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ABSTRACT 

The identification problem of bioprocesses in a stirred tank reactor essentially 
concerns the determination of the yield coefficients and the reaction rates involved 
in a general state-space model. This paper deals with the analysis of structural 
identifiability of the yield coefficients issuing from a two-step identification proce- 
dure. In fact, the identification of the yield coefficients can be completely decoupled 
from that of the reaction rates by means of an appropriate transformation of the 
dynamical model. It is shown that the identifiability properties of these coefficients 
can be drawn from the structure of the underlying reaction network. Necessary and 
sufficient identifiability conditions are given in the form of some simple algebraic 
tests. 

1. I N T R O D U C T I O N  

The dynamics of biotechnological reactors are usually described by 
mass balance differential equations. These equations combine two ele- 
ments, a reac t ion  ne twork  (which encodes  the  b io logica l  reac t ions  tha t  
a re  a s sumed  to occur  in the  system) on  the  one  hand,  and  a set o f  
kinet ic  funct ions  that  descr ibe  the  veloci ty of  the  reac t ions  on  the  other .  

The  ident i f ica t ion  o f  such ma thema t i ca l  mode l s  f rom expe r imen ta l  
i n p u t / o u t p u t  da t a  is not  an easy task  because  o f  the  complexi ty  and 
non l inear i ty  of  the  under ly ing  systems. The  most  difficult  p r o b l e m  lies 
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in the modeling of the kinetic functions, which comes up against two 
major obstacles: 

(1) First one has to select the biological and physicochemical factors 
that are supposed to influence the kinetics and must be incorporated in 
the model. 

(2) Once this selection has been made, one has to choose an appro- 
priate analytical description of each kinetic function. 

It has been recently shown that it is possible to implement a two-step 
procedure for identifying separately the reaction structure and the 
kinetic structure for a general class of dynamical models of bioprocesses 
(see, e.g., [1-6]), under the assumption that full state measurements are 
available (this is a reasonable assumption because for many biotechno- 
logical systems full state measurements can be obtained in offline data 
by laboratory analysis). As a matter of fact, a preliminary study of 
experimental data can be performed to determine the number of 
dominant reactions for the underlying process (see, e.g., [2, 7]). A 
suitable structure for the reaction network can then be suggested based 
on prior knowledge of the real system. When the structure of the 
reaction network is given, this two-step procedure can be applied. It is 
based on a state transformation that allows us to reformulate the 
dynamical model into separate submodels. The first submodel depends 
only on the reaction structure and is independent of the kinetics. It can 
be linearly reparametrized and used for the identification of the yield 
coefficients by means of linear regressions, provided suitable identifia- 
bility conditions are satisfied. The analysis of these conditions is the 
main concern of the present paper. 

Once the reaction structure and the yield coefficients are known, the 
second submodel can be used for modeling the kinetic structure. This 
submodel is in a form that enables us to separate completely the kinetic 
functions from one another. This means that each biological reaction 
that occurs in the reactor can be treated separately as if it were the only 
one, although all the involved reactions obviously take place simultane- 
ously (see, e.g., [6]). 

This two-step modeling procedure clearly has several major advan- 
tages, which can be summarized as follows: 

(1) The reaction structure and the yield coefficients can be identified 
independently of the kinetics, that is, without any prior knowledge or 
analytical model of the kinetic functions. 

(2) The reaction structure can be identified even if the data are not 
rich or informative enough for modeling the kinetics. In other words, 
the reaction structure can be practically identifiable (in the sense of, 
e.g., Vajda et al. [8]) even if the kinetics are not. 
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(3) Concerning the kinetics, the procedure allows us to investigate 
the selection of the best kinetic function of each reaction separately by 
combining prior biological knowledge and experimental data. 

The modeling task is thus much easier than that in an approach where 
all the reaction rates are to be identified together. On the other hand, 
elemental balances that are often used for computing stoichiometry of 
chemical reaction systems (for this subject, see, e.g., [9] and references 
therein) are not assumed to be known a priori. This is of interest for 
biochemical systems where unknown species may exist or the molecular 
composition of some species such as biomass has to be determined 
experimentally. 

This two-step procedure is briefly described in Section 3. A more 
comprehensive treatment can be found in [6]. Illustrative applications 
can be found in [4] for a culture of B. subtilis, in [5] for a yeast 
production system, and in [10] for cultures of animal cells. 

As mentioned above, it must, however, be pointed out that this 
procedure can be applied only if structural identifiability conditions for 
the yield coefficients are satisfied. This paper will be precisely devoted 
to a detailed and complete analysis of these conditions illustrated with a 
number of concrete examples. It will be seen that simple identifiability 
tests exist to check whether the underlying structure of the reaction 
network is theoretically identifiable. These tests just require a look at 
the number of unknown coefficients and their positions in the yield 
coefficient matrix that represents the reaction network. When they are 
not identifiable, it is possible to see what kind of additional algebraic 
relationships are necessary to overcome the unidentifiability. In com- 
parison, most methods for theoretical and structural identifiability anal- 
ysis described in the literature for nonlinear dynamical models are 
difficult to apply in practice because they often require large amounts 
of nonlinear algebraic manipulations even for simple compartmental 
systems (see, e.g., [11-14]). They become more promising with the 
development of modern mathematical packages of symbolic manipula- 
tions (see, e.g., [13, 15]). However, so far they do not provide generic 
properties for specific classes of models. The simple structural identifia- 
bility properties of the yield coefficients presented in this paper reveal a 
promising aspect in the problems of modeling, analysis of model identi- 
fiability, and identification performance for bioprocesses. 

The paper is organized as follows. A general state-space model for 
biotechnological processes is presented in Section 2. In this model, the 
yield coefficients to be identified are entries of a given n × m matrix K. 
The identification procedure is described in Section 3, where a state 
transformation is obtained by means of an appropriate state partition 
leading to a reparametrized auxiliary model that does not involve the 
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reaction rates. Our main results are presented in Section 4: the identifi- 
ability analysis of the yield coefficient matrix g from the auxiliary 
model. Conclusions are given in Section 5, and the proof of the 
theoretical results is presented in the Appendix. 

2. DYNAMICAL MODEL OF STIRRED TANK BIOREACTORS 

A bioprocess in a stirred tank reactor can be characterized by a set of 
m coupled microbiological and biochemical reactions that take place 
simultaneously in the reactor and involve a set of n components 
(substrates, microorganisms, metabolites, enzymes, etc.). The dynamics 
of the process can be described by a general nonlinear state-space 
model representing a particular class of nonlinear compartmental mod- 
els. The n components are denoted by X1, X2, . . .  , X n. The  set of m 
reactions and the participation of the components in these reactions are 
represented by a reaction network of the general form 

(1) 
k jxl + % x 2  + + ., • .. + k , j X n ,  j = l , . ,  m, 

where k/~ and k~ are the yield coefficients of the ith component in the 
jth reaction. A substrate or reactant is a component that appears on the 
left-hand side of a reaction with a nonzero yield coefficient k~. A 
product is a component that appears on the right-hand side of a 
reaction with a nonzero yield coefficient k~. A catalyst (usually an 
enzyme in biotechnology) is a component that appears on both sides of 
the same reaction with identical nonzero yield coefficients k~ = k~. 
Obviously, the same component can be a product of one reaction and a 
substrate of another. It is also clear that, without loss of generality, the 
yield coefficients can always be normalized in such a way that one of the 
nonzero yield coefficients is exactly equal to 1 in each reaction. The 
corresponding component is then called the normalization component  of 
the related reaction. 

DEFINITION 1 

The yieM coefficient matrix K & [ kij] of a biological process described 
by a reaction network of the form (1) is the (n x m)-dimensional 
constant matrix with entries kij & k~ - k~ (i = 1,..., n; j = 1,..., m). 

Whenever the reaction network of the system is defined, the dynami- 
cal model is readily established from the mass balance of each compo- 
nent around the reactor. Let the n-vector of the component concentra- 
tions in the reactor be denoted by 
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This vector will be the state of the process model. The reaction kinetics 
or the rate of a reaction, normalized with respect to the normalization 
component, is the rate of mass consumption or production of that 
component per unit of time. It is usually time-varying and dependent on 
the stage of the process. The m-vector of the reaction rates is denoted 
by 

rr=[rl(IgV),r2(~ T ) . . . . .  rm(~r)] • 

The mass balance dynamics of the process components in a stirred tank 
reactor are then described by the nonlinear state-space model (see, e.g., 
[161) 

= Kr({)  - d{ + u, (2) 

where d >1 0 is a scalar input called the dilution rate [i.e., (influent flow 
rate)/(volume of medium in the reactor)], which can vary in the course 
of time, and u is an n-vector representing the difference between the 
rates of mass outflow and inflow of the components. 

Example 1. Competitive Growth on Two Substrates. We consider the 
example of a process in which the microorganisms can grow on two 
different secondary substrates that are produced by the hydrolysis of a 
primary complex organic substrate. The reaction network is as follows: 

Hydrolysis ( R1 ) : 

Microbial growth (R2) : 

Microbial growth (R3) : 

k lS  1 + E ~ S 2 + k2S 3 + E 

k3S 2 + k40  ~ X + ksP 

k6S 3 + k80  ~ X + k7E 4- k9P 

with S 1 representing primary substrate, S 2 and S 3 secondary substrates, 
E enzyme, X biomass, O dissolved oxygen, and P carbon dioxide. 

This reaction network is, for instance, a plausible description of the 
production of lipase from olive oil by Candida rugosa. In this applica- 
tion, the meaning of the symbols is as follows: Sx, olive oil; S 2, fatty 
acid; $3, glycerol; E, lipase; X,  Candida rugosa (see, e.g., [17] for 
details). The yield coefficient matrix is written as 

- k  1 0 0 

1 - k 3 0 

k 2 0 - k 6 

0 0 k 7 

0 1 1 
0 - k4 - ks 

0 k 5 k 9 

(3) 
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The normalization components are selected as follows: $2 for the first 
reaction and X for the others. 

The dynamical model is 

s2 
s3 

X" 
0 

,P 

- k  1 
1 

k2 

= 0 

0 
0 

0 

0 0 

- k 3 0 

0 - k 6 

0 k 7 

1 1 

l k4 - k8 

k5 k9 

{rl} 
F 2 --  d 
r3 

Sl' ( doSlo' 
$2 0 I 
$3 0 

X 
O Qo2 

P, iOco ) 

(4) 

where $10 denotes the concentration of the complex organic substrate 
in the influent flow, Qo2 and Qco2 denote the transfer rates, that is, the 
balances of Oe and CO 2, respectively, between the gaseous inflow and 
outflow rates. • 

3. THE IDENTIFICATION PROCEDURE 

When the structure of the reaction network is given, the identifica- 
tion problem concerning Model (2) is twofold: 

(1) The problem of estimating the values of the yield coefficients k i 
in the matrix K 

(2) The problem of finding a suitable structure for the reaction rate 
model r(~) and identifying the involved kinetic coefficients 

It follows from the structure of the general dynamical model that 
when m < n, that is, when the number of reactions is smaller than the 
number of components (as is the case in most practical applications), 
these two problems can be completely decoupled. In a first step, the 
matrix K can be identified irrespective of the structure of r(~) (i.e., 
without any prior knowledge of the structure of the reaction rates) by 
using an appropriate reformulation of the model presented hereafter. 
Then, in a second step, the identification of r(~) may be considered. 

We present briefly the method for estimating the yield coefficients 
independently of the kinetics (see also [5, 6]). 

The general dynamical model given in (2) represents a particular 
class of nonlinear state-space models. The nonlinearity lies in the 
reaction rates r(~) that are (nonlinear) functions of the state variables. 
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These functions enter the model in the form Kr(~) (where K is a 
constant matrix), which is a set of linear combinations of the same 
nonlinear functions rl(~j), r2(~),..., rm(~). This particular feature can be 
exploited to separate the nonlinear part from the linear part of the 
model by an adequate linear state transformation. More precisely, we 
choose a nonsingular partition 

Ka ) --- El(, 
Kb 

with K a ~ ~ p × m  of full row rank matrix [i.e., p = rank(K)], K b 

~ ( n - p ) z m ,  and E a permutation matrix. The word nonsingular refers to 
the fact that the matrix E must be chosen in such a way that the matrix 
K~ is of full row rank. The induced partitions of the vectors ~ and u are 

~ a  

with ~a, Ua ~- ~P, and ~b, Ub ~ ~ n - p .  Model (2) is then partitioned into 
two submodels: 

~a = K a r ( ~ )  - d~a + u,, 

~b = K b r ( t ~ )  -- d { b  + ub.  

(5) 

(6) 

Then with the state transformation 

~ a ~" ~ a  ~ 

z--C~o + ~b, 

we transform the initial model into 

(7) 

(8) 

~- - -  K a r ( ~ a , z  - C~a ) -  d ~  + u~, 

= - dz + Cu~ + u b, 

(9) 

(10) 
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where the (n - p ) X  p matrix C is the unique solution of 

C K  a + K b = O, 

that is, 

where K + 

L. CHEN AND G. BASTIN 

(11) 

C = - K b K  ~ , (12) 

is a generalized or pseudo-inverse of K a (see Lemma 1 in 
the Appendix). Subsystem (10) does not involve the reaction rates r 
explicitly but contains only the transport dynamics of the system. This 
subsystem (10) can be augmented with an equation derived from (8) as 
follows: 

~. = - d z  + e l l  a q- lib, (13) 
gb = z - C ~  a. (14) 

It can be considered as a linear time-varying (if d varies in the course of 
time) model with state z, input (~a,  lla, Ub), and output ~b" It is nonlin- 
early parametrized by the yield coefficients but linearly reparametrized 
by the nonzero entries of C. 

When data of the signals u a, lib, t~a, and ~b are available, the 
auxiliary model (13), (14) can be used to identify the yield coefficients 
independently of the knowledge of the reaction rates r. Two approaches 
can be adopted. 

We can consider the model (13), (14) as being nonlinearly 
parametrized by the yield coefficients k i and carry out their identifica- 
tion directly using a nonlinear parameter estimation technique. 

Alternatively, the model (13), (14) can be used to perform the 
identification of the nonzero entries of C by a linear regression tech- 
nique, with the yield coefficients k i recovered afterwards from Equation 
(11).It is obvious that in either case the identification makes sense only 
if the yield coefficients k i are structurally uniquely identifiable with the 
auxiliary model (13), (14). This identifiability issue is the main concern 
of the present paper and is treated extensively in the following section. 

E x a m p l e  1 (continued). In the example of competitive growth on two 
substrates [Equations (3) and (4)], there exist several nonsingular parti- 
tions that can provide different auxiliary models. For instance, one can 
take rows 2, 5, and 4 for K a and the remaining rows for Kb: 

1 - k  3 0 )  

K a = 0 1 1 , g b = 
0 0 k 7 

- k  1 0 0 / 

J 
k 2 0 - k 6 

0 -- k 4 - k 8 

0 k 5 k 9 

(15) 
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The value of C is structurally defined by 

C = - K s K a 1 = 

k l  k l k 3  - k l k 3 k 7 1  

- k 2 - k 2 k  3 ( k 2 k 3  - k 6 ) k 7  1 

0 k 4 ( k 8 - k 4 ) k 7  1 

0 - k  5 ( k s - k 9 ) k 7 1  

CII C12 C13 1 

C32 C33 [ 

C42 C43 ] 

(16) 

The induced partitions are 

~.  = ( s 2 , x , E , )  T , ¢ ~ = ( s , , s 3 , o , P )  ~ 

u a = ( 0 , 0 , 0 )  T a n d  u b = (doSlo,O, Qo2,Qco2)  T. 

Since u~ = 0, we have the auxiliary model 

= - d o z  + Ub, ~b = Z - -  C ~ , ,  

which can be used to identify C. Finally, the recovery of the yield 
coefficients is obtained from C as follows: 

k 1 = Cll , k2 = --  C23 , k3 --  C12 
Cll 

k 6 = _ c22 --[- c12c23 k7 c12 
c13 c13 

k 9 = _ c42 + c12c4~ 3 
c13 

k4 = C32, k5 = --  C42, 

C12C33 
ks = c32 - - -  

c13 

One can see from this example that the identification of the yield 
coefficients in two steps may result in an overparametrization. Indeed, 
the number of yield coefficients involved in model (4) is 9, whereas the 
number of nonzero entries of C given by (16) is 10. This can also be 
seen by the proportionality relationship c12/cl l  = c22/c21. In practice, 
relationships of this kind can be taken as constraints on the parameter 
space, and an iterative identification procedure can be adopted to 
reduce the parameter uncertainties (for this subject, see, e.g., [18, 19]). 
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4. IDENTIFIABILITY ANALYSIS 

L. CHEN AND G. BASTIN 

4.1. S T A T E M E N T  OF THE IDENTIFIABILITY  P R O B L E M  

The aim of this section is to elucidate the conditions under which the 
yield coefficients can be identified from the auxiliary model (13), (14). 
The problem is considered under the following general assumptions. 

(C1) Full state measurements are available. 
(C2) The structure of the yield coefficient matrix K is given: (a) 

The dimension of K is known; and (b) the locations of the structural 
zero and nonzero entries in the matrix K are known. 

(C3) Each column of K contains a 1 corresponding to the arbitrar- 
ily chosen normalization component (see Section 2). Each unknown 
yield coefficient enters K linearly and only once. 

4.2. PRELIMINARIES  

In our analysis, we shall refer to the classical concept of structural 
identifiability as defined in [11, 20, 21]. First, it is a trivial fact that the 
matrix C is structurally identifiable from the auxiliary model (13), (14). 1 

The analysis of the structural identifiability of the yield coefficients 
then consists of checking those structures of K permitting recovery of 
the unknown parameters k i from the relations given by Equation (11): 

C K  a + K b = O. 

L e t  n j  denote the number of nonzero elements of the j th  column of 
matrix K, that is, the number of components (exclusive of the catalysts) 
that are involved in reaction j, and k (y) the vector of unknown elements 
of the j th  column of K. According to assumption (C3), the unknown 
parameter vector k is made up of the collection of the subvectors k (j) 
as  

and we have 

kT= (k (1 )  T . . . . .  k(m)T), 

nj >t 1 for all j = 1 . . . . .  m, 

d i m ( k ) =  ~'~ dim(k(J)) = ~ ( n j - 1 ) .  
j = l  j = l  

~In practice, obviously, the identification is feasible only if the signals u a and ~a 
are sufficiently rich. This is another issue, not considered in the present paper but 
briefly discussed in [5]. 
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O n  the o t h e r  hand,  we can def ine  the  p a r a m e t e r  vec to r  c o m p o s e d  of  all 

the  en t r ies  of  C as follows: 

oT= (C (1)T ..... c(m)T), 

where  c ~j) is the  j t h  co lumn of  C. Since C is a mat r ix  of  d imens ion  

(n - p ) ×  p ,  0 is a vec to r  of  d imens ion  (n  - p ) p .  

Example  1 (continued). The  yield coeff ic ient  matr ix  of  E xa mple  1 in 

Sect ion 2 with compet i t ive  growth  on two subs t ra tes  is 

K =  

- k  I 0 0 

1 - k 3 0 

k 2 0 - k 6 

0 0 k 7 

0 1 1 

0 - k 4 - k 8 

0 k s k 9 

k j ~ 0 ;  j = l  . . . . .  9. 

In this  example ,  we see that  

k(1) T = ( k l , k 2 ) ,  k {2)r = ( k 3 , k a , k s ) ,  k O)T= ( k 6 , k 7 , k 8 , k 9 ) ,  

k T = ( k l , k z , k 3 , k 4 , k s , k 6 , k T , k s , k g ) ,  

n 1 = 3, n 2 = 4, and  n 3 = 5. 

Wi th  the  pa r t i t ion  given in (15), the  value  of  C is s t ructura l ly  def ined  by 

C = - K b K~ 1 = 

kl  k l k 3  - k l k 3 k ~  1 

- k 2 - k 2 k  3 (k2k3  - k 6 ) k ~  1 

0 k 4 ( k  s - k 4 ) k 7  1 

0 - k 5 ( k  5 - k g ) k 7  1 

Cll C12 C13 ) 
/ c21 C22 C23 
/ 

~ C32 C33 
C42 C43 

and we have 

0 T =  (c11,c21,0,0,c12,c22,c32,c42,c13,c23,c33,c43) • 
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DEFINITION 2 

k is C-identifiable if there exists only one solution for k from (11). 

We first note that Equation (11) can be partitioned into m subsys- 
tems: 

Ca(/)+b(J)=O, j = l  . . . . .  m, (17) 

where a (j) and b <j) are the j th  columns of K a and Kb, respectively. 
Since k ~j) enters only a <j) and b (j), solving (11) for k is then 

equivalent to solving the m equations (17) separately. In consequence, k 
is C-identifiable if and only if k ~j) is C-identifiable for all j = 1 . . . . .  m. 

Our identifiability analysis will then be based on the following 
observation. The left-hand side of Equation (11) or (17) can be regarded 
as a set of functions F(0,  k), affine in 0 and k. A trivial application of 
the implicit function theorem implies that k (j) is C-identifiable at some 
value of k <j) for a given 0 if and only if the Jacobian matrix of F 
evaluated at (0, k <j)) has rank equal to the dimension of k <j). This will 
provide global identifiability conditions because of the linearity of the 
function F in k <j). 

On the other hand, matrix C is formally defined by - KbK + , which 
defines 0 as a function of k, denoted 0 = 0(k). The structural identifia- 
bility analysis then consists of studying the rank of the Jacobian matrix 
of Equation (17) evaluated at the special pair (0(k), k(J)), j = 1 . . . .  , m, 
in order to exhibit possible properties of dependence on the structure 
of K. 

4.3. IDENTIFIABILITY ANALYSIS 

The Jacobian of the expression on the left-hand side of Equation (17) 
with respect to k (j) is 

aa(j ) ab(J) ) 
Jj = - K b  K+ Ok(J)r, Ok(j)r , (18) 

where k(j ) and k(j ) are such that k(J)r--,'~at~'(J)r, ~bt'(J)r~, and that all the 
elements of k(~ j) and k(j ) belong to a (j) and b (j), respectively. It follows 
that k (j) is C-identifiable if and only if 

rank(Jy ) = dim( k(J)). (19) 

The condition in this form is obviously not easy to check in practice 
to get structural properties of the model. However, more explicit 
properties can be found when we further look at the particular structure 
implied by assumptions (C2) and (C3). 
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Identifiability Invariance 

As mentioned in Example 1, different nonsingular partitions may 
exist for the same system. They lead in general to different matrices C 
that are different functions of K. These matrices C are equivalent from 
the viewpoint of structural identifiability. This result is generic and is 
formalized in the following theorem. 

THEOREM 1 

For a given reaction network characterized by a yield coefficient matrix 
K, the C-identifiability properties of the parameter vector k are &variant 
with respect to the choice of the partition. 

Proof See the Appendix. • 

Theorem 1 tells us that if k (j) is C-identifiable with one partition, all 
possible partitions will give the same solution. But if k U) is not identifi- 
able with one partition, it is also not identifiable with any other 
partition. This is an interesting result; it allows one to choose, in 
practice, the easiest partition to solve the identification problem. In the 
special case where there is an m x m identity submatrix in K, it can be 
chosen as Ka in the nonsingular partition. Then k is C-identifiable. The 
auxiliary model (13), (14) is linearly parametrized by K b, which contains 
all the unknown yield coefficients and can be directly identified. 

Necessary Condition 

k ~j) is C-identifiable only if n j -  1 <~ n -  p. This condition follows 
immediately from the fact that Jj is an ( n -  p ) x d i m ( k  (j)) matrix. It 
says that if the rank of K is p, at most n - p  coefficients in each 
reaction can be identified without the knowledge of the reaction rates 
r(~). This condition can serve as a practical test of unidentifiability. 

Necessary and Sufficient C-Identifiability Condition 

THEOREM 2 

Let K be an n x m matrix and p = rank(K) with n > m >1 p. Then k (y) is 
C-identifiable if and only if there exists a nonsingular partition (K, ,  K b) 
such that K~ is a p x m full row rank matrix and 

dim(k~J)) = O, 

that is, K a does not contain any unknown element of k (1). 

The proof is given in the Appendix. The main idea is as follows. The 
matrix K can be partitioned into two parts according to the location of 
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the elements of k(J): 

L. CHEN AND G. BASTIN 

E(j)K=(l~(j) ) 
g(j) ' 

(20) 

where E( j )  is a row permutation matrix associated with column j ; / ~ ( j )  
is a submatrix of K such that each of its rows contains a nonzero 
coefficient in the j th  column; and K( j )  is a submatrix of K such that 
each of its rows contains a 0 in the j th  column. The reason for this 
partition is that k (j) is C-identifiable if and only if 

rank[ i~(j)]  = r a n k ( K ) -  1. (21) 

When m ~< 2 and when the necessary condition is satisfied, K con- 
tains an identity matrix. Then the condition of Theorem 2 is satisfied. 
We have the following corollary. 

COROLLARY 

When the number of  reactions m <~ 2, k (j) is C-identifiable if and only if 
n i - l < ~ n -  p ( p = l  or 2). 

4.4. REMARKS AND EXAMPLES 

It is important to note that the necessary and sufficient condition of 
Theorem 2 imposes the existence of one such partition for each column 
j of K. Some partitions (Ka, K b) may exist such that Ka does not 
contain any element of k (j), but Theorem 2 expresses the fact that one 
such nonsingular partition is sufficient for k (j) to be structurally C- 
identifiable. This point is illustrated in the following example. 

Example 1 (continued). We have already seen that the model of com- 
petitive growth on two substrates is C-identifiable. Recall that the yield 
coefficient matrix is 

K =  

- k  1 0 0 

1 - k 3 0 

k 2 0 - k 6 

0 0 k 7 

0 1 1 
0 - k4 - ks 

0 k s k 9 

k j ~ 0 ;  j = l  . . . . .  9. 
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For the first column, there are several nonsingular partitions that do 
not contain any unknown. They are as follows. 

(1) Rows 2, 5, and 4 for K a 

(2) Rows 2, 5, and 6 for Ka (provided k 4 ~ k 8, which is generically 
true) 

(3) Rows 2, 5, and 7 for K a (provided k 5 ~ k 9) 
(4) Rows 2, 6, and 7 for K a (provided kak 9 -~ ksk 5) • 

Example 2. Let the reaction network be defined by the following full 
rank matrix K: 

K =  

1 0 0 
0 1 k 2 

kl 0 1 

0 0 k 6 

k4  ks k7 

ki4=0; j = l  . . . . .  7. 

For j = 1, k (1)T = (k 1, k4). 
contain k 1 and k 4 in the 
for K~ and the others for 

The only partition such that K a does not 
first column is composed of rows 1, 2, and 4 
K b, that is, 

Ka ~--- 
/100 /  k011 

0 1 k 2 , Kb = 
0 0 k 6 k4 k5 k7 

This partition is nonsingular because k 6 =~ 0, the condition imposed by 
the structure of the given reaction network. It follows that k (1) is C- 
identifiable. 

For j = 2, k (2) = (ks). In this case, one possible partition such that K a 
does not contain k5 in the second column is to take the first three rows 
for K,. One can see that k 5 is C-identifiable without condition because 
the determinant of K~ is a constant in this case. 

For j = 3 ,  k(3)r=(k2,k6,k7). It is immediate that the number of 
unknowns is larger than n - m = 2 and that the necessary condition is 
violated. Consequently, k (3) is not C-identifiable. 

More explicitly, if the partition 

/100/ 0 
K a =  0 1 k2 , K b =  k4 k5 k7 

k I 0 1 
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is chosen for the identification of the yield coefficients, then the matrix 
C will be defined as 

-- k l k  6 0 k 6 ) 
C =  - KbKa 1= k4 + kl( k2ks _ k7 ) k5 - k2ks + k7 

__[c. o c12). 
~C21 C22 C23 

Then the solution for k from (17) is the following: 

For  k(1): kl = c~1 k4 = c21c~3-c1~c23 
C13 ' C13 

For k(2): k 5=c22. 

For  k(3):  k 6 = c13 , c 2 2 k  2 + c23 --- k 7. 

This confirms that k 6 must be nonzero for k (1~ to be identified and that 
k 2 and k 7 are not C-identifiable. • 

The case where the rank of K is not full is of special interest. This 
may be due to the presence of reversible reactions or to proportionali- 
ties between production yields. Studies on the relationship between the 
rank of a yield coefficient matrix and reversible reactions can be found 
in [22]. In the identifiability context considered here, we make the 
following two remarks. 

Remark 1. If K has rank p with p < m, there exist only p linearly 
independent rows in K. The dependence of the n - p remaining rows 
on the p independent ones can be supposed to be a priori known (this 
will be called prior knowledge hereafter). In this case, the model can be 
considered as being not minimal in the sense that the model for m 
reactions can be reduced to a model with p "pseudoreactions" by some 

_ (,,,(1) ~(2)'~ appropriate linear combinations. For  instance, if K -  ,~k , ~k , for a 
model with two reactions and the columns C~k 1) and c~ 2) are proportional 
--c~2)=aoC~ 1~ with a 0 a known cons tan t - - then  the product Kr in 
Model (2) can be reformulated as follows: 

r l  

= ¢(kl)rl + aoC~l)r2 

= C(1)( r l  + a o r 2 )  = c O ) r * .  
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A new model, formulated with one reaction r*, will be characterized 
by ¢(1). 

Remark  2. When this prior knowledge is not available but we know 
that the rank of K is not full, the identifiability analysis will proceed in 
just the same way as in the case of K having full rank. From the 
necessary condition, we know that for each column it is possible to 
identify n - p coefficients, which is more than in the case where K has 
full rank. This is not contradictory. In fact, when p < m, matrix C is of 
dimension (n - p)  x p. The (n - p)  x p entries of C provide (n - p)  x p 
constraints with Equation (11) or (17). But when the rank of K is p, the 
dependence of n - p  rows on the p independent rows and the depen- 
dence of m - p columns on the p independent columns implicitly imply 
( n -  p ) x ( m -  p)  additional constraints. The sum of these two sets of 
constraints is ( n -  p ) x  m, the total number of coefficients that can be 
recovered from (11) or (17). 

Now we look at an example in which the rank of K is not full. 

Example  3. Consider a system with m = 3, n = 4, and p = 2 whose 
reaction network defines the yield coefficient matrix 

0 k2 / 
0 1 k 3 

K =  k 5 1 ' k i l O ;  j = l  . . . . .  7. 

k6 k7 

By Theorem 2, k (1) and k (2) are C-identifiable but k (3) is not because 

dim(k (3)) = 3 > n - p --- 2. 

Indeed, for the partition 

(10 1) 
K, ,=  0 1 k 3 ' K b =  k 6 k 7 ' 

C takes the form 

The solution for k (]) and k (2) is identical to that of the previous 
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example but is different for k(3): 

Fork0) :  k 4 = - c 1 1 .  

For k(2): k6 ~ c22 . 

L. CHEN AND G. BASTIN 

I-i-[c121" - 1 ) )  
Cll ~ C22 r~7 

k7 
C22 

There are an infinite number of solutions for k (3). Furthermore, the 
following dependence relationships impose two constraints on the coef- 
ficients: 

k 2k  4 + k3k  5 = 1, k3k  6 = k 7. • 

4.5. DISCUSSION ABOUT UNIDENTIFIABLE MODELS 

When a model is not C-identifiable, the unidentifiability can be 
overcome if additional information about some parameters is available 
and proves to be useful. The additional information can be the value of 
some yield coefficients or some algebraic relationships provided by the 
stoichiometry. The identifiability tests presented above can also easily 
show which kind of additional relationships are useful to overcome the 
unidentifiability. For instance, in the case where K has full rank, we 
have the following three tests: 

Test 1. When nj - 1 > n - m, the number of unidentifiable coefficients 
of the j th  column is equal to or larger than nj - 1 - n + m. Additional 
information must be provided for this column. 

Test 2. Recall that ~'(j) defined in (20) contains all the rows of K such 
that the j th  column of K'(j) is a zero column. The necessary and 
sufficient condition given in Theorem 2 implies that for the j th  column 
to be identifiable we must have rank[~'(j)] = r n -  1 (see the proof of 
Theorem 2 in the Appendix). Then when rank[~'(j)] = sj and sj < m - 1, 
at least m -  1 - s j  unknown coefficients are unidentifiable in the j th  
column. 

Test 3. The additional algebraic relationships must not contain redun- 
dant information about the system, that is, the rank of the Jacobian 
matrix of the system composed of the additional algebraic relationships 
and Equations (17) must be equal to the number of the remaining 
unknowns. 
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These  tests are i l lustrated by the following example.  

Example 4. Let  the following matr ix  K be  associated with a react ion 
ne twork  of ( m  = ) 3 react ions involving (n = ) 5 components :  

0 0  
0 1 0 

K =  k 2 1 , k j : ~ 0 ;  j = l  . . . .  ,7. 

k 5 0 

/ k3 k7 k6 

For  j = 1, k (1) = (k  1, k3 )T and d im(k  (1)) = 2 = n - m,  but  the only possi- 
ble par t i t ion such that  K a does  not  involve any e lement  of  k (1) is 

K a =  1 , 

k5 

which has rank  equal  to 2. It  follows that  k (1) is not  identifiable. On  the 
o ther  hand,  

( 0  1 0 )  
g ( 0  = 0 0 ,  

whose rank s 1 is equal  to 1. Then  f rom Tes t  2 we know that  at least one 
addit ional  relat ionship about  k (1) is needed  to ove rcome  the unidentif i-  
ability. 

For  j = 2, k (2) = ( k  z, k 5, k7) r and d im(k  (2)) = 3 > n - m = 2. It  follows 
that  k (2) is not  identifiable. One  addit ional  relat ionship abou t  k (2) is 
also needed  for  the lat ter  to be  identified. 

In  contrast  with the first two columns,  k (3) = (k  6) and d im(k  (3)) = 1 < 
n - m = 2. A matr ix  g a relative to k (3) can be found: (10  / 

K . =  0 1 , 

kl k2 

which is nonsingular  and does  not  involve k 6. In consequence ,  k (3) = (k  6) 
can be identified. 

M o r e  explicitly, assume that  a state t r ans format ion  cor responding  to 
the following nonsingular  par t i t ion is used for  the identification: (:00) (0 0 / 

K~ = 1 0 , K b --- 
k I k 2 1 k3 k7 k6 
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The inverse of K a is 

L. C H E N  A N D  G.  B A S T I N  

1 
g a  I = 0 

- k  I 

°°  / 
1 0 . 

- -  k 2 1 

C is structurally defined by 

( 0 k5 0) (0 c12 0 / 
C = - K b K  a l  = _ k3 _ k l k 6  k7  - k 2 k 6  k6 = £21 c22 c23 " 

Then the unknown vector k is expressed with respect to the elements of 
C in the following way: 

F o r  k(l~:  k 3 = - c21 - c23k  1. 

F o r  k(2): k 5 = - -  C12, k 7 --- - c22 - c23k  2. 

For k (3)-" k6 = - ¢23. 

From this explicit computation, we obtain the same conclusion that one 
additional relationship for the first column of K and one for the second 
column are needed to overcome the unidentifiability. 

Moreover, the question of what kind of additional information is 
useful to overcome the unidentifiability can be analyzed according to 
Test 3. In this example, for k (2) it can be seen that any additional 
information about k 5 will not be helpful for determining k 2 and k 7. 

This is because when k 5 is known we still cannot find a nonsingular 
matrix K a relative to k(2~; the only K a not involving the unknowns of 
k (2) in this case is 

(, 0 0) 
K a - 0 1 0 , 

0 k 5 0 

which is also singular. That is, the rank of the Jacobian matrix associ- 
ated with (17) with known k 5 is still less than the number of unknowns 
( = 2). This can also be concluded from the solution for k <2) because k 5 
is already identifiable and any additional information about k 5 is 
redundant. 

On the other hand, it is trivial that any additional relation that is 
parallel t o  k 7 = - c22 - c23k  2 will not be helpful either. • 
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5. CONCLUSIONS 

In this paper, we have presented in detail the structural identifiability 
problem of the yield coefficients in biotechnological systems issuing 
from a two-step identification procedure. 

The fact that the nonlinearity of the system is given by a set of linear 
combinations of a small number of nonlinear functions (i.e., the reac- 
tion rates) made it possible to identify the yield coefficients in state-space 
models without modeling the reaction rates. A transformation of the 
basic dynamical model of the process is used in this procedure. It allows 
us to define an auxiliary model that contains all the yield coefficients of 
the initial model but does not explicitly involve the kinetics. This 
auxiliary model is linearly reparametrized, and when full state measure- 
ments are available the identification of the yield coefficients can be 
performed by means of linear regression. 

The necessary and sufficient structural identifiability of the yield 
coefficients can be checked with simple algebraic tests on the structure 
of the reaction networks. Indeed, these tests just require us to look at 
the number of unknowns and the location of these unknowns and of 
known O's and l's in the yield coefficient matrix K. Furthermore, for 
models that are not identifiable, it is easy to see which part of K is not 
identifiable and what kind of additional relations are needed to over- 
come the unidentifiability. 

From the practical point of view, the structural identifiability does 
not guarantee that the parameters can be efficiently identified in the 
presence of measurement noises. The identification performance can be 
improved by choosing "good" input signals of the system to have the 
related regressor as independent as possible during the experiment (see, 
e.g., the identification in a yeast production process in [5]). Optimal 
control design can help to choose good input signals if a kinetic model 
is given (see, e.g., [23]), but it becomes tedious when the complexity of 
the kinetic model increases. 

This paper presents research results of the Belgian Programme on 
Interuniversity Poles of Attraction initiated by the Belgian State, Prime 
Minister's Office, Science Policy Programming. The scientific responsibility 
for its contents rests with its authors. 

APPENDIX 

We first recall the general assumptions made for the yield coefficient 
matrix K: 

(A1) K is an n X m matrix with n > m. Each column of K contains 
a 1 corresponding to the normalization element, and each unknown 
yield coefficient intervenes linearly and only one time in K. 
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(A2) Rank(K) = p ~< m. 
(A3) Each column of K is a nonzero column. 
(A4) We make use of (Ka,Kb), a nonsingular partition of K 

such that 

Ka 
Kb ) = EK, rank(K~) = r ank(K)  = p,  

where E is a row permutation matrix, K~ is a p × m full row rank 
submatrix of K, and C is the solution of the matrix equation 

CK a + K b = O. 

The nonsingular partition refers to the full row rank of K,. 

A. PRELIMINARY LEMMAS 

LEMMA 1 

C is unique and is given by 

C = - K b K + , 

where K+a is any generalized ( or pseudo-) inverse of K a such that K a K+a = Ip 
with Ip being the identity matrix of  dimension p. More precisely, C can be 
written as 

C = - K ba KaY, 

Kaa forms any set of p linearly where Kaa and Kba are such that Kb ~ 

independent columns of K for which Kaa is nonsingular. 

Proof. The existence and the uniqueness of C are evident. From 
assumption (A4), the ith row of C can be considered as the coordinates 
of the ith row of K b in the subspace formed by the p independent rows 
of Ka. On the other hand, by permuting the columns of K, we introduce 
the definition 

= Kb b ) ,  (22) 

where E c is a column permutation elementary matrix such that Kaa is a 
p × p nonsingular matrix, where Kab ~ ~q~P×t"-P), Kba ~ ,~(n-p)×p and 
Kbb ~ .9~ ~n-p)×("-p). Since K a is a p × m full rank matrix, its m × p 
generalized inverse K~ + is such that KaK+a = Ip×p. It can be verified 
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that when K is given by the right-hand side of (22), the general form of 
K~ + is 

( K~ 1 -  KalaKabX], 
K+~= x / 

with X being an arbitrary (m - p) x p matrix. Then 

C = - K b K + 

= --(  Kba,Kbb)(  Ka2 -- ~ a lKabX)  (23) 

= -- KbaKa2 ( KbaKa-2Kab + Kbb)X. 

(".°t As the rank of Kaa is p, which is equal to the rank of K, ~ Kb ~ ] fOrmS a 

set of p linearly independent columns. Then the right-hand side of (22) 
implies that for some constant matrix ¥, the following equality holds: 

lgbb ) =0. 

From this equality, one can conclude that 

Y = - K 2 K a b  (24) 

and 

-- KbaKa2Kab + Kbb = 0.  (25) 

Equations (23) and (25) then result in 

C = - KbaK~ 1 . • 

LEMMA 2 

Assumption (A3) implies that any column of  K belongs to at least one 
set o f  p linearly independent columns. 

LEMMA 3 

Let K ~ ~q~n ×,n be partitioned as 
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with rank(K a) = p. Define 

Kbl( j ) : the rows o f  K b that do not contain any element o f  k <j), 

Kb2( j )  : the remaining rows o f  K b. 

Then k ~j) is identifiable i f  and only if  

Proof. According to the definition of Kbl(j) and Kb2(j), the matrix 
C is structurally partitioned in two parts: Cl(j)  and C2(j) with C1(j) = 
Kbl(j)K+~ and C2(j) = Kb2(j)K+~. Recall that by definition there exists a 
structural 1 in each column of K that corresponds to the normalization 
element of each reaction (see Section 2). Equation (17) then takes the 
form 

c (j) "(j) + k J)] o, (26) 

where e~b j) is either a unit vector (i.e., with a 1 in some position and 
zeros elsewhere in e~b i)) or a zero vector depending on whether the 
normalized element 1 belongs to b (j) or a (j). Obviously, (26) is equiva- 
lent to (17). Then the j th  Jacobian matrix becomes 

3a(J) 

3a(J) 

where O~bx,,j~ ' is a zero matrix of dimension Sjb × njb , Ini b an identity 
matrix of dimension n j b  , with sjb = n - p - n i b  , and n j b  = dim(k(j)), that 
is, the number of unknowns in b (j). The lemma follows immediately 
from the fact that the above Jacobian is a block triangular matrix. • 

B. PROOF OF THEOREM 1 

Before entering the core of the proof, we make the following obser- 
vation. To prove the invariance of identifiability, we have to examine, 
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for each j ( j  = 1 . . . . .  m), the Jacobian matrix defined as 

59 

( Oa~Y) O b ( Y ) ) (  Oa(J) tgb (j)) 

From Lemma 2, we know that any column of K belongs to at least one 
set of p linearly independent columns. From Lemma 1, we know that C 
can be explicitly given by 

C = - Kba K:2, 

Kaa ) 
where Kaa and Kba a r e  such that 1 Kba forms a set of any p linearly 

independent columns of K. It follows that the above Jacobian matrix 
can be written as 

jj = _ ( KbaKaal Oa(j) c~b(J) ) 
ak~J)T' dk<F 

in such a way that column ~ b(j) ] is part of 1 Kb" }' the latter constitut- 

ing a full column rank matrix. It follows from this observation that if the 
statement is proved to be true for the case where K has full column 
rank (p  = m), then it is true for the case where the rank p of K is less 
than m. 

The proof will be divided into several parts. 

(1) We first notice that if there are two different nonsingular 
partitions (K,,  K b) and (/~a,/~b), we have to prove that their Jacobians, 
say Jj and Jj, have the same rank. It follows from Lemma 3 that this is 
equivalent to proving that if 

and if 

Oa(j ) ) 
rank Kb,(j)Ka 1 cgk(aJ)T = 

then 

dim(k(j)) - -  dim(k(j ) ) + q, 

o~(j ) ) 
rank /~b,(j)/~a I 3~(aj) T = S + q. 
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On the other hand, the fact that Oa(J)/c~k~ j)r is a full column rank 
matrix implies that 

Oa(J) 1 rank( K b I ( j ) K a l ~ T  ] = rank(Kbl( j )K a 1). 

Similarly, 

rank(kb~(j) /~a I cg~i(J) = o~k~ay)r ) rank(l~bl(j ) /~al ) .  

(2) It is trivial that the identifiability properties do not change in 
the following cases: 

(a) Permutation of two rows of K a 
(b) Permutation of two rows of K b 
(c) Permutation of two columns of K 
(d) The choice of the normalization element in each column 

of K 
On the other hand, a partition (/~a,/~b) can be considered as the result 
of a series of successive permutations of a row of K a with a row of Kb. 

(3) Let the initial partition (Ka, K b) be defined as 

and the partition /~a,/~b as 

Ka = K 

= EK, 

where E is an elementary matrix consisting of permuting the last row of 
K a with the last row of K b. 

Suppose also j = 1 without loss of generality; then if 

(x Am l)yT  ml)zT Ka= ' Kb= I-1 ' 

aml 

the partition (/~a,/~b ) is defined by 

I~  = z T , yT , 
1 aml 



IDENTIFIABILITY OF THE YIELD COEFFICIENTS 61 

where  x, y, and z are vectors of  dimension n - l ,  q a vector  of  
dimension n - m + 1, A m_ 1 and Bm_ 1 are respectively (m - 1) × (m - 1) 
and (n - m  - 1 ) × ( m  - 1 )  matrices, and am1 and bpx are two scalars. 

We  can then distinguish the following four  cases for am1 and bpl 
without  loss of  generality: 

a,~ 1 = 1 or  0 and bpl = 0 or  unknown.  

It follows f rom the definition of  Kb(j)  that  ((0 .) 
Kb,(1) = bp, z r 

(o n) 

(o.) 
= 6bp~ 6z r ' 

if bpl = 0, 

if bpl is unknown 

where B is the set of  the rows of  B m_ 1 corresponding to the part  of  K b 

whose first componen t  of  each row is 0 and 

1 if bpl = O, 

= 0 if bp~ is unknown.  

It follows that 

(0 .) 
/~b,(1) = am 1 y T .  

(4) Lett ing A : A m_ 1 to simplify notation,  the inverse of  Ka is 

1( y _l _1) 
K ; I = ~  ( A I m _ _ A - l x y T ) A - 1  A - i x  ' 

with A = y r A - l x - a m 1 ,  and that o f /~a  is 

1 ( Z TA-1  -1) 
K a l = - ~  (7~Im_I__A-lxzT)A - ,  A - I x  ' 

with /X = zrA- ix - bpl. 
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Then we have 

1 [ B(A -- A-lxyT)A -1 
Kb1(1)K2I = --~ ~ ~[ bply T + ( Az T -  z T A  - lxyT)] 

='-A1 a (AzT- -aYT)A-1  ~2i 1' 

and similarly, 

1 (B(TX - A - l x z r ) A  -1 

= ] 1  az )a-  
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BA- lx  ) 
~(zTA- lx -bp l )  

(27) 

BA-A Ix ) . (28) 

By subtracting [(BA - 1x//A) X the last row] from the m - 1 first rows and 
multiplying the right-hand side of the above equation by A / A ,  we 
obtain the rank equivalent matrix 

[ B ( A - A - 1 x y T ) A  -1 0 

E n=-~  A y r _  z r A-1 A2/~ 

(6) Rank verification: 

Case 1: atom=l, bpl=O 
Case 2: aml = 0, bpl = 0 

In these two cases, 6 = 1 and k(a 1) = k(a 1). We can easily verify from (27) 
and (29) that 

rank /~bl(1) k~ -~ c~k~l) r = rank Kb, (1) K21 Ok~)r . 

Case 3: am1 = 1, bpl unknown 
Case 4: am1 = O, bpl unknown 

In these two cases, 6 = 0 and dim(k~ ~)) = dim(k~l))+ 1. 
Actually, (27) becomes 

1 (B(A - A- lxyr )A  -1 BA-lx) .  Kbl(1) Ka 1 = -~ 

Comparing (29) with the above equation, we have 

Oa{1) t rank(Kb,(1)K;10a°) rank (/~b,(1)/~: 1 e ~ ? r  j = eke, r) +1" 
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C. PROOF OF THEOREM 2 

AS mentioned at the beginning of the proof  of Theorem 1, if the 
statement is proved to be true for the case where K has full column 
rank ( p  = m), it is true for the case where the rank p of K is less than 
m. Therefore  we suppose that K has full column rank. Suppose also 
j = l without loss of generality. 

1. Sufficient Condition 

Let n~ be the number  of nonzero elements in the first column of K. 
If n I - 1 ~< n - m and if there exists a nonsingular matrix K a that does 
not contain any element of k (~), then Lemma 4 implies that k (1) is 
identifiable and directly given by the second part of Equation (26), that 
is, 

k(') = k(b l) = C2(1)a (1), 

where a (~) is a unit vector. 
Hence, the sufficient condition is trivial. 

2. Necessary Condition 

We have already seen that n ~ -  1 ~< n - m  is a necessary condition. 
Hence, the proof  can be done under this assumption. We also know that 
this implies that the number  of known O's in the first column is greater 
than or equal to m - 1 .  We define 

/~(1) = the submatrix of K such that each of its rows contains 

a nonzero coefficient in the first column; 

K(1)  = the submatrix of K such that each of its rows contains 

a 0 in the first column. 

The necessary condition implies that d i m [ ~ ' ( 1 ) ]  = q × rn with q > m - 1. 

Clearly, we have, for a certain row permutat ion matrix E, 

EK I (1)) 
If K a does not contain unknowns in the first column, then it must be 
composed of one row of / t ' (1)  whose first element is 1 and m - 1 rows of 
K(1). So when no such nonsingular K a exists, it is because that 
rank[~'(1)] = s < m -  1. In the following, it will be shown that only in 
this case will Lemma 4 not be satisfied. 
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The proof will proceed by contradiction in three steps. First let us 
introduce some further notations. 

By using appropriate permutations, we can divide the structure of K 
as follows: 

K =  

k~ ~) A 1 

1 a T 

k~b 1) B 1 

0 C~ 

0 D 

A2 ¸ 

b r 

B 2 , 

Ks 
E 

(30) 

where K s is an s x s nonsingular matrix, s being the rank of K'(1); a 
and b are vectors of dimensions m - s - 1 and s, respectively; and the 
other matrices have the following dimensions: 

AI: ( m - s - 1 ) X ( m - s - 1 ) ,  

A2: ( m - s - 1 ) X s ,  

C~: s X ( m - s - 1 ) ,  

BI: d i m ( k ~ l ) ) x ( m -  s - 1), 

B2: dim(k~b)x s, 

D: ( n - s - n i ) X ( m - s - 1 ) ,  

E: ( n -  s -  n l )X  s. 

Therefore,  

With the invariance property (Theorem 1), we know that any nonsingu- 
lar partition can be used for the proof. One can thus choose a partition 
such that K a contains a minimum number of unknown coefficients in 
the first column. Since the rank of K is rn and that of K'(1) is only s, 
one can choose at most s independent rows in ~'(1) [see Equation (31)] 
and at least m - s others in the rest of K [see Equation (30)] to form a 
nonsingular Ka and consequently a nonsingular partition (K,,,Kb). 
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Suppose also, for simplicity, that the normalization element 1 lies in K a 
for the first column. This corresponds to 

which implies 

Ka = 
o cs Ks/ tc  

k~ l) A 1 A 2 = 
1 a T b T A~ A* 

(32) 

It follows that 

and X is given by 

C*s )x 

X = K~lC*~. 

D* = EX  = EKs lC * . (35) 

Step 2. Since K a is nonsingular, its inverse can be put into the 
following form whose decomposition corresponds to that of (32), with 
the matrix blocks having appropriate dimensions: 

K S = ( p  

From the property that K a K a  I = I m × m ,  the following equality holds: 

C*Q + K~S = Os×~m ~). (36) 

From (30), (32), and the definition of K b ( j )  in Lemma 4, we have 

Kbl ( 1 ) = ( 0  D E ) = ( D *  E) .  (34) 

Step 1. From the assumption that the rank of ~'(1) is s and K,. is a 
nonsingular matrix [i.e., Equation (31)], we know that there exists a 
matrix X of appropriate dimension such that 
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Step 3. Rank  analysis. Let  n~ 
(33), we have 

L. CHEN AND G. BASTIN 

= d im(k]  1)) = m - s - 1. F r o m  Equa t ion  

Oa (1) 
Os×~Ta 

1no 
01Xtta 

Zx ( OsXn~ t 

tLo' 1 

where ino is an (n  a + 1)×  n~ matrix. It  follows that  

1 

= (EK;  1C* s Q + ES)•o 

= ( E K ; I (  - KsS) + ES)Lo 

"= O(n_s_nl)×na , 

o~a (1) 
gbl(1) gal ( ~ ) c~k~l)T 

(37) 

(38) 

(39) 

where  the equality (37) is obta ined  f rom (35) and (38) f rom (36). It 
follows that k ~1) is not  identifiable. The rank of  this matrix product  is 
zero, and the elements  of  K~ 1) have to be fixed to arbitrary values to 
provide a solution for k~ 1). 
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