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A Case Study of Adaptive Nonlinear Regulation 
of Fed-batch Biological Reactors* 

LIBEI CHEN,t GEORGES BASTINS and VINCENT VAN BREUSEGEMS 

A general methodology for the design of adaptive regulators for fed-batch 
biological reactors is presented with the aid of an illustrative case study, the 
regulation of the ethanol concentration in a fed-batch yeast production 

process. 
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Abstrart-Fed-batch biological reactors are good candidates 
for the application of adaptive nonlinear techniques because 
they involve kinetic parameters that are highly uncertain and 
slowly time-varying. In this paper, the issue is illustrated and 
discussed with the aid of an industrial application: the 
ethanol regulation in yeast production processes. 

1. INTRODUCTION 

Dynamics of fed-batch biological stirred tank 
reactors are commonly described by a set of 
ordinary differential equations arising from mass 
balances of the biological species (microorgan- 
isms, enzymes, substrates, etc.) involved in the 
process. A basic difficulty for the application of 
modern control science to these processes lies in 
the fact that the models usually include kinetic 
parameters which are highly uncertain and 
slowly time-varying. For this reason, fed-batch 
reactors are good candidates for the application 
of adaptive nonlinear control (ANC) techniques 
in order to robustify the systems performances 
against parametric uncertainties. 

The aim of this paper is to present a general 
methodology for the design of adaptive reg- 
ulators for fed-batch biological reactors with the 
aid of an illustrative case study which has given 
rise to a genuine industrial application. The 
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application under consideration is the feedback 
optimization of yeast fermentations that are of 
particular interest because yeasts are among the 
most widely used microorganisms in genetic 
engineering for the production of high added 
value metabolites. This case study is representa- 
tive of a wide class of control problems in 
biotechnology where the regulation of some 
substrate or metabolite concentration helps to 
solve yield/productivity conflicts and to enhance 
product quality. 

In a fed-batch culture, the reactor is 
progressively fed with substrates necessary for 
the fermentation. No substance in liquid form is 
removed from the reactor during the culture. A 
fed-batch culture has the advantage of avoiding 
substrate overfeeding which can inhibit the 
growth of microorganisms. The fact that no 
substance is withdrawn from the reactor during 
the culture helps the process to work in good 
sterilized conditions. For these reasons, this 
mode of production is often preferred to batch 
and continuous modes in many processes. 

Industrial fed-batch production of yeasts is 
traditionally carried out in open loop conditions 
using precalculated glucose feeding profiles of 
dosage schemes (which are often considered as 
manufacturing secrets). The determination of 
optimal feeding profiles for fed-batch processes 
has therefore been an attractive subject of 
research for a long time (see Ohno et al., 
1976; Aiba et al., 1976; Parulekar et al., 1985; 
Modak and Lim, 1987 and the review paper 
of Johnson, 1987). During the last decade, 
numerous laboratory studies have however 
shown that improved production is obtained 
with feeding profiles that are calculated on-line 
in a feedback loop using data from exhaust gas 
analysis (0, and COZ) and/or ethanol sensors 
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(see Dairaku et al., 1982; Dairaku et al., 1983; 
Williams et al., 1984; Wu et al., 1985; Dekkers 
and Voetter, 1985; Verbruggen et al., 1985; 
Axelsson, 1989; Hagander et al., 1990; Queinnec 
et al., 1991; Chen et al., 1991; Pomerleau and 
Viel, 1992 and Keulers, 1993). 

The paper is organized as follows. We first 
describe the yeast production process in Section 
2 and we derive the state-space model which is 
the basis of the control study. In Section 3, we 
present a review of the literature on the subject. 
The various control objectives that have been 
proposed in the literature are reviewed and the 
main control applications that have given rise to 
experimental results are extensively examined. 
This review allows us to emphasize and to 
motivate the original features of our approach 
with respect to the previous contributions on the 
subject. In Section 4, which is the core of the 

paper, we describe in detail the adaptive 
nonlinear regulation strategy. Firstly, using a 
qualitative knowledge about the reaction kinetics 
of the system, it is shown that a biomass 
estimator can be derived. Secondly, the non- 
linear model of the system is reduced to a simple 
first order input-output model by a singular 
perturbation method. Thirdly, the adaptive 
nonlinear controller is obtained by using a 
feedback linearizing control action combined 
with a reference model and a classical Lyapunov 
design for adaptive systems. The industrial 
application is finally presented in Section 5. 

2. DESCRIPTION OF THE YEAST 
PRODUCTION PROCESS 

The mechanism of yeast growth on glucose 
with ethanol production is described by the 
following set of microbiolgoical reactions (see 
Sonnleitner and Kappeli, 1986): 
Respiratory growth on glucose: 

is the following. The above three reactions 
represent three metabolic pathways from glucose 
to yeast. It is known that at low glucose 
concentrations and sufficiently high oxygen 
concentrations, the biomass grows primarily on 
glucose (respiratory growth, first reaction) 
without ethanol production. This reaction 
provides a high yield of yeast production with 
respect to glucose but its rate is rather low. At 
high glucose concentrations, the respiratory 
growth is inhibited or repressed (known as the 
Crabtree effect, Crabtree (1929)), the fermenta- 
tive growth (second reaction) significantly 
appears with a high growth rate but a low yield, 
and ethanol is produced by the consumption of a 
part of glucose. In the third pathway, ethanol 
produced by the fermentative reaction can be 
consumed for the yeast growth in the presence of 
oxygen. Actually, the three reactions can take 
place simultaneously and the distribution of 
glucose among them depends on the level of 
glucose and oxygen concentrations. 

When the process takes place in a fed-batch 
stirred tank reactor with glucose and oxygen 
supply (see Fig. l), the following dynamical 
model expresses the mass balance of the various 
components around the reactor: 

S = -kIpI(g)X - k+z(ij)X - DS + DSi” (1) 

c = -k2pdt)X - k+&)X - DC + Q,, (2) 

~2 = CLEW + P&)X + /4)X - DX (3) 

p = kscL,(@X + k&1;)X + k,/&)X 

-DP-Qp (4) 

12 = ks+&)X - k+&)X - DE - QE (5) 

ri=DV (6) 

k,S + k,C+X + kSP 

Fermentative growth on glucose: 

k,S+X+k,E+k,P 

where S, C, X, P and E now denote the 
concentrations of the components in the liquid 
phase of the reactor, Qp is the gaseous CO2 
outflow rate (per unit of volume), QE is the 
gaseous ethanol outflow rate (per unit of 
volume), D is the dilution rate defined as the 
ratio between the liquid substrate feed rate, & 
and the liquid volume of the reactor, V, Sin is the 

Respiratory growth on ethanol: 

k,E+k,C+X+k,P 

where S, C, X, P and E represent glucose 
(substrate), oxygen, yeasts, carbon dioxide and 
ethanol, respectively. These reactions are auto- 
catalytic since yeasts are self-reproducing micro- 
organisms. The coefficients kj >O represent the 
stoichiometric (or yield) coefficients correspond- 
ing to the production of 1 unit of biomass (i.e. 
yeasts) in each reaction. 

Gas (Etoh, COZ. 02) 

Glucose 
feeding 

Aeration 

The physiological interpretation of the system Fig. 1. Fed-batch culture of yeast production. 
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influent glucose concentration, Qo, is the oxygen 
transfer rate (per unit of volume), 5 denotes the 
state vector: fj b (S, C, X, P, E, V)‘. 

The specific growth rates p,(g), ~~(6) and 
am are very complex time-varying functions of 
the state of the process and their analytical 
modelling is often uncertain. In spite of this, a 
basic qualitative knowledge is available. It is a 
well known fact in bioengineering that the 
growth capacity of a population of microorgan- 
isms (like yeasts) is intrinsically limited, irres- 
pective of the environmental conditions. This 
means that the specific growth rates p;(E) can be 
assumed to be upper bounded as: 

0 5 p;(c) 5 pj+ for all c (7) 

with the constants ~7 representing the maximal 
growth capacity of the yeast population in each 
reaction. This also implies that the specific 
growth rates can be written, without any loss of 
generality, in the following form: 

&J A &+%(~) for all 5 (8) 

where Icl,({) are positive bounded functions: 

0 5 $JE) 5 1 for all E;. (9) 

3. REVIEW OF THE LITERATURE 

In this section, we present an overview of the 
scientific literature concerning the feedback 
control of the yeast production processes, with a 
special emphasis on the contributions reporting 
experimental applications on pilot and industrial 
processes. 

Industrial fed-batch production is traditionally 
carried out in open loop using precalculated 
substrate feeding profiles. During the last 
decade, numerous laboratory studies have 
however shown that improved production is 
obtained with feeding profiles that are calculated 
on-line in a feedback loop. There are basically 
three reasons for the use of advanced control 
strategies in the fed-batch yeast production. 

(1) 

(2) 

The conflict between yield and produc- 
tivity (Aiba et al., 1976; Wang et al., 1977; 
Peringer and Blachere, 1979 and Woehrer 
and Roehr, 1981): a high glucose feed rate 
usually induces high biomass (i.e. yeasts) 
productivity (at least up to concentrations 
that may become themselves inhibiting) 
but with a low yield. The converse is 
obviously true for low substrate (i.e. 
glucose) feeding which causes productivity 
decrease but with a better yield. 
The level of ethanol concentration can 
enhance the production of inhibitory 
substances (Pons et al., 1986). 

(3) The reproducibility of cultivations is an 
important factor for a good and/or 
uniform quality of the yeast and is not 
easy to obtain without efficient feedback 
control. 

3.1. Control strategies 
Numerous feedback control strategies have 

been described in the literature to solve these 
difficulties by using the substrate (i.e. glucose) 
feed rate as the control action: 

(STl) 

(SW 

W3) 

W4) 

(SW 

to set the respiratory quotient RQ close to 
1, RQ being the ratio between the carbon 
dioxide evolution rate (CER) and the 
oxygen uptake rate (OUR) [see equations 
(10) and (11) hereafter]; 
to maintain the glucose concentration at a 
constant (low) level; 
to track an exponential profile for the 
amount of biomass: 
to set the overall specific growth rate 

plol = CL](~) + LG) + ,+(S). or OUR or 
CER at a constant value; 
to keep the ethanol concentration at a 
constant level or to track a given ethanol 
profile. 

The most frequently used strategy is (STl) the 
control of the respiratory quotient RQ (Aiba et 
al., 1976; Cooney et al., 1977; Wang et al., 1977; 
Peringer and Blachere, 1979; Woehrer and 
Roehr, 1981 and Verbruggen et al., 1985) 
because it is physiologically well known that RQ 
ranging between 1 and 1.2 mainly corresponds to 
the respiratory yeast growth on glucose. 
Furthermore, the value of OUR and CER can 
be easily obtained from gaseous inflow-outflow 
balances and dissolved O2 and CO* concentra- 
tions. However, this strategy does not guarantee 
a high productivity of the yeast production. On 
the other hand, it can be seen, from the 
experiments presented in Woehrer and Roehr 
(1981) and Williams et al. (1986) that maintain- 
ing RQ around a presumably good set point 
neither prevents the ethanol production nor even 
maintains it at a constant level. A straightfor- 
ward computation from equations (2) and (4) 
shows that 

OUR = 
QozV - $ WV) 

V = k3/-h(W + b/+(5)X 

(10) 

CER = 
QPV + $ (W 

V 
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It appears that RQ is in general a nonlinear 
function of the state of the system, especially of 
substrate, ethanol and oxygen concentrations. A 
constant value of RQ thus corresponds to an 
infinity of configurations of these concentrations. 
Its choice is therefore not easy to justify. 

The control of the overall growth rate 

ptot = cur + M) + ~3(e) (ST4) is used to 
optimize the biomass productivity (Dairaku et 
al., 1982) or the biomass yield (Keulers, 1993). 
The set-points of this controlled variable also 
appear to be experimentally related to the 
ethanol production (Wu et al., 1985). However, 
it is not a directly measurable variable. It is 
estimated from a model relating it to OUR in 
Wu et af. (1985) and from biomass measure- 
ments in Dairaku et af. (1982). 

The tracking of a desired biomass trajectory 
(ST3) is studied in Takamatsu et al. (1985) with 
simulations, but, to our knowledge, has never 
been practically experienced mainly because the 
biomass is generally not measurable on-line. 

The regulation of glucose concentration (ST2) 
is applied when the process objective is to 
produce alcohol (Queinnec et al., 1991). 
However the glucose concentration is also a state 
variable which is difficult to measure, especially 
when the value is very small, while in the 
processes where the objective is to obtain a good 
yield of biomass production or to avoid substrate 
inhibition, the glucose concentration is often 
very low. 

Since ethanol production is the main factor 
observed in the switching from growth with high 
yield to growth with high productivity, its 
regulation in yeast fermentations (ST5) has 
received more and more attention (Woehrer and 
Roehr, 1981; Dairaku et al., 1983; Williams et al., 
1986; Axelsson, 1989; Chen et al., 1991 and 
Pomerleau and Viel, 1992). Simulation studies 
have indeed shown that ethanol regulation in the 
reactor (with glucose feed rate as control action) 
allows the process to be maintained at operating 
points that correspond to a good trade-off (from 
an economic viewpoint) between yield and 
productivity. 

From the control engineering point of view, 
the choice of one controlled variable is often 
equivalent to another one in the sense that they 
all imply, approximately, an exponential biomass 
growth and an exponentially growing glucose 
feed rate. 

In addition to the above control strategies 

using the glucose feed rate as control action, the 
regulation of oxygen concentration by the 
agitation rate in the liquid medium is generally 
performed in yeast processes either with a local 
control or with a multivariable control system 
(see e.g. Williams et al., 1984). 

3.2. Control algorithms 
Because of the complexity of the fed-batch 

biological systems, their nonlinearities and 
modelling uncertainties, modern control science 
is not easy to apply to these systems. Early 
attempts of feedback control were made with a 
variety of PID controllers. It is only recently that 
adaptive techniques have been used to improve 
the control performances, most often in labora- 
tory or small pilot scale systems. In the 
following, a brief review of literature is given on 
the application of feedback control techniques 
to fed-batch yeast production systems using 
glucose feed rate as control action. The review is 
limited to a set of papers where real life 
experiments are reported. The main technical 
characteristics of the experiments are sum- 
marized in Table 1. 

3.2.1. PID controllers. Classical PID control- 
lers with fixed parameters are in general 
designed for the regulation of time-invariant 
systems. Therefore, a first ID controller based on 
a steady state assumption with a low biomass 
growth rate can be found in Woehrer et al. 
(1981). The objective is to regulate RQ or 
ethanol concentration with substrate feed rate. 
The regulation performance is not very satisfac- 
tory: oscillations and even a small divergence in 
the ethanol regulation are observed after two 
hours of operation. 

Since, in any case, the feedback control will 
produce an exponentially growing glucose feed 
rate, it is normal to use an open loop 
precalculated feeding profile F” as a nominal 
function and a PID regulation of the feed rate 
around this predetermined function. Such a PID 
controller can be found in Dairaku et al. (1982) 
and Keulers (1993) for the regulation of the 
overali growth rate ptot. The latter can be 
calculated from biomass measurements. A PI 
controller is tested in Axelsson (1989) for the 
regulation of ethanol concentration but a 
divergence of the control system is experimen- 
tally observed. The main reason is that the 
derivation between the real glucose feed rate 
needed for the system and the precalculated one 
also increases exponentially with time. This 
exponentially increasing disturbance on the 
control action is difficult to handle with a fixed 
parameter controller. Furthermore, the linear- 
ized system between the glucose feed rate and 
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Table 1. Literature of control applications to real time fed-batch systems 
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Reference 

Woehrer et al. (1981) 
Dairaku et al (1982) 
Dairaku et al. (1983) 

Controlled 
variables 

RQ, E 
fi 101 

E 
Wu et al. (1985) I*tot 
Williams et al. (1984) 0,. co,. ~ I 

iQ, E-. 
Dekkers and Voetter (1985) RQ 
Verbruggen er al. (1985) RQ 
Axelsson (1989) E 

Control 
techniques 

Volume Biomass Sampling 

Vu-VI X,-X, Duration period 

(I) (g/I) (h) (min) 

ID 
PID around F” 
PID around e” 

Self-tuning 
Self-tuning 

3.3 
10 
10 

1.5 
3.6-4.1 

8-13 
9-24 
4-13 
4-25 

10-31 

Self-tuning 30-80 5.8-48.7 
Self-tuning 10 - 

PID around Fe 4-6 2.6-66.8 

2 
11 - 
5 - 

11 1 
7 3-5.5 

16 1 
- - 
18 0.5 

Queinnec et al. ‘( 1991) s MRAC + GPC 6-16 - 10 5 
Chen et al. (1991) E ANC 60-150 0.5-80 52 2 
Pomerleau and Viel (1992) E ANC 2O(v,),~(vf) IO, 15 

PO: estimation of F”; V, and V,: initial and final liquid volumes; X, and X,: initial and final biomass concentrations; F”: 
’ predetined substrate feed rate. 

the ethanol concentration around a set point 
has a time constant inversely proportional to 
the biomass concentration. This means that the 
dynamics of the system increase with the 
biomass growth. The performance of the 
regulator is once again difficult to ensure with 
fixed parameters. In his work (see e.g., Axelsson, 
1988 and Axelsson, 1989), the use of several 
linear models is proposed to cover the whole 
range of the system dynamics. In Dairaku et al. 
(1983), the parameters of the PID controller are 
adjusted according to some empirical knowledge. 

The performance of a classical PID controller 
around a precalculated profile F” can be 
improved by calculating on-line F” in order to 
reduce the disturbance on the control action. In 
Dairaku et al. (1983) under the assumption that 
the substrate concentration is well regulated and 
that the volume variation is negligible with 
respect to the other terms involved in the 
dynamics of S, F” is calculated from the 
following equation relating the biomass growth 
to the glucose consumption: 

PO = YF,*Si, (13) 

where Y is a yield coefficient between the 
biomass production and the glucose consump- 
tion. The real glucose feed rate & is composed 
of E” and FPID, the latter being calculated from 
the PID controller. 

In Axelsson (1989) and Hagander et al. (1990), 
an internal model for glucose demand is derived 
and used to design a Luenberger observer. The 
latter is driven by ethanol measurements and 
provides the on-line estimate of F”. 

3.2.2. Adaptive linear control techniques. Moti- 
vated by the nonlinearity, the nonstationary and 
the modelling uncertainties of yeast production 
systems, several laboratories have tried to 
develop adaptive controllers based on ‘black- 
box’ linear models. These controllers are also 

based on a linearization of the system around a 
set point and the nonlinearity of the system is 
interpreted by the time-varying parameters of 
the model, which are adapted on-line. 

In these applications, the (indirect) self-tuning 
techniques have been most frequently used. The 
parameters of the linear model are estimated 
on-line, in general with a recursive identification 
algorithm. These estimated parameters are then 
used to design a linear controller at each 
sampling time. The design of the controller is 
based either on a quadratic cost function or on 
the pole assignment principle. In Williams et al. 
(1984) and Williams et al. (1986) LQ (linear 
quadratic) controllers are used for the regulation 
of RQ, ethanol, oxygen or CO2 concentrations 
with substrate feed rate and/or agitation rate. In 
Dekkers and Voetter (198.5) an LQG (linear 
quadratic Gaussian) controller is designed to 
regulate Z?Q. In Wu et al. (1985) an LQ 
controller is used to regulate the overall specific 
growth rate which is estimated from the 
measurements of oxygen in the gas outlet. 
Oxygen is the only variable measured in the 
system. In Verbruggen et al. (1985) a self-tuning 
controller based on the pole assignment principle 
is used to regulate Z?Q, 

Self-tuning techniques have the advantage of 
not requiring much prior knowledge about the 
real system. They can cope with the time-varying 
characteristics of the parameters when the 
sampling period is chosen to be sufficiently small 
with respect to the time constants of the system 
provided measurements are precise enough. 
However, in Williams and Montgomery (1986) 
it is pointed out that these techniques should 
inherently check the accuracy of the parameter 
estimation. Without this facility, the self-tuning 
controller may not be adequate to represent the 
dynamics of the process and optimal control will 
not be achieved. It is said that the convergence 
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of the parameters requires a rather long time 
period of adaptation. The latter is not easy to 
realize with slowly time-varying systems and 
when the duration of an experiment is limited. 
Furthermore, the off-set problem has been 
encountered by several groups but eliminated by 
introducing an integral action in the control 
system (Dekkers and Voetter, 1985 and Ver- 
bruggen et al., 1985). 

The objective of the model reference adaptive 
control (MRAC) is to make the system behave 
like a given reference model with desired 
dynamics. This kind of controller is only found in 
Takamatsu et al. (1985) to track a predefined 
biomass trajectory or the overall specific growth 
rate in simulations. In Queinnec et al. (1991) a 
partial state model reference control is designed 
based on a generalized predictive control (GPC) 
criterion to regulate the substrate concentration 
for an alcohol production system. 

3.2.3. Adaptive nonlinear control (ANC) 
techniques. Since fed-batch systems are non- 
linear, it is more interesting, in the design of a 
control system, to exploit the nonlinear structure 
and the available physical knowledge about the 
system. On the other hand, in these processes, 
the models usually include kinetic parameters 
which are highly uncertain and slowly time 
varying. For this reason, they are good 
candidates for the application of adaptive 
nonlinear control techniques in order to 
robustify the system performances against 
parametric uncertainties. Similar applications of 
these techniques for the ethanol regulation with 
substrate feed rate can be found in Chen et al. 
(1989), Chen et al. (1991) and Pomerleau and 
Vie1 (1992). They have given rise to genuine 
industrial applications and it is reported in 
Pomerleau and Vie1 (1992) that the transfer of 
such a controller from a small scale industrial 
reactor (20 1) to a large scale industrial reactor 
(60000 1) within 15 h of operation was possible 
without changing the tuning parameters. 

It is the main purpose of this paper to present 
a general methodology for the design of such 
adaptive nonlinear regulators for fed-batch 
bioreactors through this case study of the 
ethanol control with substrate feed rate. 

4. ADAPTIVE NONLINEAR REGULATION 
OF THE SYSTEM 

4.1. Statement of the regulation problem 
As mentioned above, ethanol production is 

the major factor in the switching from growth 
with high yield and growth with high produc- 
tivity. Our objective is therefore to regulate the 
ethanol concentration E at a desired set point E* 
all along the fed-batch operation by using the 

dilution rate D or equivalently, the substrate 
feed rate fi’, as control action under the 
following assumptions. 

(Al) 

642) 

(A3) 

(A4) 

(A5) 

The ethanol concentration E, the dissolved 
oxygen concentration C and the dissolved 
COz concentration P are measured on-line. 
The gaseous outflow rates Qp and QE and 
the oxygen transfer rate Qo, are measured 
on-line, with an exhaust gas analysis 
system. 
The influent substrate concentration pi” is 
fixed and known. 
The stoichiometric (or yield) coefficients kj 
are known (from a preliminary identifica- 
tion study, see e.g. Chen, 1992) 
The specific growth rates pi(g) are 
unknown. 

This control problem will be solved in four steps: 
(i) design of a biomass estimator independent of 
the kinetics; (ii) model reduction based on 
qualitative information about the system; (iii) 
design of a feedback linearizing control law 
based on the reduced-order model; and (iv) 
design of a parameter adaptation law. 

4.2. Biomass estimator 
By an appropriate state transformation, we 

can obtain a biomass estimator without model- 
ling the growth rates. This biomass estimator is a 
special case of a general state observer for 
biological systems given in Bastin and Dochain 
(1990) and is briefly described in the following. 
The dynamical model of the process can be 
partially rewritten in matrix form as follows with 
one part representing the state variable to be 
esitmated (i.e. biomass) and the other one 
related to the measured variables available for 
the estimation: 

X = bTp(EJX - DX (14) 

(;)=W,X-D( ;)+( I) W 

with the following definition of b, ~(5) and K,: 

bT = (1 1 l), pT(E) = (CL&) /+(g) CL&)), 

0 k, -kg 

K, = 

( 1 

-kj 0 -k, . 

k k, k, 

The following auxiliary scalar variable 2 is 
introduced: 

E 

Z=X-bT(K),’ 

0 

C . (16) 
P 
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It is then easily shown from (14) and (1.5) that 
the dynamics of 2 are written: 

-QE 
i=-LIZ-bTK,’ 

( 1 

Q,, . (17) 

-QP 

It follows that an on-line estimator of the yeast 
concentration X is trivially obtained by integrat- 
ing this equation on-line and calculating the 
estimate as: 

E 

z=Z+bTK,’ 

0 

C . (18) 
P 

Hence the on-line estimator of biomass is made 
up of equations (17) and (18) from which the 
reaction rates have disappeared. It is asymptoti- 
cally convergent to the theoretical value when 
the dilution rate D is kept positive. It is worth 
noting that it makes use of all the available 
on-line measurements: C, P, E, F,, Qp, QE, D, V. 

In practice, the parameters involved in this 
kind of estimator have to be identified with 
off-line data and sometimes with sparse measu- 
rements of biomass. For this reason, it may be 
useful to implement the estimate in terms of the 
total amounts of the components in the reactor 
instead of their concentrations (Chen, 1992). 

4.3. Model reduction 
When the ethanol concentration is chosen as 

a controlled variable and the dilution rate or, 
equivalently, the substrate feed rate &, as 
control input, equation (5) is actually an 
input-output equation of relative degree 1. But 
a linearizing control law based on this equation 
may result in divergence of the closed loop 
system when the control input saturates. In order 
to get a simple and practically applicable 
adaptive regulator, the design will be based on a 
feedback linearization of a reduced-order model 
of the process, obtained by using a singular 
perturbation of the state-space model (l)-(6). 
The singular perturbation techniques can be 
used for systems in which some reactions 
proceed at much faster rates than the others. In 
this case, an appropriate state transformation 
can be applied to transform the state-space 
model into the so-called two-time-scale (i.e. fast 
and slow) standard form of the singular 
perturbation theory in order to explain the 
model reduction (Kokotovic et al., 1986 for the 
theory, and Van Breusegem and Bastin, 1991 for 
the application to reaction systems). For our 
system, the reduced model is based on the 
following two conditions that are in full 
agreement with the experimental reality. 

Condition (Cl). The process operates essentially 
under glucose limiting conditions: sufficient 
aeration and nitrogen supply are assumed as well 
as good control of pH and temperature. This 
condition means, in particular, that the fermen- 
tative growth is stopped when (and only when) 
glucose is missing: ~~(4) = 0 if S = 0. This may 
be further formalized by factorizing the normal- 
ized specific growth rate &(g) [equation (S)] as: 

M) = G*(5) (19) 

where the function (~~(5) is now strictly positive 
and bounded: 

0 < (p*(t) 4 cp2* for all 5. (20) 

Condition (C2). The maximal specific fermenta- 
tive growth rate is larger than the maximal 
respiratory growth rates (see e.g. Sonnleitner 
and Kappeli, 1986), i.e. 

CL?” PT and &. (21) 

Under this condition, the fermentative reaction 
is a faster reaction than the two others when it 
proceeds near its maximal rate. This instan- 
taneously occurs when a large amount of glucose 
is added with the feeding flow. 

According to condition (C2), we can define a 
small parameter E as the inverse of ~2: 

E = l//_Q. (22) 

We also define the following change of 
coordinates: 

= (X, S + k2X, C, P - khX, E - kxX). (23) 

Using (22) and (23) together with condition 
(Cl), we transform the dynamical model (l)-(5) 
as follows: 

l ri, = (~2(5h1(772 - k2vd 

+ &(S) + P3(9 - 01771 (24) 

rj2 = -(k, - k2h(Om + k2p3(5h 

- 0772 + DSi, (25) 

j/3 = -k3p1(6h - k4/L3(th, 

- D713 + Qo, (26) 

j/4 = -(ke - kh(Gv, - (kc - k7b3(5h, 

-DrlrQ~ (27) 

7js = -km(Ov, - (ks + k&371 

- Dq5 - QE. (28) 

Setting E to zero in equation (24), we get the 
following relation 

(~2(5)771(772 - k2d = 0 
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which has two roots with respect to 7,: 

vr =0 and v,=q2/k2. 

It can be quite easily checked that only the 
reduced model obtained with q1 = v2/k2 is a 
valid approximation of equations (24)-(28) in 
the sense of Tikhonov’s theorem (see Van 
Breusegem and Bastin, 1991). This reduced 
order model is: 

ri‘l= k -(kc - k) p,tEjrl _ &s - k7) 
2 

2 k2 

ru3(C72-h- QP 

kx + k, 
7js = 3 CL,(g)% - -jy- 1-45h - h - Q.E. 

2 2 

Finally, we come back to the original coordin- 
ates. The ethanol concentration E is readily 
seen to be 

E=&+ (29) 
2 

and the corresponding dynamics are given by 

E=D(~Si~-E)-BX-Q~ (30) 

with 

Aklki 8=-.-.- 
k IL’ 

+ k+3. (31) 
2 

Notice that as a consequence of the model 
reduction, the glucose concentration S is 
supposed to be very small (i.e. approximately 
zero). This means that the model reduction 
assumes complete glucose conversion. It is also 
of interest to notice that it is necessary to pass 
through the change of coordinates (23) to get a 
valid approximation of the initial model in the 
sense of the singular perturbation theory. 
Indeed, if we replace directly S = 0 in the initial 
equations (1) and (2) it is obvious that the 
reduced model of ethanol, i.e. equation (30) 
cannot be obtained because when S = 0, then 
)(L, = 0 and p2 = 0 in the initial equations. 

4.4. The feedback linearizing control law 
Remember that the objective is to regulate the 

ethanol concentration E at the set point E* by 
manipulating the dilution rate D or equivalently 
the substrate feed rate En. On the other hand, it 
can be seen from equation (5) that the dynamics 
of the ethanol concentration accelerate with the 

biomass concentration. This motivates the choice 
of the regulation error to be decreasing 
according to the following stable linear time- 
varying first-order dynamics: 

Reference model: 

(32) 

which has a time constant decreasing in parallel 
with the natural acceleration of the biomass 
growth. 

A model reference linearizing control law is 
then obtained by substituting equation (32) into 
equation (30): 

Control law: 

F =DV=(h,+h2X)(E*-E)+eX+ QE, 
,n 

@in-E) (33j 

4.5. The adaptive control law 
Since the biomass concentration X is not 

measured on-line and the kinetic parameter 8 is 
unknown, the above control law (33) cannot be 
applied just as it is. An adaptive form is 
implemented as follows: 

Adaptive control law: 

where X and 6 denote on-line estimates of X and 
19, respectively. The on-line estimate of X is 
calculated with the observer (17) and (18) 
described above. The parameter adaptation law 
is obtained by a classical Lyapunov design for 
adaptive systems (Praly er al., 1991 and the 
references therein) as follows: 

Parameter adaptation law: 

Q=y(~*-~) (35) 

with y a scalar design coefficient. 
Finally, the full adaptive controller is made up 

of equations (17) (18) (34) and (35). 

4.6. Comments 
(1) Besides dealing with the modelling uncer- 

tainty associated with the kinetic para- 
meter 8, an additional major advantage of 
the adaptation law is to insert an integral 
action into the loop in a very natural way. 
If QE is neglected in equation (34) the 
controllers (34) and (35) can also be 
interpreted in terms of a classical PI 
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(2) 

controller with time-varying gain P and 
integral time constant ri as follows: 

p = Al + A22 ” z, = Al + A22 
3 I z-_ 1 

?Si”_E yx 
2 

i.e. the gain is made increasing with the 
biomass growth while the integral time 
constant is slightly decreasing accordingly. 
In practice, the integral action is provided 
with an anti-windup mechanism in case 
of saturation of the control action (see 
Chen, 1992). 
The adaptive control law can be viewed as 
a combined application of the theories of 
adaptive nonlinear control as presented in 
Taylor et al. (1989) and Sastry and Isidori 
(1989): adaptive regulation of a process 
with unmodelled dynamics (Taylor et al., 
1989) and with feedback cancellation of 
the zero dynamics (Sastry and Isidori, 
1989). It is however important to realize 
that the goal here is not to globally 
stabilize the plant but rather to keep an 
unstable (hopefully optimal) trajectory 
under control. The reason is that a 
fed-batch process is operated during a 
finite time. The objective is to accumulate 
the biomass, which implies that some of 
the state variables necessarily follow an 
exponentially growing trajectory which has 
to be kept under control. 

5. APPLICATION TO AN INDUSTRIAL PROCESS 

This adaptive control strategy has been 
successfully applied to an industrial production 
plant. The process is operated in a stirred tank 
bioreactor. A simplified flow sheet of the 
control system is shown in Fig. 2. It can be 
briefly characterized by the following points: 

Fig. 2. Simplified flow sheet of the adaptive control system. 

- 

- 

- 

- 

The initial and the final volumes are 
around 60 and 150 (l), respectively. The 
initial and final values of the biomass 
concentration are about 0.55 and 80 (g/l), 
respectively. The initial value of the 
glucose concentration is 0.69 (g/l). 
The substrate concentration in the feeding 
medium is 357.28 (g/l). 
The pH and the temperature are regulated 
by local control devices. The dissolved 
oxygen concentration is also kept at a 
maximum level for as long a time as 
possible by the agitation. But when the 
agitator achieves its maximum capacity, the 
oxygen concentration falls to a lower level. 
The duration of the fermentation is in 
general around 65 h; the first 4-5 h of the 
fermentation are in batch mode (without 
substrate feeding). 

The information about the control system is 
the following: 

- 

- 

- 
- 

Only the ratio 2 = 0.3, the yield between 
2 

the ethanol production and the glucose 
consumption in the fermentation growth is 
needed in the control law and identified 
from off-line measurements (see Chen, 
1992 for further details). 
The parameters needed for the estimation 
of the biomass are also computed from 
off-line data of several experiments includ- 
ing some control experiments. The follow- 
ing values are chosen: hTK,-’ = 

(0.0572,0.6445,0.3930) (see Chen, 1992 for 
further details). 
The control sampling period At is 2 (min). 
The design parameters of the controller are 
calibrated by trial and error during several 
experiments, their values are as follows: 
A, = 3, AZ = 0.02, y = 0.2. 

A typical experimental result over a period of 
60 h is shown in Figs 3 and 4. 

In Fig. 3(a), we can appreciate the perfor- 
mance of the biomass estimator, for an overall 
variation from 25 (g) to 12 (kg) for the total 
amount or from 0.5 (g/l) to 80 (g/l) for the 
concentration. The off-line test data are obtained 
by dry weight measurements. 

The adaptive controller is switched on at time 
t = 8.2 h, with an ethanol set point of 1.5 (g/l). 
The performance of the regulator can be 
appreciated in Fig. 3(b). During the first 10 h, 
the achievement of the set point is fairly slow 
partially due to the saturation of the control 
input [Fig. 4(a)]. The response to a step change 
of the set point (from 1.5 g/l to 0.6 g/l) at time 
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(kg) 

solid line : estimation 
dots : off-line data 

Fig. 3. On-line ethanol control with substrate feed rate. The 
system is in open loop from 48.7 to 50.6 h. 

t = 20 h can be observed. At this time, the 
control action is instantaneously saturated [see 
Fig. 4(a)], the parameter is reset to a new value 

(l/h) 
4. 

I 

So (h) bo 

(h-‘1 

060 

I o IO 

I 
20 30 AD 

(b) Parameter estimate 8 JO (h) ” 

Fig. 4. On-line ethanol control with substrate feed rate 
(continued). The system is in open loop from 48.7 to 50.6 h. 

by the anti-windup mechanism as shown in Fig. 
4(b). The ability of the controller in rejecting 
external disturbances is also assessed. At time 
t = 48.7 h, the regulator is abruptly switched off 
and the process is set in open loop with a 
maximum glucose feed rate during two hours. 
This results in an accumulation of ethanol up to 
a concentration of 2.2 (g/l). The controller is 
then switched on at time t = 50.6 h and brings 
the system back to the set point. The 
anti-windup action can be observed again during 
the saturation of the control action. It can be 
seen that, as expected, the response time is faster 
when the biomass value is higher. 

6. CONCLUDING REMARKS 

In this paper, we have presented the 
application of an adaptive nonlinear controller 
for the ethanol control with substrate feed rate 
to a fed-batch yeast production system. The 
derivation of this controller follows a general 
methodology in several steps: design a state 
observer for the biomass without modelling the 
reaction kinetics; find a reduced model between 
the substrate feed rate and the ethanol 
concentration under realistic conditions; design 
a feedback linearizing control law and design a 
parameter adaptation law. This adaptive control 
law can be viewed as a combined application of 
the theories of adaptive nonlinear control, i.e. 
adaptive regulation of a process with unmodelled 
dynamics and with feedback cancellation of the 
zero dynamics. However, the goal here is not to 
globally stabilize the plant but rather to keep an 
unstable (hopefully optimal) trajectory under 
control. The reason is that a fed-batch process is 
operated during a finite time. The objective is to 
accumualte the biomass, which implies that 
some of the state variables necessarily follow an 
exponentially growing trajectory which has to be 
kept under control. 

Another important feature of this application 
compared to most of the approaches encoun- 
tered in the literature is obviously the use of a 
nonlinear model representing a wide range of 
system dynamics in the design of the controller. 
Although this is a simple example of application 
of adaptive nonlinear techniques, it has really 
demonstrated its good performance in coping 
with the system nonlinearities and the parameter 
uncertainties for biological systems. 
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