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Abstract 

An adaptive feedback regulation scheme is proposed for a class of single input nonlinear systems, with nonlinear 
parameterizations. A proof of local regulation is given. The results are validated through a simulation study. 

Keywords: Nonlinear]y parameterized nonlinear systems; Adaptive stabilization; Lyapunov functions; 
Backstepping design 

1. Introduction 

In recent years, the regulation of uncertain nonlinear systems by adaptive feedback linearization has stimu- 
lated many research studies. A basic motivation is the important drawback of the exact feedback linearization, 
which relies on assumed perfect cancellation of the plant nonlinearities. Indeed, the perfect knowledge of 
the nonlinearities required for cancellation is not appropriate to uncertain systems and has therefore led to 
the use of adaptive control in order to bring robustness to the feedback linearization in case of parametric 
uncertainties. 

To solve the regulation problem of uncertain linearly parameterized nonlinear systems, two trends have 
appeared. The first trend consists in introducing a growth condition on the plant nonlinearities (like the 
Lipschitz condition by Sastry and Isidori [14]), or a specific growth condition on a Lyapunov function (as in 
Praly et al. [13]). The second trend, with which we are concerned, is to impose a certain canonical form to 
the system (i.e. to restrict the location of the parameters entering the model). 

First, Taylor et a l  have introduced in [15] the strict matching condition, which means that the parametric 
uncertainty can only appear in equations including a control term. 

Later, Kanellakopoulos et al. [3] have enlarged the considered class of systems by introducing a less 
restrictive extended matching condition. 

Finally, still weaker geometric conditions have been introduced by Kanellakopoulos et al. in [4] leading to 
the concept of systems in pure parametric feedback form,  which allow a step-by-step design of an adaptive 
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regulation algorithm by using the so-called backstepping technique. For this class of systems, an overpara- 
meterized backstepping algorithm is proposed in [4], while an improved nonoverparameterized version, which 
therefore brings stronger stability properties and reduces the dynamic order of the controller, is described 
in [10]. 

In this paper, we consider a class of systems which is a nonlinearly parameterized extension of the class of 
systems in pure parametric feedback Jorm. The systems we consider are therefore said to be in nonlinearly 
parameterized pure feedback form. The control algorithm we propose is itself an extension of the nonover- 
parameterized backstepping algorithm of [10]. An underlying motivation of our approach is that it often arises 
that some nonlinearly parameterized physical models cannot be "reparameterized" into the pure parametric 
feedback form. There is thus a clear incentive to try to relax the often nonphysical assumption of a linear 
parameterization. In practice, nonlinear parameterizations naturally arise on physical systems such as cascaded 
reactions in bioreactors (see [5] and [6]) or DC-to-DC boost converters (see [8]). Other attempts to deal with 
nonlinear parameterization in adaptive output feedback control of nonlinear systems can be found in Marino 
and Tomei [11, 12] and Byrnes et al. [1]. Moreover, a sliding-mode extension of the adaptive backstepping 
technique for nonlinearly parameterized systems is introduced in [7] and is applied to biotechnological systems 
in [5] and [6]. 

Our method is based on a first-order Taylor approximation which transforms the nonlinearly parameterized 
system into a form which is analogous (but not identical) with the pure feedback form. It is then shown 
that the "natural" Lyapunov function for the approximate linearized system remains, at least locally, a valid 
Lyapunov function for the "true" system (i.e. the system with the nonlinear parameterization). 

The paper is organized as follows: Section 2 describes the class of studied nonlinear systems. Section 3 
deals with the design of the adaptive backstepping regulation technique applied to the linearly parameter- 
ized approximate closed-loop system. Section 4 deals with the stability analysis of the "true" nonlinearly 
parameterized closed-loop system. Finally, in Section 5, we have shown simulations before concluding. 

2. Problem statement 

In this paper, we consider the class of systems, which we call nonlinearly parameterized pure feedback 
.form, described by the following equations: 

-fi = xi+l + 7i(xl . . . . .  Xi+l,O), l <~i<~n- 1, 

~. = ~0(x) + o;.(x, O) + (/~0(x) +/~n(x, O))u, 
(1) 

where x = (Xl,X2,...,Xn) T E ~n is the state of the system, u E E is the control input and 0 E EP is an 
unknown constant parameter vector. 

Furthermore, we assume that 70, 71 . . . .  ,7n, and flo, fin are smooth functions of  their arguments such that the 
following structural property is satisfied: 

Assumption 1. 

70(0,0 . . . . .  0)=7~(0,0,0)  . . . . .  ?,(0 . . . . .  0,0) = 0 and /~0(0,0 . . . . .  0) # 0, V0 E ~P. 

This class of systems is clearly a nonlinearly parameterized version of the well-known pure parametric 
feedback form introduced in [4] by Kanellakopoulos et al. This quasi-triangular form allows a step-by-step 
design of an adaptive regulation algorithm using the so-called backstepping technique without any growth 
condition. 

The objective, in this paper, is to derive an adaptive state feedback controller to regulate system (1) at a 
zero equilibrium point (x = 0). 
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3. Stability analysis, for an approximate closed-loop system 

3.1. Backsteppin 9 algorithm in case of a linear parameterization 

Let us first give a brief review of  the nonoverparameterized backstepp&9 control regulation scheme, derived 
from a Lyapunov step-by-step design, and developed by Krsti6 et al. [10] for a system in pure parametric 
feedback form given by 

3¢i = Xi+ l ~- ~Di(X1 . . . . .  Xi-- 1)0,  1 <<. i <~ n - 1, 

3f n = ~)o(X) ~- ,~n(X)O ~- (ff/0(X) ~- f f ln(X)O)U , 
(2) 

where 

qS0(0,0 . . . . .  0) == qSl(0,0) . . . . .  qSn(0 . . . . .  0) = 0 and ~90(0,0 . . . .  ,0)  ¢ 0. 

Instead of  the true values 0 = [01 . . . . .  0p] v, which are unknown, the controller is designed using parameter 
estimates 0 = [01 . . . . .  Op] T. 

The following change of  coordinates is introduced: 

2 i = X i - - ~ i _ l ,  l<~i<~n 

given the following so-called stabilizing functions: c~0 = 0, 

~ t~i-- 1 ~(~i-- 1 i~l ~O~k_ 1 

k=l ~0 k=2 ~0 

with z0 = 0, given the following so-called tuning functions: 

"CO : O, Ti(X 1 . . . . .  Xi+l ,  O) : T i -1  "r r o j T 2 i ,  

with 

(Di(X1, ,Xi+l,{i) = (~i -- ~ ~ i - I  • . .  - - S L -  

k=l 

The following Lyapunov function V is considered: 

l n 2  
v = ~ z ~  + (o - O)+r- l (o  - 0), (3) 

with F a diagonal positive-definite matrix. 
The parameter update law is derived in order to make the derivative of  V independent of  the unknown 

term (0 - 0), in the following way: 

(4) 

Finally, the control law u stabilizing the uncertain linearly parameterized system (2) at the equilibrium point 
x = 0, is obtained by making I? negative semi-definite (i.e. I? _- --~-]~=lckz 2 with positive ck), as follows: 

u = (1 - ~,-1/~xn)[~ + ~n(O - ~~=2 F(Oak-l/OO)Tzk)l" (5) 
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Obviously, this control law is feasible only if the denominator of  u is nonzero. The feasibility re#ion is 
defined as the bounded set ,~  =/~y ×/)0 containing (0, 0) such that V(x, 0) E ,~-: 

1 3 ~ n -  1 > O, l < ~ i ~ n -  1 
OX n 

zk > 0 
k:2 k 30 ) 

3.2. Backsteppin9 algorithm in case o f  a nonlinear parameterization 

In order to extend to system ( 1 ) the nonoverparameterized backsteppin9 algorithm described in the previous 
subsection, we introduce the following adaptive parameter linearization approximation (A.P.L. Approxima- 
tion) which transforms the nonlinearly parameterized pure feedback  system into a form which is analogous 
with the pure parametric Jeedback form.  

A.P.L. Approximation. 
Taylor approximation as 

The functions ?'i(x,O), for l<~i<~n and ]~n(x, 0) are replaced by their first-order 
follows: 

37i ( 0 - 0 ) ,  i =  1 . . . .  n ~'i(X, O) "~ ~'i(X, O) ÷ 00 (~ 

3/~n (0 - 0). /~.(x, 0) ~_/~.(x, 0) + ~ -  

With this approximation, system (1) is transformed into the following approximate system: 

£ci = x i+,+' / i (x l  . . . . .  Xi+l,O)÷°~'i[  ( 0 - 0 ) ,  l < ~ i ~ n - 1 ,  
30 I~i 

(6) 
37n ( 0 - O ) +  /~0(x)+/~n(x, 0)+ c~V 0 ( 0 - 0 )  u. in = "/o(x) + ~,'n(x, O) + 

This system can be compared with the pure parametric feedback  f o rm  system (2), which can also be written 
in the following way: 

2,i = xi+l+4)i(xl . . . . .  xi+j)O+~i(xl  . . . . .  x i+l)(O-O),  1 <<,i<~n - 1, 

in = (ao(x) + c~,(x)O + On(x)(O - O) + (~b0(x) + ~bn(x)0 + ~bn(x)(O - O))u. (7) 

The similarity of  forms between systems (6) and (7) is used to derive the new parameter update law and the 
new control law which stabilize the approximate system (6). 

The multiplicative coefficients of  the parameter error (0 - 0) are different in the two c a s e s :  (3~/i/30)I~i 

instead of  ~)i(xl . . . . .  X i +  1 ) in the first ( n -  1 ) equations and (37n/30)b +(3/~n/30)10u instead of  ~),(x)+tpn(x)u 
in equation n. 

Furthermore, the terms ~i(xl . . . . .  xi+l)O are changed into 7i(Xl . . . . .  xi+L,O), for l~<i~<n and ~b,(x)O into 
/~.(x, 0). 

Therefore, the adaptive backsteppin9 algorithm, consisting of  Eqs. (4) and (5), is slightly modified. 
We have the new following expressions of  the :~ and the vi : 

~i(Xl . . . . .  xi+|, ()) : --zi- t  -- ciz, -- o)i + ~ xk+l + ^ zi + z_~ A F~6iTzk, 
k:l OXk 6~0 k=l 30 

~',(Xl . . . . .  X/+l ,  ()) = /: i-1 ÷ F ~ T z i ,  



L. Karsenti et al./Systems & Control Letters 27 (1996) 87-97 91 

with 

i O0{i-- 1 
O)i(X1 . . . . .  X i + I , 0 )  ~-- ~i - -  ~ - ~ - X k  ~ k'  

k=l 

with 

[ ( 0 % - i )  ~omeTu]z'  O= 3 - +  1 ~x,, j r  

with 3- a p x n matiix such that ~, = 3-z and e, the n-unit vector (0, O. • • O, 1)T. 
The feasibility region is easily determined as above and is defined as the bounded set o~ = B~ xBo C N 'x  R p, 

containing (0, O) such that g(z, O) E Z :  

1 0%-1 OXn > O, 1 <~i<.n- 1 

+ e.(x) t°- k tT -  z 9 > 0  no(x) 

Finally, an approximate closed-loop system consisting of the linearized system (6) under the adaptive control 
law (9)-(10) is given by 

n. 1 £ = a z z +  J-4-  1 - - I s ~  enul F - I ( o - o ) ,  
~x,, .] 00 J (11) 

= [ ( ) ~oTeWnu] z' 3--+ 1 ~{n--1 /. 
CXn 

Az(z, O) : 

-c l  1 0 . . . . . .  0 
-1  -c2 1 -[- 02, 3 . . . . . .  0"2, n 
0 - 1  - 0-2, 3 - c  3 . . -  0"3,n 

0 -~zl -e~- i  1 + (r,,_l,, 
0 --~Y2,n . . . .  1 -- (Tn_l, n --C n 

(10) 

(~)i(Xl . . . . .  Xi--1, O) -- ~)'i ~ ~i--1 ~ k  
00 k=, &k ~0" 

Then the new parameter update law for the approximate system (6) IS given by 

0 =  ~ , +  1 ox.)r\~O) "]' (8) 

and the control u is expressed in the following way: 

~, - ( 1  - &,-l/&,)7o 
(9) U ---- 

(l -e~,_,/,~x°)In0 + ~,(x, 0 ) -  ZL2(e~°/eO)r(e~_,/aO)Tz~] 
Here, it is worth noting that by construction, the parameter update law can be factorized in the following 
way: 
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and 

Gi, k -- ~_ 
~0 

aO~i--I F ((79 T 

2 < ~ i ~ n - 1 ,  k > i, k e n ,  

+ l l ( , 
&. / \ o o /  J 

2<~i<~n-  1. 

Stability analysis for the approximate closed-loop system (11). This analysis is quite similar to the one done 
by Kanellakopoulos et al. in [4]. Since V = --~,nk=lCkZ2, with positive c~, it is straightforward that 

~'~< - Cminl lz l l  2 ,  

with Cmi n the minimum of the ci, 1 <. i ~ n .  
This proves the uniform stability of the equilibrium: z = 0, 0 = 0 of the adaptive system (11), according 

to Lyapunov arguments. 
An estimate ~2 C ~ of the region of attraction of this equilibrium is obtained as follows. Using Assump- 

tion 1, it is straightforward that the point z = 0, 0 = 0 coincides with the point x = 0, 0 = 0. Let ~(c)  be the 
invariant set of (11) defined by V < c, and let c* be the largest constant c such that (2(c) C o~. Then, as in 
[9], an estimate of the region of attraction is given by 

= = ((z,  O) I V(z,  0) < c*} with c* = arg sup {c}. 
•(c) c .~- 

Finally,^using the LaSalle invariance principle, it is easily shown that the closed-loop system is such that 
V(z(0), 0(0)) E (L we have l i m t ~  z ( t )  = O. 

Inductively, and as in [4], it can be concluded that system (6) is locally regulated around the equilibrium 
point x = 0. 

Remark 1. Note that different adaptation gains (i.e. matrix F)  can be found such that the estimate of the 
region of attraction ~2 is maximized by a better fit of o~. 

4. Stability analysis for the exact closed-loop system 

The previous stability analysis has been carried out for the approximate closed-loop system. From now on, 
x , z  and 0 denote the state variables of  the exact system. Let us consider the situation when the control law 

u(x, O) and the parameter update law O(x, 0), derived in the previous section, are applied to the exact system 
(1). The objective of this section is to prove that the Lyapunov function for the approximate system remains 
a Lyapunov function for the exact system, at least locally. The Lyapunov function expression for the exact 
system, denoted V, is the same as above and is given by (3). 

From the previous section and more precisely from (11 ), we know a truncated expression of the derivative 
of z: 

Ztr = f ( z , O )  + D f ( z , O  - O)[(z,0). (0 - O) 

with the expression of function f given by (11 ). 
Using Assumption 1, it is easy to show that the Taylor series of f ,  parameterized in O, around z -- O, 

necessarily begins with a first-order term in z. 
Therefore, we can rewrite the dynamics of  the system state variable z in the following way: 

f ( z , O )  = C(z, O)z (12) 

with C an n x n matrix. 
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Moreover, the closed-loop dynamics for the exact system are written as follows: 1 

=Ztr" -}- 1D22 j,,.,f['" O -  0)l(z,0 ) • ( 0 -  0)  2 -}- ~ 1 3 ( 0 -  0) ,  

with 

93 

(13) 

and C3(0 - O) represents the higher-order terms of  the Taylor series, i.e. a function of  (0 - 6) 3 and all higher 

powers of  (0 - 6). 
Then, the derivative of  the Lyapunov function for the exact system is given by 

~" = zTz --  (0  --  0 ) T F - 1 0  

= ~r q'- (z)T[!!DZf(z,O -- O)l(z,O)" (0 -- O) z + C3(0 - 0)], (14) 

with ~r = (z)Tz,r -- (0 -- 0)TF-1~. 
In the previous section, the following relation has been obtained: 

with Cmi n the minimum of  the ci, 1 <~i<~n. 
Now, let us examine the second part of  the Lyapunov function derivative denoted A/2 (with A 12 = /) - ~ ) .  
First, the expression C3(0 - O) is written in the following way: 

C~3(0 --  0)  = ~.~ ~Oj~Ok~O l (Oj -- Oj)(O k -- Ok)(O I l Ol) + h.o.t. 
j,k,l=l i=l...n 

= C(z, 0)-  (0 - 0)3z + h.o.t. 

Therefore, using (12), a part of  expression (15) is given in the following way: 

zTc3(O -- 0) = zf[C(z,  0) + h.o.t.]z. 

Then, A/~ can be split into two terms A/21 and A I:2, given by 

A V, = ½ : D ~ f ( z ,  0 - 0)l~z,0~- (0 - 0) 2 = ½ : D ~ ( C z ) .  (0  - O) 2 

and 

A/)'2 = zT[C'(z, 0) + h.o.t.]z. 

On the one hand, we have 

j,k=l a0ja0k 0} i=l.n 
z(O - 0). 

Hence, for any positive constant #1, there exist two bounded sets Bzl (with Bz ! C Bz) and BOI (with Bol C Bo), 
respectively, in the neighbourhood of  z = 0 and t~ = 0, such that Vz E Bzl,VO ¢ Bol: 

wi ~ l  Ilzl12110 - 0112, 

I To avoid the useless notational complexity of the tensor product, we use the shortened notation: 

(0 -  0 ) , ~ - ( 0 - ~ ) ® . . .  ~ ( 0 -  0) 

n 
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On the other hand, by applying Theorem 8.14.3 of  Dieudonnd [2], with the two bounded sets Bz2 C B z and 
Bo2CBo, we have Vtt2 > 0 ,3 r  > 0, such that V0 E Box satisfying ]]0 - 0]] < r (i.e. B(O,r) = B02) and 
Vz e Bz2 : 

JIG(z, 0) + h.o.t.]] ~#2110 - 0]l 2. 

Therefore, we know that the following second inequality is locally satisfied Vz E B~2, @ E 802 : 

z~ V2 <~l~2][zll2ll 0 - 0112 
Finally, defining the bounded sets /~: = B:l N Bz2 and /~0 = Bo~ n B02 , the following inequality is obtained, 
Vz e/?z, V0 e/?0:  

l?~< - emi,]lzjl 2 + (~, +/~2)110 - 0112112112. 

2 Since /~0 is a bounded set, let A0ma x = supdE9,~ I]0 -- 0112. Now, if we choose Cmi n such that, for some positive 

2 
Cmin ) ~  + (ill + p2)A0max, 

then we have a negative semi-definite Lyapunov function derivative given by 

f ~  _ ~llzll ~ 

and hence the point z = 0, 0 = 0 is a uniformly stable equilibrium point for the exact system (I 3). 
Note that the region of  attraction ~ is included in the feasibility region J& =/~x x/~0, and that the estimate 

of  this region of attraction may be more conservative than the previous estimate of  the region of  attraction g2. 
Moreover, as in the previous section, it can be shown that system (1) is locally regulated at the equilibrium 

point x --- 0. 

5. Simulations 

Consider the following two-dimensional nonlinear system in nonlinearly parameterized pure feedback form, 

21 = x2 + Ox2e Ox~, 

22 = xlx~ + e°X'u- . (15) 

Let us now describe the backstepping procedure developed in Section 3. 

Step 1' Consider the following change of  coordinates: 

Zl =Xl  and z 2 = x 2 - : q .  

1 2 The one-dimensional subsystem (first equation of  (15)) is to be stabilized with respect to V~ = ~z I + 

½(0 - o ) ~ r - ~ ( O  - o ) .  

After having rewritten the first equation of  (15) in the new coordinates (Zl,Z2) and after having used the 
A.P.L. Approximation (i.e. first-order Taylor approximation), we derive a first temporary update law rl (the 
so-called tuning function) in order to make the derivative of  the Lyapunov function V1 independent of  the 
unknown term (0 - 0): 

= "~l(Yl ,X2,0)  = FXlX2(1 + OXl)e dx' . 
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Then, we impose the following stabilizing function cq so that the derivative of  Vi is negative semi-definite 
(i.e. /?l = - c l z ~  with no pseudo-control error (z2 = 0)): 

:~l(xl,x2, 0) = --ClZl - Ox2e ~x' . 

Since Z 2 ~£ 0 and 0 :~ zl, the resulting equations are given by 

Z1 = Z2 - - e l z  4.X2(1 4 . 0 x l ) e ° X ' ( O - - O ) ,  

vl = - e l z~  + ~ 1 ~ 2 + ( 0 -  0)T/ ' -I(~ - r~). 
(16) 

Step 2: I f  we rewrite in the new coordinates (21,22) the whole system (15), approximated with the A.P.L. 
Approximation, then the strategy is once again to make negative semi-definite the derivative of  the new 

I 2 extended Lyapunov function V2 = Vl 4. gz 2. In order to achieve that aim, we design the following parameter 
update law: 

~ = rl 4- Fz2 1 - ~x2J  x2e°X~u - ~x~ x2t ' 

and the following feedback control law u given by 

--Z 1 -- C2Z 2 -- ( l - -  ~'O~I/ ~X2)Xl x2 4- (C'~I/~Xl)X2(1 + Oe (~x') + ( ~ l / ~ O ) ( Z l  - Fz2 (  ~o~l/ ~x  1 )x2( l  4- Ox 1 )e  tix' ) 
N =  

(1 - - ~ l / ~ X 2 ) ( l  - F z 2 x 2 ( ~ l / ~ O ) ) e  ox2 

Note that for this example, we know from the algorithm developed in Section 3, that we can find an update 
law and a feedback control law, only if the following conditions: 

1 + 0e ~jx' ¢ 0, 1 Jr- F(X 2 Jr- CIX 1 4- Oxze Ox~ )(1 + O)x~e Ox' 7L 0 and e ~ix-' y~ 0, 

are satisfied (note tAat the third one is always true). 
These conditions give the feasibility region of  the system. 

Simulat ion results. Fig. 1 shows the simulation results for: 
- t w o  different sets o f  initial conditions: 00 = 1.7,x0 = (0.3,0.3) T, and 00 = 4,x0 = (0.3,0.3) v, 
- the nominal parameter 0n = 0.5, 
- the adaptation gain F = 5 - and the constants cl = 2.2, c: = 4, T = 0.005 (simulation period). 

We observe that the adaptive control algorithm is really local. Indeed, 00 = 1.7 is within the basin of  
attraction: (x l ,x2)  converges to zero and (~ is bounded and converges to a constant value. In contrast, 00 = 4 
is outside of  the basin of  attraction since the state variables xl ,x2 and the parameter 0 diverge to infinity. In 
Fig. 1, it has only been possible to point out this phenomenon on the parameter curve, the divergence rate 
being too fast for the other variables. 

Fig. 2 illustrates the point emphasized in Remark 1: By changing the adaptation gain in the previous 
simulation (namely F = 0.003), the region of  attraction ~2 is maximized by a better fit of  Y .  Indeed, with 
this new value of  I ' ,  for the initial condition 00 = 4, the closed-loop is stable and the regulation objective is 
achieved, albeit with a deterioration of  the performances in terms of time response. 

6.  C o n c l u s i o n  

In this paper, we have extended the adaptive backstepping technique to a class of  nonlinearly parameterized 
nonlinear systems. We have introduced the A.P.L. Approximation consisting of  a first-order Taylor approxima- 
tion, and we have shown that this approximation is good enough for a local adaptive backstepping regulation 
of  nonlinearly parameterized systems. A proof  of  local asymptotic stability based on Lyapunov arguments has 
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been given for this new extended class of systems. The results have also been validated through a simulation 
study. Moreover, in [6], such an adaptive control scheme has been successfully applied to cascaded reactions 
in stirred tank reactors, which are precisely in nonlinedrly parameterized pure feedback form. 

Acknowledgements 

The first author would like to express his gratitude to Prof. P.V. Kokotovic and Prof. Miroslav Krstid of 
the University of California for helpful discussions concerning adaptive control of nonlinear systems. 

References 

[I] C.I. Byrnes, F. Delli Priscoli, A. lsidori and W. Kang, Structurally stable output regulation of nonlinear systems, preprint, 1994. 
[2] J. Dieudonn6, Elements d'analyse (1) (Gauthier-Villars, Paris, 1969). 
[3] I. Kanellakopoulos, ?.V. Kokotovic and R. Marino, An extended direct scheme for robust adaptive nonlinear control, Automatica 

27 (1991) 247~55.  
[4] I. Kanellakopoulos, P.V. Kokotovic and S. Morse, Systematic design of adaptive controllers for feedback linearizable systems, IEEE 

Trans. Automat. Control 36 (1991) 1241-1253. 
[5] L. Karsenti and G. Bastin, Sliding adaptive control of biotechnological processes, in: Proe. CAB-6 IFAC Conj., Garmish- 

Partenkirchen, Germany (1995) 296~99 .  
[6] L. Karsenti and G. Bastin, Nonlinear sliding adaptive control of cascaded reactions in stirred tank reactors, preprint, 1995. 
[7] L. Karsenti and F. Lamnabhi-Lagarrigue, Adaptive feedback control for nonlinear systems using backstepping and sliding mode 

designs, preprint, 1995. 
[8] L. Karsenti, H. Sira-Ramirez and F. Lamnabhi-Lagarrigue, Backstepping adaptive PWM stabilization of DC-to-DC converters towards 

minimum or non-minimum phase equilibria, in: Proc. 34th IEEE CDC, New Orleans (1995). 
[9] H.K. Khalil, Nonlinear Systems (MacMillan, New York, 1992). 

[10] M. Krsti6, I. Kanelhkopoulos and P.V. Kokotovic, Adaptive nonlinear control without overparameterization, Systems & Control 
Lett. 19 (1992) 177-185. 

[11] R. Marino and P. Tomei, Global adaptive output-feedback control of nonlinear systems, Part II : Nonlinear parameterization, IEEE 
Trans. Automat. Ccntrol 38 (1993) 33-48. 

[12] R. Marino and P. ~fomei, Robust stabilization of feedback linearizable time-varying uncertain nonlinear systems, Automatica 29 
(1993) 181-189. 

[13] L. Praly, G. Bastin, J.B. Pomet and Z.P. Jiang, Adaptive stabilization of nonlinear systems, in: P.V. Kokotovic, Eds., Foundations 
of Adaptive Control (Springer, Berlin, 1991) 347-433. 

[14] S. Sastry and A. Isidori, Adaptive control of linearizable systems, IEEE Trans. Automat. Control 34 (1989) 1123-1131. 
[15] D.G. Taylor, P.V. Kokotovic, R. Marino and I. Kanellakopoulos, Adaptive regulation of nonlinear systems with unmodelled dynamics, 

IEEE Trans. Automat. Control 34 (1989) 405-412. 


