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Abstract- -An original procedure for the estimation of the 
barycentric parameters of a robot is presented. This 
procedure requires only the processing of measurements 
provided by an external experimental set-up. The procedure 
is based on the property that the relations between the robot 
motion and its reactions on the bedplate are completely 
independent of the internal joints forces. A convincing 
validation experiment on a PUMA 562 is reported. 

1. Introduction 
THE CONTROL ALGORITHMS which are commonly imple- 
mented on industrial robots do not account for the inherent 
nonlinearities of the dynamical robot motion. For this reason 
these control laws break down for high speed operation when 
the nonlinear effects become important. High speed and 
high-precision control can however be achieved using 
advanced control algorithms, such as "the computed torque" 
control. Such control laws require an accurate and in-depth 
knowledge of the robot dynamical model. Under the 
assumption of n rigid links, the dynamical equations, derived 
for instance using Lagrange's formalism, take the form of a 
set of n nonlinear coupled differential equations. The 
structure of these equations is well known but they involve 
characteristic parameters which have to be estimated with a 
good precision. These parameters can be classified in four 
sets. 
(1) The geometrical parameters (lengths of the links, 

positions of the joints . . . .  ), which are constant and can 
be assumed to be known with a good accuracy, because 
they result directly from the design and the construction 
of the manipulator. 

(2) The inertial parameters of the links, characterizing the 
mass distribution for each link. The numerical values of 
these parameters are constant during the lifetime of the 
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manipulator and can therefore be identified once and for 
all in the course of the acceptance tests. 

(3) The terminal mass parameters which are constant for a 
given operation but can, of course, vary from operation 
to operation. 

(4) The joint parameters (friction in the jo in t s , . . .  ) undergo 
a slow variation over the manipulator lifetime. Moreover 
the modeling of the friction effects (viscous and/or 
Coulomb friction) is rather complicated. 

For most commercial robots the values of these parameters 
are unknown and parameter estimation is therefore 
necessary for advanced control algorithm implementation. 
This paper concentrates on the estimation of the inertial 
parameters independently of the friction effects and under 
the assumption that the geometric parameters are known. 

In the classical identification approach (see e.g. Mayeda et 
al., 1984; Ferreira, 1984; Olsen and Bekey, 1985; Gautier, 
1986; Armstrong et al., 1986) the values of the parameters 
are estimated from input (torques applied to the links) and 
output (positions, velocities and accelerations of the links) 
data provided by "internal" measurement devices located 
inside the arms. The dynamical model relating these inputs 
and outputs is described by a set of differential equations 
which are linear in a set of so-called barycentric parameters 
which are themselves nonlinear functions of the inertial and 
terminal mass parameters (see Raucent, 1990). This implies 
that the estimation of these barycentric parameters can be 
performed in principle by linear regression. The practical 
implementation however presents an important drawback: 
the torques applied to the links are not directly available but 
have to be evaluated as sums of the torques provided by the 
actuators and of the friction torques which may be 
important. Two problems then occur. 
(a) For most commercial robots the torques provided by the 

actuators can be obtained from internal measurements, 
but with a poor accuracy. For instance, when the 
actuator is a DC motor, the torque is measured via the 
input current through a torque constant which is given 
from the manufacturer's technical data, albeit with a low 
precision. Furthermore it can vary over the robot's 
lifetime. 

(b) The implementation of the parameter estimation 
requires an accurate model of the friction effects. The 
parameters involved in the friction model have to be 
estimated together with the barycentric parameters. This 
coupling can substantially degrade the accuracy of the 
estimation of the barycentric parameters. 

In this paper, we present an alternative approach for the 
estimation of the barycentric parameters which avoids the 
two above-mentioned drawbacks (see also Raucent et al., 
1988 and Raucent, 1990). 
(1) The estimation is based on a reformulation of the 

dynamics of the system which relates the motion of the 
robot to the reaction forces and torques on the bedplate 
and is, therefore, totally independent from the internal 
torques (i.e. actuator torques and friction torques). 
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FIG. 1. The experimental set-up. 

(2) The estimation method makes use of external measure- 
ment only, obtained with a specific experimental set-up. 

The paper is organized as follows. The experimental set-up 
is described in Section 2. The auxiliary reaction model which 
relates the motion of the robot to the reaction forces and 
torques on the bedplate is presented in Section 3 while its 
parametrization is discussed in Section 4. Finally two 
validation experiments are reported in Section 5. 

2. Sensors and instrumentation 
The experimental set-up we have developed for this study 

is as follows (see Fig. 1). 
(a) The robot is placed on a sensing platform (Kistler 

Instrumente AG) which is provided with sensors able to 
measure the three components of the forces and the three 
components of torques between the bedplate and the first 
link of the robot. The relative accuracy of this measurement 
is about 1%. The advantage of this experimental set-up is to 
provide data (which are processed by the estimation 
algorithm) with a much better accuracy than those obtained 
from the actuators. 

(b) The measurement of the position of each link is 
performed by a high-precision visual position sensor 
(SELCOM AB). Several Light Emitting Diodes are attached 
to each link of the robot. The light emitted from each diode 
is captured by two special cameras and, after analogic to 
digital conversion, a computer programme converts the two 
images into a three-dimensional result. Positions of the joint 
are then computed. Finally, the velocity and acceleration are 
evaluated by numerical differentiation (with appropriate 
noise digital filtering). The resolution of the system is 1/4096 
of the measuring range and the accuracy is about 1/500 of 
the full scale which depends on the location of the cameras. 

By this experimental set-up, all the data which are 
necessary for the estimation are obtained externally and 
independently of the hardware of the robot control unit. 

3. Robot models 
In this section we derive the equations describing the 

dynamical model of the robot (relating the motion of the 
robot to the generalized forces applied to the links) and the 

reaction model (relating the motion of the robot to the forces 
and torques applied to the bedplate). 

Consider a robot manipulator with n rigid links. The n 
joint coordinates are denoted qd. Consider in addition a 
virtual motion of the robot with respect to its bedplate, 
characterized by six extra coordinates, qr (three for the 
virtual translation motion, and three for the virtual rotation 
motion). In this way we define a generalized system with 
(n + 6)-degrees-of-freedom. Of course, any actual motion of 
the robot is such that q, remains identically equal to zero: 
q,(t) =- 0 for all t. Due to this constraint, the robot equations 
are derived using Lagrange multipliers. 

Defining the kinetic energy by: 

T(qd, qr, qd, qr)=l(ild~Ir)M(~d), (1) 

where 

M = ( Mdd(qd' qr) Mdr(qd, qr)~, 
\M,d(qd, q,) M,r(qd, qr)/ 

is the (n + 6) x (n + 6) symmetric definite positive inertia 
matrix of the generalized system; and denoting U(qd, qr) the 
potential energy associated with gravity, the robot motion 
satisfies the following Lagrange equations: 

( a r  au  
dt \a4d] -- ~qd + ~qd = Qd, (2a) 

d_( av) ar a v  
dt \ ailJ - ~q~ + ~q~ = Q'' (2b) 

together with the constraints: 

qr = O. (3) 

In these equations: 
• Qd is the n-vector of generalized forces associated with qd, 

i.e, the vector of the forces and torques applied to the 
links, including the torques provided by the actuators and 
the friction effects, 

• Qr is the six-vector of generalized reaction forces and 
torques applied to the robot by the bedplate. This vector 
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coincides with the Lagrange multipliers associated with the 
constraints (3). 
Using (1) and (3), the Lagrange equations (2) reduce to: 

D-model: Mdd(qd, 0)#d +fd(qd, tld, 0, 0) = Qd, (4a) 

R-model: Mrd(qd, 0)#d + fr(qd, rid, 0, 0) = Q~. (4b) 

Equations (4a) and (4b) are, respectively, the equations of 
the classical dynamical model of the robot, denoted 
D-model, and of the reaction model, denoted R-model. The 
crucial point for the R-model is that Q~ represents only the 
reactions applied to the first link (which are measured, see 
Section 2) and is completely independent from the unknown 
internal forces and torques at the joints (that is the torques 
produced by the actuators and the friction torques). 

4. Barycentric parametrization 
The dynamical model of any mechanical system made up 

of rigid bodies is characterized by a set of "inertial" 
parameters which describe the mass distribution in each link. 
For each rigid body in the robot there are 10 such basic 
parameters (one for the mass, three for the position of the 
center of mass and six for the inertia matrix of the body) but 
it is well known that there exists a reparametrization, called 
the barycentric parametrization (Fisher, 1906) which enters 
the model linearly. Actually, the D- and R-models involve 
only a few independent linear combinations of the basic set 
of barycentric parameters. Recursive methods (Raucent, 
1990; Gautier, 1990) are used to calculate these linear 
combinations and lead to the definition of an identifiable 
linear parametrization, denoted 0d, for the D-model and 
another one, denoted O r , for the R-model: 

Od=gdO, Or=SrO, 

where 0 is the full set of N barycentric parameters and S o and 
S~ are two full rank constant matrices, respectively of 
dimension (Nd x N) and (Nr x N). It is easily shown in 
addition that: 

(i) Nd < Nr, 
(ii) there exists a full rank (N d x Nr) matrix S such that: 

Od = SO,. (5) 

This means that the values of the parameters of the D-model 
(i.e. 0a) can be deduced from the values of the parameters of 
the R-model (i.e. 0~). It must be kept in mind that we are 
interested mainly in the numerical values of 0d, because 
control design is based on the D-model only. 

The linearity of the D- and R-models with respect to the 
parametrizations 0,t and O r implies that Mrd, Mad, fd and f~ 
can be expressed linearly in the components of 0 d and 0r as 
follows: 

Mrd(qd, O) = Mrdo(qd, O) + ~ M, di(q d, O)O,i, (6a) 
i~l 
N,I 

Mdd(qd, 0) = Mado(qd, O) + Z mddi(qd, 0)0di, (6b) 
i=l 

fd(qd, qd, 0, 0) =fdo(qd, tld, 0, 0) + ~ fdi(qd, qd, 0, 0)0di , (6C) 
/=I 

fr(qd, tld, 0, 0) =fro(qd, qd, 0, 0) + ~ fri(qd, qd, 0, 0)Ori, (6d) 
i=1 

where the Mrdo, Mrd i, Mdd O, Mddi, fro, fri, fdO, fdi are known 
functions of qd and qd' The R-model can therefore be 
rewritten as:  

Qr - Mrao(qd, 0)#d --f~o(qd, tld, 0, 0) = q0(q d, C~d, qd)0r, (7) 

where q0 is a Nr × 6 matrix whose ith column is given by: 

Mrdi(qd , 0)q d "1-fri(qd, qd, 0, 0). (8) 

\ i 
. I 

~ q  i. '.~ ACTUATOP 

FIG. 2. A one link manipulator. 

The left hand side of (7) and the matrix q9 can be 
calculated directly from the measurements provided by the 
experimental set-up. 

We illustrate the notions of the D- and R-models and their 
parametrizations with an example. 

Example. A one link manipulator. 
We consider the one-link-manipulator depicted in Fig. 2. 

In order to describe the geometry and the mass distribution 
of this manipulator, we introduce two reference frames. The 
first one is an inertial basis (x °, y0, z o) attached to the base of 

0 o the robot. (x ,  y ) define the horizontal plane of the bedplate 
and z ° is the vertical axis. The second frame (z l, yl, z l) is 
attached to the link, and yt =y0 is the axis of rotation 
(rotation angle q). 

The joint is characterized by its position vector D = dz ° 
where d is a known geometric length. The basic inertial 
parametrization of the link is as follows: 
• the mass of the link, denoted m, 
• the position of the center of mass given by: R = lyy t + lzz t 
• the central inertia matrix of the link, expressed in the 

frame (x I, yi, z I) as: 

° °0) J =  Jyy • 
0 J=z 

We note that some of the 10 inertial parameters are 
identically zero. The actuator is assumed to be an electric 
motor, whose rotation axis is parallel to z °, with a known 
inertia moment jm and a gear down ratio n. These two values 
are assumed to be given by the manufacturer, and therefore 
need not to be estimated. 

The basic set of barycentric parameters is defined as: 

O= 
mbzJ 
K~x = 
r .  
r .  
K= 

m 

lm  

L + ( (¢Y + ( & ) m l  • 
¢, + (¢ym [ 

-lylzm I 
J== + (t,,ym ] 

The equation of the D-model is: 

1 .. 

where F I is the friction torque (unknown), Qm is the motor 
torque and Od = (mbz, Kyy) r is the vector of the model 
parametrization. 
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The equations of the R-model are: 

0 d(cos (q)/i - sin (q)tl 2) - g sin (q) q 0 
0 0 0 • 
0 0 0 cos(q)/] sin (q )q2 /  
0 -sin (q)/1 - cos (q)q2 0 O 

= Q~ _ jm, 

with 
Qr=(G, G G, G G, F~)L 

and 
O, = (m, mby, mbz, Kyy, Ky~) T. 

It appears that five barycentric parameters  are involved in 
the model and that the terms containing m and ruby are 
constant. The components  of 0 a are a subset of the 
components of 0~ so that the value of 0 d can be deduced (o0 00) 
from that of 0, just by substituting S = 0 0 1 in 
equation (5). 

5. Experimental results 
Two experimental  applications on an industrial P U M A  

robot are reported in this section. The first one is presented 
to illustrate the identification method.  The  second one is a 
validation test where the parameter  estimates are compared 
with their true values. 

5.1. Description of the PUMA. The P U M A  562 
(Unimation) is a serial six-degrees-of-freedom manipulator  
with six revolute joints (Fig. 3). We limit our at tent ion to the 
first three joints. The other  joints which rely on the wrist are 
assumed to be fixed. We introduce four reference frames: 
(a) An inertial basis (x °, y a  z o) at tached to the base of the 

robot,  where (x °, yO) define the horizontal plane of the 
bedplate and 7,o is the vertical axis. 

(b) A basis (x ~, y~, z ~) at tached to the first link with z 1 = z ° 
the axis of rotation (angle q~) and positioned by the 
vector: D ~ = dtz °. 

(c) A basis (x 2, y2, z z) at tached to the second link with 
y2 = yl the axis of rotat ion (angle q2). 

(d) A basis (x 3, y3, z 3) at tached to the third link with y3 = y2 
the axis of rotation (angle q3) and positioned by the 
vector: D 3 = d~z ° + d3z 2. 

zl  ~ d 3 

O2~ O t. 

FIG. 3. The P U M A  562 (Unimation) .  

The mass distribution is described as follows: 
• the masses of the three links are denoted m 1, m 2 and m 3, 
• the position of the centers of mass are expressed by: 

R 1 = d l z  ° + lyly I , 

R 2 = dlz 0 + 12y2 + l~z e, 

R 3 = dlz 0 + d3z 2 + 13y3 + 13z3 ' 

• the central inertia matrices of the three links are expressed 
in the bases (x ~, y~, z ~) with i = 1, 2 or 3, by: 

• p'xx o o)  
'y" o 
0 J'zz 

As in the example of Section 4, we note that some of these 
inertial parameters are known a priori to be zero. In 
particular, the inertia matrices of the links are diagonal 
because the chosen reference frames are supposed to be 
aligned with the principal axes of inertia. Moreover,  it must 
be pointed out  that the motor  characteristics are given by the 
manufacturer and are therefore not to be estimated. 

In order to satisfy the identifiability conditions presented 
in Section 5, the parametrizations 0 d and Or must be defined 
as follows (see Raucent ,  1990): 

/ Jlz~ + m l(lyl)2 + j 2  + m2(12)2 + J3zz + m3(13)2~ 
J2 x - J2 z + m3(d3) 2 + m2(12) z \ 

i j2y + m3(d3)2 + m2(12)2 I 
-- m21~lez - m3d313 [ 

0 d = J3xx - j 3  z + rn3(13) 2 1 ,  
j3y + m3(13)2 t / 

- m l 
m3d3 + m21~ I 

m 31~ / 

Oa 
Or= (mll~ +m212 v + m31~)" 

It appears that 0d is included in 0 r. The corresponding D 
and R-models equations have been automatically generated 
by the software R O B O T R A N  developed by Maes (1990). 

5.2. Identification of the link parameters. The identification 
of the P U M A  562 parameters  has been performed from data 
obtained with the external experimental  set-up described in 
Section 2. The results are compared in Table 1 with 
parameter  values calculated on the basis of the data obtained 
with internal measurements  given respectively by Tarn et al. 
(1985) and Armstrong et al. (1986). 

Table 1 clearly shows that the values obtained with our 
approach are of the same order of magnitude as the values 
obtained with other  methods.  A more precise validation of 
the results is not possible in this case since the exact values of 
the parameters of the P U M A  562 are not available. In the 
next section we present a genuine validation experiment 
where the estimates can be compared to true values. 

TABLE 1. ESTIMATION OF THE PARAMETERS OF THE 
P U M A  562 

Parameters External  Tarn Armstrong 
identification (1985) (1986) 

0a(1 ) (kg m 2) 1.665 1.920 1.357 
00(2 ) (kg m 2) 2.888 2.384 2.829 
0d(3) (kg m 2) 2.234 2.786 2.174 
Od(4 ) (kg m 2) -0 .598  -0 .558  -0 .605  
0a(5) (kg m 2) 0.567 0.533 0.300 
0d(6 ) (kg m z) 0.545 0.547 0.336 
0d(7 ) (kg m z) -0 .103  -0 .150  -0 .142  
0d(8 ) (kg m) 3.212 3.702 3.790 
0d(9) (kg m) 0.802 1.061 0.864 
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FiG. 4. Example of a test trajectory (motion only on the third axis). 
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5.3. Validation test: identification of  known load para- 
meters. We reduce the PUMA to a one-degree-of-freedom 
robot by only moving the third link (Fig. 4). As shown in 
Section 4 the parameters of the D-model reduce, in this case, 
t o :  

. l ~ y y  : "  

We now modify the system by adding a known load mass 
(M = 3.87 kg) attached to the third link. The position of the 
center of mass of the load is given by the vector R = lz 3 (with 
I --0.514m). The parameters of the modified system differ 
from the previous ones as follows: 

~, [mb~\ [ M l \  
d ~"  + 2 " IK, y) ~MI ] 

We estimate 0,~ with the same test trajectory as before. 
Then, by the comparison of the estimates of 0,~ and 0d, we 
can deduce estimates of Ml and Ml z which can in turn be 
compared to their exact values. This is done in Table 2. The 
results in this Table show an extremely good agreement 
between the exact and estimated values, and hence lends the 
credibility of this identification approach. 

T A B L E  2 .  I D E N T I F I C A T I O N  O F  T H E  L O A D  

Estimated Exact 

Ml (kg m) 1.949 1.989 
Mi 2 (kg m 2) 1.052 1.025 

6. Conclusions 
We have shown that the estimation of the barycentric 

parameters involved in the dynamic model of a robot can be 
achieved by processing external measurements only (reac- 
tions at the bedplate; positions, velocities and accelerations 
provided by a vision device). 

The originality of this method lies in the use of the 
auxiliary reaction model (R-model) which is completely 
independent of the internal forces and torques at the joints 
while the usual parameter estimation algorithms are based on 
internal measurements (torques applied by the actuators) 
which are noisy and inaccurate, due mainly to the friction 
effects. In contrast, the use of external measurements of 
positions, velocities and accelerations is clearly not an 
imperative requirement. The interest is to devise "accept, 
ance tests" that can be carried out independently of the 
hardware of the robot control unit. But, obviously if the 
robot is provided with high accuracy position and velocity 
sensors, internal measurement can be used as well in our 
identification method. 

Finally, we must mention that even if the barycentric 
parameters have been identified with a great accuracy, the 
dynamical model of the robot will still contain some 
uncertain time varying parameters, namely the friction 
coefficients, actuator parameters (torque constant) and the 
barycentric parameters that are affected by the transported 
load. As usual these remaining uncertain parameters can be 
compensated by using adaptive techniques for the design of 
advanced control systems (see Canudas et al., 1987 and 
Craig, 1988). 
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