  

( h E  { l ; . . ,  M } ) .  

Furthermore, as Wp is bounded, Ef= Pi( j )  is  bounded for 
each i ( i  = 1 ; * * , 2 N )  and j .  The state vector can be 
expressed as 

and  its  norm  is  bounded by 

For p = 0 and q > c(1 - c ) ,  has one eigenvalue 2 N  2 N  
equal to 1  with  a corresponding eigenvector u1 = [l * * * 1IT i =  c 1 I ail \ I u i l l +  i =  c 1 I [  ~ O ~ ( ~ ) ] I I I U ; I I  

and the other  eigenvalues  strictly  inside the unit  circle  (see 
Theorem 4). Let ( X i ,  v i )  (1 I i I N )  denote  the  couples  which is bounded. 
(eigenvalues, eigenvectors). There exist N constant ai  ( i  = 

1, a ,  N )  such  that the initial  condition X," ( h  E { 1,. a * , M }  A.8. Of 
can  be  expressed  in  terms of vi ( i  = 1, - a ,  N )  In absence of disturbances, the system  satisfies 

N 

x," = a j u ; .  
j =  1 

Therefore, for the disturbance free system 
N 

x; = a l u l  + C r i ( X i ) j U i .  
i = 2  

(A8.1) 

where h E { 1,. . . , M J  and V is the 2N-vector defined by 

V =  [ o  ... 0 -1  . . .  -1, 0 ."  0 (1 - c )  " *  (1 - . ,IT.  
q + ( 1 - c ) 2  ' M N - M  M 

- ,  

It follows  that 11 x,!'+, 11 5 11 x,!' 11 and limj+,X; = a I u I  and From Theorem 6 and  Lemma 2, we  know that, for any  initial 
it can be easily  checked  that  condition  compatible with the line structure, the state of this 

system converges to a  stable  equilibrium  point.  It is easy to 

of Y and U,  say y* and u*, such  that 

11 r j " l l l  I 1) ?*\I, ~ i m  qh = 0, uk+I.N I u k ,  

lim u , + ~ * ~  = 0 and lim 11 vj" 1 1  = 0. + 
I + -  j - m  

j-cc  check that this point corresponds to steady-state  components 
- 

qy* + (1 - c)u* = - q H .  (A8.2) 
A.6. Proof of Lemma 2 On the other  hand, this steady-state  point is compatible  with 

1) It can easily  be  checked  that 1 is an eigenvalue  of the the line structure. Therefore 
closed-loop  matrix  (32)  with  a  corresponding-  eigenvector  of 
the  given form.  This vector is not  orthogonal to b.  ( NC - M ) y *  + Ku* = 0. (A8.3) 

2) Let us denote M the closed-loop  matrix (32). It can be The relations (A8.1), (A8.2), and (A8.3)  determine y* and 
checked  that M'b = b.  Therefore, the  eigenvectors corre- u*. The steady-state  setpoint  is  characterized  by u* and 
sponding to the  eigenvalues  not  equal to 1 are orthogonal to H* = H + y*, and the result  follows  immediately. + 
b.  

sponding to the ( 2 N  - 1) eigenvectors  orthogonal to b are Prof. M. Polis, Associate Editor at Large, is gratefully 
strictly  inside  the  unit circle. + acknowledged  for  helpful  suggestions for improving the read- 

From Theorem 6, we conclude  that the eigenvalues corre- ACKNOWLEDGMENT 
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