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Adaptive Identification and Control Algorithms for 
Nonlinear Bacterial Growth Systems* 
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Simple self-tuning type controllers Jbr nonlinear bacterial growth processes can be 
effective and their stability can be proven under mild conditions. 
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Abstract--This paper suggests how nonlinear adaptive control 
of nonlinear bacterial growth systems could be performed. The 
process is described by a time-varying nonlinear model obtained 
from material balance equations. Two different control problems 
are considered: substrate concentration control and production 
rate control. For each of these cases, an adaptive minimum 
variance control algorithm is proposed and its effectiveness is 
shown by simulation experiments. A theoretical proof of 
convergence of the substrate control algorithm is given. A further 
advantage of the nonlinear approach of this paper is that the 
identified parameters (namely the growth rate and a yield 
coefficient) have a clear physical meaning and can give, in real 
time, a useful information on the state of the biomass. 

1. INTRODUCTION 

A COMMONLY used approach for the adaptive 
control of nonlinear systems is to consider them as 
time-varying linear systems and to use black-box 
linear approximate models to implement the 
control law. This approach has been used by the 
authors in previous works on the control of 
fermentation processes (Bastin and coworkers, 
1983a, b). 

But, since the underlying process is nonlinear, 
improved control can be expected by exploiting the 
nonlinear structure of the model. Such an idea is 
pursued in the present paper: we suggest how 
nonlinear adaptive control of nonlinear bacterial 
growth systems can be implemented. A similar idea 
has recently been used for the dissolved oxygen 
adaptive control in waste water treatment (Ko, 
Mclnnis and Goodwin, 1982), but under a 
somewhat different form than in the present paper. 
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The process is described by a nonlinear state 
space representation obtained from usual material 
balance equations (Sectio.n 2). However, this 
representation does not require any specific 
analytical description of the bacterial growth rate. 

The system is then approximated by a discrete- 
time time-varying model which is linear in the 
parameters and in the control input though globally 
nonlinear. The time-varying parameters in this 
model (namely the growth rate and a yield 
coefficient) have a clear physical meaning and are 
identified in real time with a standard RLS 
algorithm (Section 3). 

The parameter estimation algorithm is combined 
with minimum-variance and Clarke-Gawthrop 
controllers to obtain adaptive controllers in two 
different cases: substrate concentration control 
(Section 4) and production rate control (Section 5). 
The effectiveness of the parameter estimation 
algorithm and the adaptive control algorithms is 
demonstrated by simulation experiments. 
Furthermore a theoretical proof of the convergence 
of the substrate control is given in the Appendix. 

Parameter estimation and nonlinear control of 
microbial growth systems have been, in the last 
decade, the object of growing interest. Among many 
others, we may mention the papers by D'Ans, 
Kokotovic and Gottlieb (1971), Aborhey and 
Williamson (1978), Holmberg and Ranta (1982) 
and a large number of papers (and references) 
contained in the proceedings of the first IFAC 
Workshop on Modelling and Control of 
Biotechnical Processes (Halme, 1983), especially the 
contributions of Marsili-Libelli (1983) and 
Stephanopoulos and Ka-Yiu San (1983). However, 
we believe that the algorithms proposed in this 
paper have some original features that we can 
summarize as follows: 

(a) In our approach, the parameter estimation and 
the process control are performed simul- 
taneously. 
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(b) The specific growth rate is not modelled by an 
analytical function of the state but is 
considered as a time-varying unknown para- 
meter estimated in real time by a simple least- 
squares algorithm. 

(c) The control is performed by a very simple self- 
tuning scheme which contrasts with more 
sophisticated approaches followed elsewhere 
like, e.g. nonlinear optimal control (D'Ans, 
Kokotovic and Gottlieb, 1971 ), nonlinear state 
feedback with Riemanian geometric model 
(Takamatsu, Shioya and Kurome, 1983) or 
adaptive multimodel control (Cheruy, 
Panzarella and Denat, 1983). 

(d) Global convergence of the substrate control 
algorithm is established under mild conditions. 

2. DESCRIPTION OF THE SYSTEM 

We consider the usual state-space representation 
of bacterial growth systems by mass-balance 
equations 

X = [ u ( x , s ) -  u l x  
s =  -k ,~(X,S)  x + u ( v -  s) 

Y= k2fl(X,S) X 

(1) 

In these expressions, ~* is the maximum growth 
rate. 

The choice of an appropriate model for p(X, S) is 
far from being an easy task and is the matter of 
continuing research (e.g. Roques and co-workers, 
1982). Spriet (1982) lists no less than nine different 
models for/~(X, S) which have been proposed in the 
literature without even mentioning those which 
involve inhibitions (like the Haldane law (5)) or a 
pH-dependence (e.g. Vandenberg and coworkers, 
1976). 

Furthermore, it is well known that important 
identifiability difficulties occur when estimating the 
parameters (~* and Km o r  K b or Kc...) from real-life 
data (e.g. Holmberg and Ranta, 1982; Bastin and 
coworkers, 1983b, Holmberg, 1983). 

Therefore we prefer to "short-circuit' the problem 
of this choice and to identify the time-varying 
growth rate t~(X,S)  in real-time by an adaptive 
algorithm. 

Throughout this paper, we shall assume that: 
(a) the dilution rate U is the control  input; 
(b) the influent substrate concentration V is an 

external measurable  disturbance input; 
(c) the substrate concentration S and the pro- 

duction rate Yare measurable  outputs. 

with state  variables: X biomass concentration 
S substrate concentration 

inputs: U dilution rate (i.e. influent 
flow rate) 

V influent substrate con- 
centration 

outputs:  S substrate concentration 
Y production rate of the 

reaction product 
parameters:  #(X, S) growth rate 

kl and k 2 yield coefficients. 

We could think of adopting an analytical 
expression for the bacterial growth rate #(X, S); the 
most popular expression is certainly the Monod law 

p * S  
p(X, S) - (Monod) (2) 

K, ,  + S 

but many other expressions have been suggested, 
like 

[A* 
/~(X,S) = ~bbS S ~ Kb(Blackman ) 

]A* S ~ K b 

(3) 

p * S  
FL(X, S) - (Contois) (4) 

K c X  + S 

12* K o S  
I~(X,S)  = l + K 1 S  + K z S  2 (Haldane). (5) 

A typical example:  the anaerobic digest ion process 

The state space representation (1) is suited to 
describe the methanization stage in an anaerobic 
digestion process. The anaerobic digestion can be 
used, for instance, for the treatment of wastes in 
sugar industries: U is the influent acetic acid 
concentration (i.e. the input pollution level), S is the 
output pollution level and Yis a methane gas flow 
rate. V and S are observed through BOD 
measurements. The main interest of such a water 
treatment plant is obviously to yield methane gas 
which can be used as an auxiliary energy supply. 
Further details on the anaerobic digestion process 
can be found in Antunes and Install6 (1981), Van 
den Heuvel and Zoetmeyer (1982), and Bastin and 
coworkers (1983a, b). 

3. ADAPTIVE PARAMETER ESTIMATION 

Using a first-order Euler approximation for 
and S', with a sampling period T, the following 
discrete-time equations are derived from the 
system equations (1) 

Xt+ 1 = X t -4- ZJl tX r - T U t X t  + v't 

St+l = St - Tkl l~ ,Xt  + TUt (Vt  - S,) + ~), (6) 

Yt = k2ll tX,  • 

In these equations, the subscript t is a discrete-time 
index (t---0,1,2 .... ) and the growth rate /~t is a 
compact notation for ~, = #(X,, S~). 
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We make the approximation 

Y~+ 1 - Yt = k2/~t(Xt+ l - Xt) + et. (7) 

Then, substituting for Xt  and Xt+ ~ from (7) into (6), 
we have 

with 

Y,+, = Yt + #,TYtt - T U t Y ,  + vt (8) 

St+,  = St + kTYt  + TUt (Vt  - St) + o t  (9) 

Vt = ~'t + k2,utvt 
kl  

k ~ - - - - .  
k2 

Equations (8) and (9) constitute the basic discrete-  

t ime model  for the derivations of the parameter 
estimation and adaptive control algorithms. In this 
model, v t and ~o t represent errors due to noise, 
discretization and approximation (7). 

Since the basic model is linear in the parameters/tt 
and k, recursive least-squares estimates can be 
readily obtained 

f i t+, = fit + TPtYt(Yt+,  - Yt + T U t F t  - f t tTYt)  
(lO) 

k t+ ,  = kt + TPtY t (S t+I  - St 
- TUt (F t  - St) - fqTYt)  (11) 

_ T 2 y 2 t p t - 1  

w i t h P o > > O a n d O < 2 . % < l .  

2 is a forgetting factor to allow the tracking of the 
time-varying growth rate #t. This forgetting factor is 
also used for the estimation of the yield coefficient k 
to allow for variations 'due to unobservable 
physiological or genetic events' (Holmberg and 
Ranta, 1982). Notice that the estimation of both 
parameters is decoupled but with a common gain Pt. 

In addition to these parameter estimates, the 
biomass concentration X can be estimated in real- 
time by writing ~'t = YJk21Jr 

Simulat ion  results  

Simulation experiments have been performed 
using state equations (1) as the 'true' bacterial 
growth system, with a Monod growth rate (2). The 
following parameters and initial state values were 
used: 

/~* = 0.4 K m =  0.4 k = -0 .3636 
X o = 0 . 0 6 9  So=0-13.  

The initial values of both estimated parameters/it 
and kt were set to zero. These values will be used for 
all the simulation experiments throughout the 

paper. Figure 1 shows the estimates fit and kt 
computed by the algorithm equations (10) and (11) 
with Po = 106I and white noise input signals U, 
and V,. 

The same experiment is shown in Fig. 2, except 
that a jump is applied on the maximum growth rate 
(p* = 0.4 --, 0.45) at time t = 240. 

We observe a fast convergence, without bias, of 
the parameter estimate/~t and a slower convergence 
of fit to the 'true' time-varying growth rate/~,. 

4. S U B S T R A T E  C O N T R O L  

We consider the problem of regulating the 
substrate concentration St at a prescribed level S* 
despite the disturbance input Vt, by acting on the 
dilution rate Ut. 

In the anaerobic digestion example mentioned 
above, this is a depollution control problem with V t 
and St the input and output pollution levels 
respectively. 

A discrete-time minimum variance adaptive 
controller is adopted. At each sampling time, the 
control input Ut is computed by setting a one-step 
ahead prediction of the substrate concentration 
equal to the prescribed level 

St+,  = S*. (12) 

From the basic model equation (9), it is natural to 
define St+, as follows: 

S,+, = St + k tTYt  + TUt (Vt  - St) (13) 

here k, is updated by the parameter estimation 
algorithm (11 ). 

A nonlinear control law is readily obtained from 
(12), since St+~ is linear in Ut; in practice, the 
control action Ut is obviously constrained by the 
operating conditions. Therefore, the adaptive 
control algorithm is as follows: 

S* - S, -/~tTY, 
U t =  

T(Vt - S,) 

U t = 0 i f  U , < 0  (14) 

Ut = Umax if Ut > Umax 

Ut -- Ut otherwise. 

A block diagram of the closed-loop system is 
presented in Fig. 3. We note that a feedforward 
compensation of the measurable perturbation Vt is 
included. 

Simulat ion  results  

Success fu l  simulation experiments have been 
carried out, using the continuous-time state 
equations (1) as the 'true' system with a Monod 
growth rate (2) and Um~ x -- 0.39. 
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l Yt I , 

• 

FIG. 3. Block diagram of the substrate concentration control. 

Figure 4 shows the substrate concentration St, the 
control input Ut and the parameter estimates/it and 
fq in the case of a square-wave set point with a period 
of 96 sampling times and a constant perturbation 
Vt = 2. We observe that the controlled output St 

converges much faster than the parameter estimate 
fit, but this is not surprising since fit is not actually 
used by the control algorithm. 

Figure 5 shows the substrate concentration S,, the 
control input Ut and the parameter estimates/it and 
/~t in the case of a square-wave perturbation Vt and 
an additive white noise on the auxiliary output E 
Evidently, we observe a bias (due to the noise) in the 
parameter estimates but this is not important for the 
convergence of controlled output St. 

Figure 6 shows the substrate concentration St and 
the control input Ut in the case of a 10~o square- 
wave variation of the maximum growth rate. 
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FIG. 4. Substrate concentration control with a square-wave set point. 
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5. PRODUCTION RATE CONTROL 
In order to facilitate the understanding of the 

later discussions, we refer here to the particular case 
of the anaerobic fermentation process described in 
Section 2 but, obviously, the results can also apply 
to other processes with the same structure. 

The anaerobic digestion can be viewed as an 
energy conversion process. An amount of 'organic' 
energy is available in the influent under the form of 
the input organic load Vt. This energy is converted 
into methane gas Yt by the anaerobic digestion. 
Obviously, the output energy Yz cannot, in the mean, 
be larger than the available input energy. When the 
aim of the plant is not depollution but energy 

production (as in industrial farms), the control 
objective is to continuously adapt the output 
production Yt to the available input load Vt. 
Therefore, the desired gas production E*t is defined 
as follows: 

~=/~v,-/~o /~>o, /~o>0. (15) 

The coefficients fl and flo have to be selected 
carefully by the user since if, by lack of knowledge, fl 
is chosen too large or flo too small (i.e. if we require 
from the fermentor more methane gas than it can 
actually provide) then the process can be driven by 
the controller to a wash-out steady-state (Antunes 
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FIG. 6. Substrate concentration control with a square-wave perturbation on/1". 

and Install6, 1981 ), i.e. to a state where the bacterial 
life has completely disappeared and where the 
reactor is definitely stopped. 

In this section, we shall first demonstrate that a 
minimum variance adaptive control law using the 
basic model equation (8) may diverge. We shall then 
describe what kind of modification we bring to the 
model in order to improve the control algorithm. 

Divergence o f  the minimum variance controller 

As for the substrate concentration control, we 
first try to use a minimum variance control law 
derived from the basic model equation (8) 

Ut  = ~t+l -- Yt(1 + Tft,) 
TYt 

U t = 0 i f U t < 0  

Ut = Umax if Ut > Umax 

Ut = Ut otherwise. 

(16) 

Consider the case when E't÷1 > Yt (1 + T/i,). 
Then Ut < 0, i.e. Ut is set to zero. 

If Ut is kept equal to zero, Yt, possibly after a 
transient increasing period, will decrease and tend 
to zero (gas can no longer be produced if the influent 
has disappeared!). So, if the transient on Y~ is not 
important enough, U, remains at the zero value, and 
Y, tends to zero. 

Figure 7 illustrates this feature: at time t = 48, 

the desired output level ~÷1 is set to a value 15 
larger than the steady-state value of Yr. 

Modification of  the basic discrete-time model 

In order to improve the control algorithm, we 
introduce the following modifications of the basic 
model equations. 

First, we consider the following approximate 
relation between # and S: 

~(x ,  s) = b(X, S).S (17) 

i.e. the parameter b is estimated, instead of/~, with a 
recursive least-square algorithm. 

One may consider this approximation as a loss of 
generality with respect to the previous case where p 
is left independent of any analytical expression and 
estimated as a parameter of the system. But this is 
plainly justified by the fact that all the proposed 
bacterial growth laws are compatible with (17). 

Rewrite the expression of Yt, from (6) 

Yt = k2btStXr 

We modify the approximation (7) by the following 
one: 

Yt+ l - Y~ = k2bt[S,(X,+ l - Xt)  

+ X,(S,+I - St)] + ~t (18) 

i.e. the variation A Y~ = Y~ + 1 - Y~ is now dependent 
on both the variations AXt in the bacterial 
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FIG. 7. P roduc t ion  rate control :  divergence of a simple MV controller.  

concentration and AS, in the substrate con- 
centration. Equation (8) becomes 

y2 
Yt+I = Yt q- btTStY, + kT~-' 

St 

(19) 

with vt = at + k2btStvt + k2btXtcot. 

In these expressions the value of/~t is assumed to be 
estimated by the recursive least-squares equation 
(11). 

Notice that parameters/~t and/~t are estimated 'in 
cascade'. This allows us to decouple the estimation 
of both parameters, and to keep a very simple scalar 
identification algorithm. 

Figure 8 shows the same experiment as Fig. 1, but 
for the estimation of bit. 

Since (19) is linear in the parameter b, recursive 
least-squares estimates can be obtained 

[~,+, = b, + TStYtP;(Yt+, - Y= - fqT Yt2. 
St 

+ TUtYt (~  - 2) - [~,TS, YO (20) 

P~-I (1 - T2Yt2S2P~-I ) (21) 
P ; -  2 2 + ~ J 6 ; _ ,  " 

New minimum variance control algorithm 
As above, we choose a discrete-time minimum 

variance adaptive controller. Using (19), the control 
input Ut is given by 

O t  = ~t*t+l - Yt - Tfqy2 / s , -  T[~tS, Y, ( 2 2 )  

TYdVdS, - 2) 

U, = 0 if Ut < 0 

Ut = Umax if U, > Umax 
Ut = Ut otherwise. 

0.85 
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• t3 t 
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FiG. 8. RLS es t imat ion  of bt. 
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i t  

H System Adaptive 
Controller 

IT  I S' 
FIG. 9. Block diagram of the production rate control. 

A block diagram of the closed-loop system is 
presented in Fig. 9. 

Simulation results 
The minimum variance adaptive controller, as 

written in (22), is more effective than the previous 
one (16). As a comparison, Fig. 10 shows the same 
experiment as Fig. 7, but with the control law (22). 

In Fig. 11 steps of the influent substrate 
concentration V~ (external measurable pertur- 
bation), i.e. of the desired output level E*t (see (15)), 
are applied to the system. 

The control algorithm converges very quickly, 
although the convergence of the parameter/~t to its 
'true' time-varying value is much slower. 

Clarke-Gawthrop controller 
It is evident, from (22), that the sign of U, depends 

on the sign of (Vt /S t -  2). When the substrate 
concentration St reaches values close to 0.5 Vt, the 
minimum variance controller may appear not to be 
able to reach the desired set point. If St is larger than 
0.5 V, Ut becomes negative, i.e. U~ = 0. As a 
consequence, St decreases. When St becomes smaller 
than 0.5 Vt, Ut is set to a positive value. If (VJSt - 2) 

is close to zero, Ut most likely reaches large values, 
larger than Um~x, and St increases again so that 
(VdSt - 2) becomes negative, and so on. 

In such a case, Ut is oscillating between 0 and 
Umax, leading to the oscillation of the system, and the 
control does not converge. A typical illustration is 
given in Fig. 12. 

In order to solve these convergence problems, we 
introduce a Clarke-Gawthrop (1979) control law 
using a weight Q(I - z- ~ ) in the performance index 
(Belanger, 1983). The control input is then 
computed so as to minimize the following criterion: 

s = - Y*+l) 2 + Q 2 i u , -  u , _ , ) 2 .  (23) 

Using (19), we have 

Q 2  

Q2 + TZYZ(V~/S, _ 2)2 U,-1 

TY,(V,/S, - 2) 
+ Q2 + T 2 y 2 ( v d s , _  2)2 

1 -- - k z Y 2  ~)tTStYtt] • I Y *  Yt t S, - (24) 

Figure 13 shows the improvement obtained by 
using this Clarke-Gawthrop controller. It is 
interesting to note that, as above, the convergence of 
the controlled output Yt (Fig. 13) is much faster than 
the convergence of the parameter estimates (Fig. 
14). 

6. CONCLUSIONS 
Simple adaptive controllers for a class of 

biotechnical systems have been proposed. Their 
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FIG. 10. Production rate control: convergence of the modified MV controller. 
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effectiveness has been demonstrated by simulation 
experiments. 

A theoretical proof of the convergence of 
substrate concentration control algorithm is given 
in the Appendix. In the case of production rate 
control, the convergence of the algorithm has not 
been discussed and is obviously much more difficult 
to establish since the algorithm involves two 
cascaded steps together with the estimation of a 
truly time-varying parameter (~,). 

In addition to the control itself, a further 
advantage of the nonlinear approach of this paper is 
that the identified parameters correspond clearly to 
physical parameters (namely growth rate and yield 
coefficient); therefore they can provide useful 
information, in real-time, on the state of the 
biomass. 

Although the model (1) is well suited to industrial 
applications like waste treatment in sugar industries, 
in many other applications the model (1) is only the 
last stage of a complex multistage reaction: a typical 
situation is a five-state twelve parameter model (e.g. 
Bastin and coworkers, 1983b) describing a sequence 
of three reactions (solubilization, acidification, 
methanization). This is a further reason to explore 
the possibility of simple control schemes for the 
different stages of such high-order highly nonlinear 
systems. 
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APPENDIX: CONVERGENCE ANALYSIS OF THE 
SUBSTRATE CONCENTRATION CONTROl, 

ALGORITHM 

In this Appendix, we present a proof of the convergence of the 
substrate concentration control under a set of reasonable 
assumptions. 

The demonstration has some similarities with that proposed 
by Goodwin, Mclnnis and Long (1982) in the case of dissolved 
oxygen control for waste water treatment. 

It is organized in three steps: 
(a) BIBO stability of the bacterial growth system, 
(b) convergence of the parameter estimation algorithm, 
(c) convergence of the adaptive control algorithm. 

BIBO stability of the continuous-time bacterial 
growth system 

Let us rewrite, for convenience, the state--space description of 
the bacterial growth system 

X ~ = [/~(X,S)- U]X tAla) 

S ~  -k~#(X,S)X + U ( V -  S) (Alb) 

Y ~ k211(X,S)X. (Ale) 

In this section we prove the BIBO stability of this system (in 
accordance with the physical situation) under the following 
assumptions. 
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Assumptions. 
(Hla)  0 <~ kt(X,S) <~ l~* 
(Hlb)  It(X, O) = O. 

(H2a) 0~< U 0~< V~< Vm,~ 
(H2b) 0 ~< S(0) 0 ~< X(0) ktX(O) + S(O) <, Vm,~. 
Notice that all the growth rate models of Section 2 fulfill 
assumption (H 1 ). 

Lemma 1. Under assumptions ( H I ) a n d  (H2) 
(i) 0 ~< S ~< V~,,~ 

(ii) 0 ~< X ~< ~'max 
kl 

(iii)O~< Y ~  /~*Vm.~Vt>O. 

(A2) 

Proof 
(1) X ~> 0 and Y>~ O; straightforward by using (Ala), (Ale) and 

(H2b). 
(2) For S = 0, we have S >/0, using (H2a), (Alb) and (Hlb). The 

conclusion S >~ 0 for all S follows from (H2b). 
(3) For S = Vm, ~, we have, using (Alb), (Alc) and (H2a). 

k ,  
= - " Y +  U ( I / -  Vm,~) ~< 0 since Y~> 0. (A3) 

k2 

The conclusion S ~< V~, for all S follows from (H2b). 
(4) Define the auxiliary variable Z = k l X  + S. 

Then, the following equation is readily derived from (Ala) 
and (Alb):  

2 = U ( V -  Z). (A4) 

For Z = Vmax, we have Z~ ~< 0. The conclusion Z ~ V,~,, for all 
Z follows. Since S ~> 0, clearly we have X <~ Vm,~/k I for all X 
and it becomes obvious that, by using (Alc) and (Hla), 

kz 
Y~< k 1/* Vmax. (A5) 

Q.E.D. 

It should be emphasized that from Lemma 1, the outputs S and Y 
and the state X are bounded without imposing any upper bound 
on the input U. 

Convergence of the parameter estimation algorithm 
We consider now the convergence of the estimation algorithm 

for the parameter k, presented in Section 3. 
The basic idea is due to Goodwin and Sin (1983) and can be 

roughly summarized as follows: if the noise term % in (9) is 
bounded, then the convergence of the parameter estimate k, can 
be guaranteed by involving, in the algorithm, a switching 
function to hold the parameter estimate constant wherever the 
prediction error becomes smaller than a prespecified bound. The 
algorithm (11 ) is considered without the forgetting factor (2 = 1 ) 
and modified as follows: 

k,+ l = k, + a, TP, y(S,+ I - S,+ I) (A6) 

a 'T2YZP ' - '  I 
P t = P t - I  1 I - - ~ _ l  " P ° > O + a , l " r ; r , !  (A7) 

with S,+1 defined by (13). 

Lemma 2. For the algorithm (A6) and (A7), subject to 
assumptions (H 1 )-(H4), then 

lira sup[S, - S,I ~< CA (AI0) 

with C a positive constant independent of A. 

Proof 

Let k, =/~, + kl. (Al l )  
k2 

Then, the following expression is readily derived from (A6) and 
(13): 

k,+l i,, 
+ atTYtoJ,. (AI2) 

P, Pt- 1 

Then, by assumption (H4), 

~2+1 ~2 [ iS,+ 1 -- ~t+i)2 
P, Pt- ~ A2 . (AI3) 1 1 + a, T2yZtP,- td  

T,~,. 
Then, p~_~ is a nonincreasing function, bounded below by zero 

(since P,_ t > O) and 

[A2 ,')2] ,-~lim a, 1 + a t T 2 y t P , _ l ~  =0" (AI4) 

Hence t~.lim sup Y~P,-1 ~ A2" (A15) 

Now, from (A7), the sequence P, converges and we define 

P ~  = l imPr ~> 0. (AI6) 

Hence, in view of Lemma 1, 

/ l ima tY~P , - l<~T  2 __/Z*Vm.~ P ~ = C 2 - 1  (A17) 
r ~ ,  gl / 

and, from (AI5), 

lim suplS,+ 1 - S,+ 11 ~< CA. (AI8) 

Convergence of the adaptive control algorithm 
We consider now the adaptive control algorithm (14). We have 

the following convergence result. 

Theorem. 
If (i) Vm~..< V~< Vm.x 

(ii) S* < Vmi . 
(iii) the parameter estimation algorithm (A6) and (A7) and 

the adaptive control algorithm (14) are used with 

,U* Vma x 
Umax ~ - -  (AI9) 

Vmi n -- S* 

Assumptions. 
(H3) sup[%l ~< A (A8) 

(S,+1 - S,+1) 2 
(H4) at = 1 if 1 + T2y2p,  i > A2 (A9) 

a, = 0 otherwise. 

(iv) Assumptions (HI), (H2b), (H3) and (H4) hold 

then lira sup[S, - S*] ~< CA 

with C the same constant as in Lemma 2. 

(A20) 
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Proof From Lemma 2, for each q > 0, there exists to > 0 
such that 

S, - C A  - ~l <~ S, <~ ~d, + C A  + tl for all t >>. O. (A21) 

Define the interval 

I = IS* - CA - r/, S* + CA + ~/]. (A22) 

(I) If the control algorithm gives 0 < Ut,, < Umax then S~o+1 
= S* and hence S,o+l e l .  

(2) If the control algorithm gives U , = 0  for t = t 0 + k  for 
k = 0,1,2,3 . . . .  then by definition of Ut, we have S,o+k >/ S* for 
k = 1,2,3 . . . .  and hence Sto+k >/S* - CA - q. 

But, if U, = 0, St decreases and tends asymptotically to the 
steady-state S = 0, and there exists k' such that 
Sto+k, ~< S* + C3 A + q. The conclusion Szo+k. ~ I follows. 

I f the sequence U,o + k' = 0 terminates at time t' > t o so that 
S , , ~ I  and 0 < U,. < U,,ax, then S,,+~ ~I  as in (1) above. 

(3) If the control algorithm gives Ut = Um~x for t = to + k, 
k = 0,1,2,3 . . . .  then S, increases since S t> 0 by definition of 
Um~x and we can prove similarly that Sto + k" e I or Sc+IE I. 

(4) So far, we have shown that there exists some tl > to such that 
St, E 1. Now it is easy to show that, if S ,  ~ I, then St ¢ I for all 
t >~ tl, by using the arguments  of (I)-(3) above. 

Thus we have 

IS, - S*I ~< CA + r/for all t >/ t l .  (A23) 

Since q > 0 may be chosen arbitrarily small, it follows from 
the definition of l: 

lim suplS, - S*I ~< CA. (A24) 
t~ ,x, 

Q.E.D. 

C o m m e n t s .  

(1) The controller achieves a zero steady-state error even with a 
varying disturbance V, since the algorithm includes 
feedforward compensation. 

(2) In order to prove the convergence, the switching function a t 
has been included in the control algorithm and the following 
assumption has been stated 

~* [/max 
(fmax ~ Vmin __ S - -  ~ • 

It is worth noting that these precautions were omitted in 
the simulation results presented above, since U~ax was 
arbitrarily fixed at 0.39 and the switching function a, was not 
used in practice. These are necessary to prove the theoretical 
results but  appear to be usually inoperative in the simulation 
experiments. 


