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ABSTRACT 

Nonlinear control design techniques for a class of continuous biological processes 
with growth and production decoupling are investigated. We establish, under realis- 
tic assumptions on the kinetics, that though neither the inlet substrate concentration 
nor the dilution rate can achieve linearization of the global dynamics, we can 
maximize the dimension of the linear system obtained after feedback and get stable 
zero dynamics by choosing output functions having a physical meaning. More 
precisely, if the manipulated variable is the inlet substrate concentration, then the 
output can be chosen as the biomass concentration. But if the chosen input is the 
dilution rate, then a suitable output corresponds to yields. 

1. INTRODUCTION 

During the last 20 years, theoretical control studies of biotechnologi- 
cal systems have mainly focused on the optimization of fed-batch 
processes and more precisely on the design of open-loop feeding strate- 
gies aiming at maximizing the productivity of reactors. However, as 
emphasized, for example, by Henson and Seborg [5], once optimal 
strategies have been determined, feedback control is often required to 
account for modeling uncertainties and disturbances. 

Obviously, feedback control is even more relevant for processes for 
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which continuous operation is inherently desirable, especially if they 
can have unstable steady states due, for instance, to substrate overload- 
ing. Typical examples involve biological wastewater treatment processes 
and continuous production of ethanol (as a benzine substitute). 

Our concern in this paper is to examine the applicability of the 
techniques of partial linearization by feedback and diffeomorphism 
[8-121 to a class of biotechnological processes in continuous stirred tank 
reactors, characterized by a decoupling between the biomass growth and 
the product formation. 

The issue of feedback linearizing control of biological reactors has 
been previously considered in three papers ([6] and 171 by Hoo and 
Kantor and the recent paper 151 by Henson and Seborg, published as 
this paper was being reviewed). Our contribution in the present paper 
(see also [31-141) differs from these previous works on two points: 

(1) In [51-[71, the authors consider specific processes (a fermentation 
on methanol in [6], a mixed culture with inhibition in [7], and a special 
case of the biological system W(3) in [5]) where the kinetic expressions 
are completely defined by given rational functions. In this paper, we 
present a set of conditions of feedback stabilizability for a large class of 
systems that require only a qualitative knowledge of the structure of the 
kinetics but not a prior full specification of the kinetic expressions. 

(2) In [6] and [7], the authors restricted their analysis to biological 
systems that are fully state feedback-linearizable (that is, with zero 
dynamics restricted to the origin, in the terminology of [9]>. In this 
paper, as in [51, we are concerned with a class of biological systems that 
are only pm-tidy feedback-linearizable. However, our purpose differs 
from that of [5] since we explicitly state the dimension of the largest 
linearizable subsystem and characterize the output functions that guar- 
antee the maximization of this linearization dimension while preserving 
the local stability of the zero dynamics. 

In Section 2, we present a class of dynamic models of bioreactors 
with growth-production decoupling, and we state the feedback stabi- 
lization problem addressed in the sequel. The local stability of the 
equilibrium states of these systems is analyzed in Section 3. The 
existence of structural instability conditions motivates the search for 
stabilizing feedback controllers. A theoretical review of the problem of 
partial feedback linearization with local stability is then presented in 
Section 4. Our main result in Sections 5 and 6 is a characterization of 
the choice of output functions that ensure both the maximization of the 
linearizable subsystem and the local stability of the zero dynamics when 
either substrate concentration or dilution rate is taken as the control 
inout. Two examoles are nresented in Section 7. 
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2. PROBLEM STATEMENT 

We consider biotechnological processes characterized by a decou- 
pling between biomass growth and product formation. By this, we mean 
that two different biological reactions basically take place in the reactor, 
namely a reaction of microbial growth and a reaction of enzymatic 
synthesis, and that these reactions do not proceed at the same rate. In 
other words, the enzyme-catalyzed formation of the product is not 
associated to the growth. 

The dynamics of such processes, in continuous stirred tank bioreac- 
tors, are commonly described by a state-space model of the following 
form: 

;ri= /L(X,S,P)X- DX, (1) 

S=-~~(X,S,P)X-~V(X~S,P)X-DS+DS~~, (2) 

P=v(X,S,P)X-DP, (3) 

where X, S, and P represent the biomass, substrate, and product 
concentrations, respectively; p(X, S, P) and 4X, S, PI represent the 
specific growth and production rates, respectively; (Y-’ p Y,,, and 
p-l p Yp,s are the biomass-substrate yield constant and the 
product-substrate yield constant, respectively; D is the dilution rate; 
and S, is the influent substrate concentration. Note that in 151 the 
specific growth rate p is assumed independent of the biomass X [and is 
therefore of the form p(S, P)] and the specific production rate v is an 
affine function of the specific growth rate, namely VU, PI A q.0, P> + 
p, with (Y and p given constants. 

The equilibrium states of the system (l)-(3) are of two-types, 
parametrized by the constant influent substrate concentration S, and 
the constant dilution rate b: 

l Equilibria (E.l) defined by 

x= 0, S = Si” ) P=o; (4) 

l Equilibria (E.2) implicitly defined by 

--- 
P(XAP) = a (5) 

-- --_- -- 
D(S,-S)=cYLL(X,S,P)X+ pv(X,S,P)X, (6) 

-- 
ZiF = v(X, s, P)X. (7) 
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Straightforward calculations show that both equilibria (E.l) and (E.2) 
satisfy the relation 

We note that (8) is independent of the dilution rate D and the kinetic 
functions p(X, S, P) and v(X, S, P). 

Equilibria (E.l) correspond to reactor washout. Therefore only equi- 
libria (E.2) are of practical interest. They can be attractive or repulsive, 
depending on the particular form of the kinetic functions &X,S, P) 
and v(X, S, P), as we shall see in Section 3. 

Our concern is to stabilize the system locally around equilibria (E.2) 
by state feedback. We discuss the design of single-input control laws 
when either the influent substrate concentration Si, (Section 5) or the 
dilution rate D (Section 6) is the control input. 

Our main contributions are to show that 

(1) The single-input system is not full state linearizable by feedback 
and diffeomorphism whatever the structure of the kinetic functions 
p(X,S, P) and v(X, S,P) and the choice of input (S, or 0). 

(2) The largest feedback-linearizable subsystem has dimension 2 
whatever the single control input (S, or D). 

(3) The maximization of the dimension of the feedback-linearizable 
subsystem can be achieved with local stabilization of the zero dynamics 
by a proper choice of the output functions under realistic assumptions 
on the structure of the kinetic functions. 

3. STABILITY OF EQUILIBRIUM STATES 

We now analyze the stability of equilibria (E.2) defined by relations 
(5)~(7) for given constant inputs B and Si,. 

We introduce the following functions: 

/$(X,S) p P(X~~4w~))~ (10) 
zQ(X,S) p “(x,GJJ,(xq)~ (11) 
yo(X,S) p q+j(x,q+ P%(X,S). (12) 

-- 
We remark that, azcording to (81, (p,,(X, S) = p at any equilibrium point --- -- --- 
and hence p,,(X, S) = I.L(X, S, P) and v,(X, S> = 4X, S, P>. 



NONLINEAR CONTROL OF BIOLOGICAL PROCESSES 25 

The local stability of system W(3) at an equilibrium (E.2) is studied 
via the eigenvalues of its tangent linear approximation. To facilitate the 
eigenvalues computatio_n, we introduce the following change of coordi- 
nates parametrized by Sin: 

~=ax+pP+s-si” and 
- 

c#J(x,s, &Sin) = 5 - ax;s+sin . 
Obviously, we have P = 4(X, S, 5, $,), and the transformation (X, S, P> 
-+ (X, S, 5) is a diffeomorphism for every Si,. In these new coordinates, 
system (l)-(3) can be rewritten as 

~=~(X,S,~,S,,)X-OX, (13) 

S=-Ix~(X,S,5,Si,)X_pV(X,S,s,si,)X_DS+Dsi", (14) 

C!j=-iQ, (15) 

with b(X, S, 5, S,> = /.4X, S, 4(X, S, 5, Sin>> and $(X9 S, 6, gin> = 
V( X, S, b( X, S, ,f,_S, 1). An equilibrium (E.2) in these coordinates is thus 
characterized by 5 = 0 and X and s defined as before. Notice that we -- -- -- -- 
have jL(X, S,O, Si,> = /_Q(X, S), S(X, S,O, Sin> = YO(X, S). 

It is then easily shown that the linear approximation of system 
(13H15) [ or e q uivalently (l)-(3)] around an equilibrium (E.2) has three 
eigenvalues A,, A,, A, defined by 

(17) 

and 

where all the partial derivatives are evaluated at the equilibrium point. 
The equilibrium state (E.2) is locally asymptotically stable if and only if 
A, x A, > 0 and A, + A, < 0. Otherwise it is repulsive in at least one 
direction. Furthermore, if A, x A, < 0, the equilibrium state is a saddle 
point, while there is a saddle-node bifurcation (with respect to the 
oarameter B or S:_) if A, + A, # 0 and A, X A, = 0. 
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The fact that the equilibrium state may be unstable, depending on 
the kinetic structure, motivates the search for stabilizing feedback 
controllers. 

Remark 1. The apparent decoupling between the dynamics of (X, S) 
and 5 at an equilibrium (E.2) in Equations (13)--(15) fails to hold as 
soon as S, and D are time-varying functions, namely in the case of 
interest for control. In the general case, it is straightforward to verify 
that 5 = - DE + D(Si” - 3,“) with D and Si, arbitrary time-varying 
functions. This indicates in particular that system (l)-(3) cannot be 
simply treated as a two-dimensional system. 

4. FEEDBACK LINEARIZATION WITH STABILITY: A 
THEORETICAL REVIEW 

In the subsequent sections of this paper, we address the problem of 
the local state feedback stabilization of biotechnological systems of the 
form (l)--(3). This control problem is solved by using a feedback-lineari- 
zation technique (e.g., [lo], [8], [9, chapter 41, or [12, chapter 61) that is 
briefly reviewed in the present section. 

We consider the class of single-input nonlinear systems of the form 

i=f(X)+g(X)U, (19) 

where u E R is the control input, x E R” is the state vector, and f(a) 
and g(o) are n-dimensional smooth functions from R” to R”. In the 
particular case of the biological model (l)-(3), state x is the set of 
concentrations x A (X, S, P)r and the control input may be either the 
dilution rate u A D or the influent substrate concentration u 2 S,. 

The problem we address in this paper is that of finding a static state 
feedback control law of the form 

u(x) 2 a(x)+ /3(x)u, (20) 

where u is an external reference signal and (Y and p are smooth in a 
neighborhood of (E.21, with p(x) # 0 for all x in this neighborhood, 
such that the closed-loop system obtained by applying (20) to (191, 

~==f(X)+g(X)[a(x)+p(X)ul, 

is locally stabilizable around the equilibrium points (E.2). 

DEFINITION 1 

(21) 

The nonlinear system (19) is said to be partially linearizable by state 
feedback (20) and diffeomorQhism if there exists a smooth change of’ 
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coordinates defined in a neighborhood of an equilibrium point (E.21, 

21 ( 1 22 
=@(x) (22) 

with Q(e) a diffeomorphism such that, in the new coordinates, the closed- 
loop system (21) takes the form 

i, = Aczl + B,v, (2% 

4 = a(zI,z2) (24) 

with (A,, B,) a controllable pair. 

Let us recall the definition of the Lie bracket of the vector fields f and 
g: [f,g]=(dg/ax)f -(Jf/dx)g. The notation ad,g =[f,gl is often 
introduced because it can be used iteratively as ad)g = [ f,ad!- ‘gl, with 
the convention adyg = g. We introduce the distributions 

Q” = Span{ td 

Q=Span(ad)g,@-l), ial 

(25) 

(26) 

where Q” denotes the involutive closure of Qk, that is, the smallest 
involutive distribution containing Qk. 

THEOREM 1 (Marino [ 111) 

The dimension m of the largest lineatiable subsystem is 

n-2 

m=dimQn-’ + c (dimei-dim@). 
i=o 

(27) 

The proof of this theorem is constructive and provides explicitly the 
change of coordinates: 

(28) 

which allows us to put the system in the form (231, (24). In particular, it 
can be shown that there exists a smooth scalar function h(x), called the 
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z1 = @l(X) = 

h(x) 
LfhW 
L2fh(x> 

L+h(x) 

(29) 

where the notation Lfh stands for the Lie derivative of the smooth 
function h from KY to R with respect to f; that is, 

and where L$h = L,(Lk,-‘h) denotes the kth iteration of the Lie 
derivative of h. The integer m is called the relative degree of the system 
associated to the output h(x). 

Once a nonlinear system has been partially linearized by state 
feedback and diffeomorphism, it is decomposed into two subsystems, 
(23) and (24). The first subsystem (23) is linear and controllable and can 
therefore be stabilized by classical methods. The second subsystem is 
nonlinear, and its stability analysis requires additional developments. 

Let an equilibrium point be denoted (Z,, Z,> in the new coordinates. 
The dynamics of the nonlinear subsystem (24), with z1 fixed at its 
equilibrium value Z,, are called zero dynamics: 

i,=a(Z,,z,). (30) 

The system (23), (24) is then said to have locally asymptotically stable 
zero dynamics at the equilibrium C?,, 5,) if z2 = Z2 is an attractive 
equilibrium point of (30) for every z1 in a neighborhood of f,. 

The following fundamental property follows from these definitions. 

THEOREM 2 (see, e.g. [9, Chapter 41) 

The nonlinear system (19) is locally stabilizable by static state feedback if 
it is partially linearizable by state feedback and diffeomolphism with locally 
asymptotically stable zero dynamics. 

We show in Sections 5 and 6 that Theorems 1 and 2 both hold together 
for biotechnological systems of the form (l)-(3), that is, there exists a 
choice of output functions h(x) that maximizes the dimension of the 
linearizable subsystem with locally asymptotically stable zero dvnamics. 
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29 

We consider the state-space model (l)-(3) of a stirred-tank bioreac- 
tor with a constant dilution rate D and the influent substrate concentra- 
tion S, as control input. Our concern is to stabilize this system at an 
equilibrium point (E.2) by state feedback. 

The system (l)-(3) is in the general form i = f(x)+ g(x>u, with 

xqX,S,P)T, UBSi,, 

[ P(X,S,P> - DIX 

(31) 

I 3 (32) f(x) p - a/.b(X,S,P)X- /3v(X,S,P)X-DS 

v(X,S,P)X- DP 

0 
g(x)4 D . 

i I 0 
(33) 

(34) 

For this system, we calculate the distributions Qi defined by (25), (26). 
We have 

Q” = Span(g) = i , 

i I 

D constant, 
0 

and hence dim Q” = dim Q” = 1, 

with 

Q’ = Span{g,ad,g}, (35) 

x&L/as 

ad,g = - D - aXdp/i?S - /3Xdv/aS - D . (36) 
Xdv/dS 

Under the conditions 

X# 0, $+O or$+O, @ J2v ; dv d2p 
dS as2 as (552’ (37) 

it is easily checked that Q’ is not involutive, that dim Q’ = 2 and 
dim 8’ = 3, and consequently that the system is not fully state lineariz- 
nhle 
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According to Theorem 1, the dimension of the largest linearizable 
subsystem is thus given by 

m=dimQ2+dimQ1-dim~1+dimQ0-dim~0 

=3+2-3+1-1=2. (38) 

From this analysis we have the following result. 

Result I. For the biological system (l)-(3) with the influent sub- 
strate concentration S, as control input, if conditions (37) are satisfied, 
the dimension of the largest feedback-linearizable subsystem is m = 2. 

The following result then gives conditions for the choice of output 
functions that maximize the dimension of the linearizable subsystem 
with stability in a neighborhood of the equilibrium point (E.2). 

Result 2. Consider the biological system (l)-(3) with the influent 
substrate concentration S, as control input. Assume that conditions 
(37) are satisfied in a neighborhood of (x, 3, p> defined by (E.2). Then 

l If 

g( X,S,P)#O, [g--(~)y~~](x,s,P)<; (39) 

and the output function is selected as h(X, S, P) 4 X, --- 
. Or if at the point (X, S, P>, 

and the output function is selected as h(X, S, P) p P, 

then the system has relative degree 2 with locally asymptotically stable --- 
zero dynamics at the equilibrium (X, S, PI. 

The proof of this result is given in Appendix B. Let us just mention 
that we use a property presented in [l], namely, the fact that the local 
stability of the zero dynamics is related to the stability of the zeros of 
the linear approximation of the system at the equilibrium point. 

With Result 2, we have shown that the feedback stabilization of a 
biological reactor with growth-production decoupling can be achieved 
by the regulation of the biomass X or the product P concentrations. 
The choice of the output to be regulated (X or P> depends on the 
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structure of the rate functions p(X, S, P> and v(X, S, PI. For example, 
condition (39) is satisfied if p and v do not depend on P in a 
neighborhood of (E.21, and, symmetrically, condition (40) holds if, for 
example, p and u do not depend on X in a neighborhood of (E.2). 

We conclude this section by giving the expressions of the change of 
coordinates (diffeomorphism) and the state feedback leading to the 
system with relative degree 2 and locally asymptotically stable zero 
dynamics in both situations. 

For h(X, S, P> e X, the change of coordinates is 

tl=x-x*, 

52=[P(xm)-qx, 
&=P, 

(41) 

(42) 

(43) 

where X* denotes the set point of the biomass concentration. 
The condition d,u/dS # 0 of (39) implies that this change of coordi- 

nates is a diffeomorphism. The inverse transformation can be written 

x=51+x*, (44) 
s= (+(51,52753)r (45) 

P=&, (46) 

with the function CT, a solution of the implicit equation 

The state feedback is given by 

- L2fh 1 
sin = L,L,h + L,L,h’ (47) 

with 

L L h=D;X* g f as ’ 

L2,h=X2(p-~)~-X(Xy+~S)~+X(vX-~P)~ 

+x( /_4q2 
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VP-M-W,, k,,k, > 0. 

If the control law (47) is applied to the biological system (l)-(3), the 
resulting closed loop is governed by the following equations in the new 
coordinates (i, t2, t3: 

B, = 527 (48) 

8, = - k, 5, - k, 52 3 

where v,,( 5i, c2, t3) 2 ~(5~ + X*, a(51,52,53),53). We note that the 
control signal v is chosen in order to place the poles of the linear 
second-order subsystem (48), (49). We have c1 = 0, that is, X = X*, and 
t2 = 0 at the equilibrium point of the closed loop. The corresponding 
zero dynamics, which are therefore written as 

& = v,(O,O, 53)x* - % 

are proved to be stable in Appendix B. 
For h(X, S, P) p P, the change of coordinates is 5i = P - P*, t2 = 

vx - DP,_,$, = X. The state feedback is again given by (47) with 
L,Lfh = DXav/dS and 

L;h=X(p-B)(v+X$)-x(yx+B,S)g 

The analysis follows the same lines as before. 

6. FEEDBACK STABILIZATION WITH D AS 
CONTROL INPUT 

We consider the state-space model (l)-(3) of a stirred-tank bioreac- 
tor with a constant influent substrate concentration Si, and the dilution 
rate D as control input. Our concern is again to stabilize this system 
locally around an equilibrium point (E.2) by state feedback. 



NONLINEAR CONTROL OF 

system (l)-(3) is in the general form f = f(x)+ g(x)u with the 
following definitions: 

&(X,S,P)r, l&D, 

p(X,S,P)X 

f(x) h - a/.&(X,S,P)X- Pv(X,S,P)X 

V(X,S?P)X 

(51) 

7 (52) 

(53) 

We first calculate the linear approximation of the system around an 
equilibrium point (E.2). It is represented by the linear system 

i = Fx + Gd, 

x!!L 
dS 

j+ 
dP 

Fe -@_ 
dX y 

-jj”‘_B 
C3S 

-xdy 
dP 

- dv 

XaS 

-c?v - 
Xdp-D 

where y(X, S, P) = a,uL(X, S, PI + P&Y, S, P) and 

(54) 

7 (55) 

(56) 

Linear system (54) is not controllable. Indeed, using relation (8) satis- 
fied by equilibria (E.2), it is straightforward to verity that 
det(G, FG, F2G) = 0 and rk(G, FG, F’G) = 2. This implies that the 
biological model (l)-(3) is not fully state linearizable with D as control 
input and that the largest linearizable subsystem has dimension m = 2 
(see, e.g., [9, chapter 4, remarks 2.7 and 2.81). 

The following result then gives conditions for the choice of output 
functions that maximize the dimension of the linearizable subsystem 
with local stabilitv. 
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Result 3. Consider the biological system (l)-(3) with the dilution 
rate D as control input. 

l If the rate functions p and Y are independent of P and the output 
function is selected as 

h(X,S,P) p--& 
m 

l Or if the rate functions p and v are independent of X and the 
output function is selected as 

h(X,S,P) A$, 

then the system has relative degree 2 and is partially state feedback- 
linearizable with locally asymptotically stable zero dynamics. 

The proof of this result is given in Appendix C. We just mention that 
the two above output functions are found by solving the first-order 
partial differential equation L,h = 0 (which ensures that the control 
input does not appear directly in the output and in its first derivative 
with respect to time), that is, 

(57) 

Obviously, h = X/(S - 3,“) and h = X/P are two independent solu- 
tions of this partial differential equation. When h = X/(S - Si”), the 
change of coordinates is selected as 

53 =x/p, 

and the state feedback is given by 

- L2fh 1 
D = L,Lfh + L,LfhU (61) 
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LgLfh=5,LgCL+5:(aLgrU+PLgv), 

+=5,( ~*+L,cL)+~:[~~L((YI~+~~)+(~~L~~+PL,v)] 

+2( a/_L + pv)‘g. 

When h = X/P, the change of coordinates is selected as 

5, = X/P, (62) 

(63) 

t3=X/(S-3in), (64) 

and the derivation of the state feedback follows the same lines as above. 

7. EXAMPLES 

To illustrate the foregoing theory, we now apply the results of 
Section 5 to two specific examples. 

7.1. EXAMPLE 1 

We consider the state-space model (l)-(3) of a stirred-tank bioreac- 
tor with a constant dilution rate and the influent substrate concentra- 
tion S, as control input. We assume that the specific growth rate is 
represented by a Contois model, 

4x9s) = p*S/(K*X+S) 

and the specific growth rate by a model with inhibition by the product 

v(S,P) = V*S/(K,+ P). 

The various derivatives needed for the analysis are calculated as fol- 
lows: 

&J CL*KIS E.L*K,X ap 
dX=- 

@ 
(KIX+S)*’ dS= (KIX+S)*’ dP=” 

dV 

dX OT 

dv v* JV v*s 
-= _p 

dS-K,+P’ dP=- (K2+P)*’ 

a*p 2K,SX l3*V 
-=_ -= 

JS2 (KlX+S)3’ 6’S* 
0. 
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We immediately observe that conditions (37) are satisfied everywhere in 
the region of interest (that is, for all X > 0, S > 0, P > 0). 

Furthermore, condition (39) is satisfied, since 

and 

We can thus select X as an output function to stabilize the process at 
any equilibrium point. Moreover, condition (40) is also satisfied, since 

dv v* 
-#O Z=K,+P 

We can thus also select P as an output function to stabilize the process 
at any equilibrium point. 

7.2. EXAMPLE 2 

We now slightly modify the previous example by adding substrate 
inhibition in the specific growth rate, 

,_~(x,s) = ,u*S/(KJ+ S2), 

and keeping the same model of the specific production rate. 
This example is of interest because with these reaction models the 

system may now be unstable in an open loop. Indeed, it is easy to show --- 
that the equilibria (X, S, PI that satisfy the inequality 

are unstable. 
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partial derivatives of p are modified as follows: 

37 

@ P*KIS -=_ 
dX (K,X+S*)*’ 

a*cl -=_ 2j~*S(3S* - K,X) 

dS2 (K,X+ S2)3 ’ 

Conditions (37) are satisfied everywhere in the state-space except at the 
single point 

5* = K,X/3. 

We observe that this equilibrium point is stable in an open loop. If our 
concern is primarily to stabilize the unstable equilibria of the process by 
feedback, it is clear that this singularity can be ignored in the analysis. 

Condition (39) is expressed as 

i?* # KIT and - 
v*s - 

_*<$. 
(K2 + p) 

It follows that X can be selected as an output function to stabilize all 
the unstable equilibria except those that satisfy the condition x2 = K,X. 

Moreover, condition (40) is expressed as 

/L*S(~K,X - s*) > o 

(K,X+S*)* ’ 

It follows that P can be selected as an output function for all the 
unstable equilibria that satisfy 

Consequently, all the unstable equilibria of the process can be stabilized 
by feedback, provided that the output functions are selected according 
to Table 1. 

TABLE I 

Stabilizing Output Functions 

Unstable equilibria Stablilizing output function 
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8. SOME FINAL COMMENTS 

We have discussed in this paper the single-input control of a class of 
biological systems with growth-production decoupling when either the 
influent substrate concentration S, or the dilution rate D is the control 
input. 

In both cases, we have shown that the maximization of the dimension 
of the feedback-linearizable subsystem can be achieved with local 
asymptotic stabilization of the zero dynamics under simple structural 
conditions. 

It is worth noting that these conditions on the structure of the rate 
functions are very realistic and are satisfied in most models available in 
the literature for this kind of application. In particular, we have shown 
that the local feedback stabilization is guaranteed in various instances 
summarized in Table 2. 

Moreover, the output functions have a clear physical meaning. When 
S, is the control input, the local feedback stabilization is obtained 
through the regulation of the biomass X or the product P concentra- 
tions; when D is the control input, the local feedback stabilization is 
obtained by the regulation of the biomass/substrate or biomass/ 
product yield ratios of the process. 

We note also that a trivial consequence of our results is that the 
system is fully state feedback linearizable in the multivariable case with 
two control inputs D and S,. 

There are, however, important limitations to these techniques: 
l The expression of the linearizing feedback explicitly depends on 

the rate functions I_L and V, and the potential modeling uncertainties 
have to be compensated by an appropriate choice of the poles of the 
linear closed-loop system, according to robustness considerations. 

l The presence of zero dynamics makes the stability analysis around 
arbitrary time-varying reference trajectories very difficult, and, even 
around an equilibrium point, global stability of the closed-loop system is 
not guaranteed. 

TABLE 2 

Choice of Output Function for Guaranteed Stabilization 

Control input Rate functions p and v independent of Output function 

sin 

D 

P X 
X (if furthermore dp/&S or &/X3 > 0) P 

P x/s-si, 
X X/P 
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l A real-time knowledge of the state is needed to implement the 
feedback control law, which often requires the use of an observer when 
the state is not directly measured (see, e.g., [2]). Such an observer may 
degrade the overall performance of the feedback. 

The importance of these limitations can be studied on simulations in 
practical applications. 

APPENDIX A: Lie Brackets and Distributions of Vector Fields 

Let f be a smooth vector field on R” and h a smooth function from 
R” to R. The Lie derivative of h with respect to f, denoted by L,h, is 
defined by 

where x(t) is the solution of the differential equation i;-(t) = f(d)> 
starting from x(O) = x at time t = 0. If f = ( fi, . . . , f,>’ is given in local 
coordinates, it is easily checked that 

Note that this relation implies that every vector field f is associated in a 
one-to-one way to the first-order differential operator 

Given two smooth vector fields f and g on R”, one defines a new 
vector field, called the Lie bracket off and g and denoted [f, g], by the 
formula 

L [fd = Lf%h - L,Lfh 

for every smooth function h from R” to R. It can be easily checked 
that, in local coordinates, 

The notation ad,g = [f, gl is often adopted because it can be usec 
iteratively as follows: ad)g = [f, adi- ‘g] for every i > 1, with the conven 
tion ad!g = g, 
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A distribution of vector fields Q is a mapping from R” to its tangent 
space for which every x of [w” is associated to Q(x), a linear subspace 
of the tangent space of [w”. A distribution is called smooth with constant 
rank k if there exist k smooth independent vector fields g,, . . . , g, that 
locally generate Q, namely, Q(x) = Span{g,(x),. ..,g,(x>} for every x in 
a given open subset of [w”. A distribution Q is called involutive if the 
Lie bracket of two arbitrary vector fields of Q is an element of Q. In 
other words, Q is involutive if and only if [Q, Q] c Q. If, on the contrary, 
Q is not involutive, one can define its involutive closure, denoted a, as 
the smallest involutive distribution containing Q. The involutive closure 
of an arbitrary distribution Q necessarily exists, because Q is a subset 
of the tangent space T[W” of R”, which is involutive by definition. 

APPENDIX B: Proof of Result 2 

By linearizing the open-loop nonlinear system (l)-(3) around the 
equilibrium (E.2) with S, as control input, we obtain the linearized 
system, 

1 = Fx + Gs. I” ) (65) 

with Sin = Si” - Sin, 

-dP 
Xas 

-3r.L ’ 
xdp 

_j$-ij - dY 
dS -x,p 9 (67) 

- du 

XdS 
-6Ju - 
Xz-D 

and 

(68) 

We recall that y(X,S, P) = ap(X,S, PI+ @(X,S, PI in matrix F 
above and that all partial derivatives appearing in F are evaluated at --- 
the equilibrium point (X, S, PI. 
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Standard computations show that the pair (F,G) is controllable. In 
fact, 

is nonzero in a neighborhood of (E.2). Hence we can use the property 
presented in [l], namely the fact that the eigenvalues of the gradient of 
the zero dynamics at an equilibrium point are the finite linear zeros of 
the linearized system, in order to find the output functions h(X,S,P) 
leading to local stability. 

We are looking for a function h(X,S, P) such that for the transfer 
function 

H(sZ- F)-‘G = R(s) 
det(sZ- F) 

with 

H= $,$,$)=(h,,h,,h3), 
( 

(71) 

(70) 

the polynomial R(s) (s denoting the Laplace complex variable as usual) 
has all its roots in the left half of the complex plane. 

This polynomial is expressed as 

where the partial derivatives of ZA and v are evaluated at (E.2). 
For h(X, S, P> = X, we have H = (h,, h,, h3) = (l,O,O) and 
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The single root of Z?(s) is given by 
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and condition (39) follows. 
For h(X,S,P)= P, we have H=(h,,h,,h,)=(O,O,l) and 

- dv 
R(s) = XZS + x2 

[ ( ap dv -- dS ax-g$)+Hv$]. (75) 

The single root of R(s) is given by 

~=-(~)-l[v~+~(~~-~~)], (76) 

and condition (40) follows. 

APPENDIX C: Proof of Result 3 

For h(X, S, PI g X/(S - sin), we assume that the rate functions p 
and v are independent of P, and we consider the following change of 
coordinates: 

& =X/P. 

This transformation is a diffeomorphism provided that the following 
inequality holds in a neighborhood of the equilibrium point: 

( 1+cr 5 
1 
&p(XJ) + P-& &v(XJ) # 0, 

,” In 

where g is the input vector field (53). 
The inverse transformation of coordinates may be written as 

with annronriate definitions of d, and &. 
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In the new coordinates ( tl, t2, t3), with the state feedback (60, the 
closed-loop dynamics are written 

and U( ,$r, c2) is chosen to place the poles of the input-output transfer 
function v + Si. 

The equilibrium point of the closed loop may be written 

8, = set point of the yield -& , 
m 

Finally the zero dynamics are written 

and have the following stable linearization around the equilibrium (with 

53 = 53 - 5,): 

Hence, we have shown that, provided that the rate functions are 
independent of P, we can design a feedback controller that maximizer 
the dimension of the linearizable subsystem while preserving the local 
stability of the zero dynamics. 

For h(X, S, P) 2 X/P, the proof follows exactly the same lines. 
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