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Identification and Optimal Estimation of Random Fields 
from Scattered Point-wise Data* 

G. BASTINt  and M. GEVERSI':~ 

Procedures are available for the estimation of various functionals of a random field in the 
practically meaningful case where the random field is possibly non-stationary and where 
the data are scarce and randomly scattered in space. 
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A~traet--A self-contained presentation of the interpolation We consider a 2-D RF Z(x, y) over a domain 
problem in two-dimensional spatial random fields is given. We ~:  (x, y) e f2 ___ R z, and we assume that a realization 
investigate the case where the random field is not necessarily 
stationary, where the data are so scarce and so scattered in space of this RF is available in the form of a 
that sample covariance function estimates are not meaningful finite-dimensional vector of measurements 
and where, therefore, an analytical parametric 'variogram' model Z = (zl . . . . .  zN), where zi = z(xi, Yi) is a realization 
is used in lieu of the covariance. We discuss several variogram 
parameter estimation techniques (LS, GLS, ML, Interpolation of Z(xi, Yi ). The N locations are randomly scattered 
Error Method) and we show how to derive estimates of various in the domain f~ (Fig. 1). We want to construct an 
functionals of the random field from the variogram. A numerical optimal linear est imatorf(z)  for various functionals 
simulation and two typical engineering applications illustrate the 
variogram estimation techniques and provide a good measure of f (z)  of the RF 
their respective performances. 

N 

1. INTRODUCTION f(z) = 2o + ~ 2izi. (1) 
IN THIS paper we discuss the problem of ~=1 
interpolation in two-dimensional (2-D) random 
fields (RF) with scattered data. Our  interpolators Before we consider this estimation problem, we 
are linear minimum variance unbiased estimators shall give a few examples for f(z). This will at the 
(often called BLUE, for Best Linear Unbiased same time illustrate the kind of applications that this 
Estimator), and the reader might justifiably argue paper addresses itself to. 
that the theory of linear minimum variance (i)f(z) = Z(Xo, Yo) with (x0, yo)~f~, i.e. we want to 
estimation in random fields is well established. The estimate the value of the RF at a fixed but arbitrary 
point, however, is that we are concerned with real- point of the domain. A typical application is in 
life problems, where the mean and the covariance contour mapping (or cartography): for example, 
function of the RF are not known a priori, andwhere one may want to estimate the rainfall Z(x~,yi) at 
the available data are so scattered (and often so various points of a region (or at all points of a grid 
scarce) that sample estimates of these functions covering a region) from a small number of 
would be completely meaningless. The major  observations in rain-gauges scattered over that 
difficulty, then, is the preliminary identification of a region (Delfiner and Delhomme, 1975). An appli- 
mathematical  model of the RF. The major  thrust of cation of contour mapping will be presented in 
our contribution is therefore concerned with this Section 6. 
identification problem. 

* Received 9 M a r c h  1983; revised 4 J a n u a r y  1984; revised 23 
April 1984. The original version of this paper was not presented at / -, ,... 
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1 r The applications that we have mentioned so far (ii) f ( z ) =  S~ 3,z(x'v)dxdv where S~ is the 
" " are typical systems engineering applications. Such 

surface area of the domain f~. With the same applications have been numerous in geostatistics for 
application in mind as before, one may want to quite some time: the books by David (1977) and 
estimate the average rainfall over an area from N Journel and Huijbrechts (1978) contain many 
available measurements (Lorent et al., 1982): see references. More recently, the theory has been 
Section 7. Another typical example is in geophysics further developed and applied to problems in 
where one wants to estimate the mean ore grade ofa  hydrology (Delfiner and Delhomme, 1975: De 
mineral field from a few available measurements Wrachien, 1976; Delhomme, 1978', Volpi and 
(David, 1977). Gambolati, 1978; Gambolati  and Volpi, 1979: 

~z ('~z r Darricau, 1979; Gevers and Bastin, 1980; Darricau, 
(iii)f(z) = I?x'?y I(-~o.r,,)' the derivative of the RF 1980; Chirlin and Dagan, 1980; Chua and Bras, 

at a point (xo, Yo). A typical application is in 1982;Creut inandObled,  1982; Lorentetal.. 1982, 
groundwater flow modelling, where the evaluation Kitanidis, 1983). 
of the gradient of the water level is necessary at all Yet, despite their wide range of possible 
nodes of a grid in order to identify the flow equation applications, the methods that we shall present are 
(Bastin and Duque, 1981). It is then required to almost unknown to systems engineers. The foun- 
estimate the gradient from a limited number of dations of the theory of 2-D interpolation on which 
water level measurements, which are most often not this paper is based have been established by a South 
located at the grid nodes. African mining engineer Krige (1951), and in 

Some common features in many such appli- geostatistics and hydrosciences this 2-D in- 
cations are the following: terpolation technique is often referred to as kriging. 

Measurements are available in only a very limited The theory has been further developed to a great 
number of locations, which are not equispaced. This extent by the French geostatistician Matheron 
contrasts with 2-D estimation problems in image (1965, 1973). Our own interest in this theory 
processing where the data points are numerous and originated with a parameter estimation problem in 
located on a grid. 2-D groundwaterflow models. In fact, when the 

The mean of the RF is almost never zero. parameters of a distributed parameter system must 
The mean and the spatial covariance function are be estimated, it is often necessary to apply a 2-D 

seldom known and are hard to estimate, precisely interpolation method as a first step, because the 
because the measure points are few and not evenly measurements are not available at all points of the 
spaced, domain (see e.g. Gevers and Bastin, 1982). Over t he 
---The RF is often not wide-sense stationary, or at years, we have refined some theoretical points, 
least a wide-sense stationary assumption is hard to studied different approaches for the identification of 
validate from the data. the RF model and applied this technique to a large 

These features contrast with time-series pro- number of problems, particularly in the field of 
cesses, much better known to control engineers, hydrology. A software package for 2-D minimum 
which can most often be assumed stationary and variance unbiased interpolation and automatic 
ergodic, and in which the measurements are often cartography has also been developed. 
numerous and almost always equispaced (in time). The purpose of this paper is to give a self- 
In addition, the mean can often be assumed zero. contained and hopefully informative presentation of 
When the mean is unknown, it must be estimated, this 2-D interpolation technique and to report on 
thereby introducing a bias in the covariance some real-life applications that we have dealt with. 
estimate. However, both the mean and the Thepaper  is organized as follows. In Section 2 we 
covariance function can usually be estimated fairly give the expressions of the BLUE for the case of 
precisely because of the large number of available point wise interpolation (i.e..f(z) = z(xo,.!,o)t. The 
measurements, the fixed sampling interval and the interpolation formulas for other functionalsf(z) are 
ergodicity property, easy to derive, and an application in Section 7 will 

The presence of a non-zero mean and the non- illustrate the case wheref(z) is the spatial average of 
stationarity of the RF has led the geostatisticians to the RF. Two different methods for the estimation of 
suggest the use of the ~variogram function' as an /(z) are presented: one where the mean and the 
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the most difficult part of a 2-D estimation problem is approach used at the Ecole des Mines de Paris (see 
the identification of a model for the variogram. This e.g. Delhomme, 1976). 
is the object of Section 4 where we present different 
methods for the estimation of a variogram model. In 
Section 5, a very simple numerical simulation is used 

2. OPTIMAL INTERPOLATION IN A RANDOM FIELD 
to show how meaningless the sample (or experimen- 
tal) variogram can be; it also illustrates the Assumptions, notations and definitions 
superiority of the interpolation error method of We consider a real-valued RF Z(x,y) ,  
Section 4 over the classical least-squares technique (x, y)~ ~ ~ R 2, whose deviations from the mean are 
for the estimation of the variogram model purely nondeterministic, and for which the follow- 
parameters. In Section 6, we apply the 2-D ing functions are defined: 
interpolation technique to the contour mapping of 

- -The mean (assumed constant) 
the water level in a groundwater reservoir. This 
application illustrates that the use of the experimen- 

m = e { z ( x ,  y)}. (2) tal variogram (or covariance) for 2-D interpolation 
leads to absurd values for the water level estimates. 

- -The spatial covariance kernel 
Four different analytic variogram models and two 
parameter estimation techniques are compared in 

R(i,j) = E{[z(xi,  yi) - m][z(x~,yj) - m]} (3) this application. In Section 7, we present an 

application where the estimated quantity is the where (xi, Yi) and (x~, y j) are two arbitrary points in 
surface integral of the measured variable, namely ft. 
the average rainfall over an area. This is an 
interesting illustration of the theory, because the RF --The spatial variogram (which is the name given 
is now also a function of time, the average areal by geostatisticians, see e.g. Journel and Huijbregts, 
rainfall being an ordinary time series. We shall see 1978, to the semi-variance of RF increments) 
that the variogram can be factored into the product 
of a time-dependent scaling factor, and a geometry- 1 
dependent shaping factor. This has enabled us to 7(i,j) ~- ~ E { [ z ( x i ,  Y i )  - z(xj, yj)]2}. (4) 
propose a procedure for the optimal selection of 
rain-gauge locations. The applications presented We consider two special classes of random fields: 
here have been kept short, because they mainly serve 
to illustrate the theory. Full details about these (a) (Weak sense) stationary random fields. In 
applications have been published elsewhere: see the addition to the stationary mean assumption, we 
reference list. assume that the covariance is isotropic and 

The use of the variogram function for 2-D stationary and that its power spectrum F().) is 
interpolation in RF has been common practice in absolutely continuous. We denote 
geostatistics and hydrology: see the references 
already mentioned, and in particular the pioneering R(i,j) = R(di~) (5) 
work of Matheron. To our knowledge, in the 
applications published so far, the identification of where di~ is the Euclidean distance between the 
the analytical variogram model has almost always points (xi, y~) and (xj, yj). In this case, the RF 
been performed by intuitive fitting or by least- variance is finite and stationary 
squares fitting of an analytic variogram model to the 
so-called 'experimental variogram' (see Sections 3 a 2 = R(0) (6) 
and 4). Our own contribution has been in the 
development of alternative estimation techniques and the variogram is, by definition, also stationary 
for variogram parameters (the Generalized Least- and related to the covariance function as follows: 
Squares, Interpolation Error and Maximum 
Likelihood methods presented in Section 4) and in 7(d) = 0 . 2  - -  R(d), with "¢(i,j) = y(dij). (7) 
the applications of Sections 6 and 7. The reason for 
looking at alternative estimation techniques was the By the absolute continuity assumption on the 

I • i • r • , ~ , 1  . ~  • ! 1  . . . .  
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variogram (but not necessarily the covariance) is with 2i idependent of the unknown mean m. The 
isotropic and stationary: unbiasedness condition imposes 

N 
?(i,j) = 7(dij). 2 "~i = 1 and 20 = 0. (14) 

i=1  
This is a wider class than class (a), since it involves 

not only stationary RF but also nonstationary RF Minimization of E{(zo - 50)2}, with respect to 
with stationary increments (like e.g. 2-D Wiener {2i, i = 1 . . . . .  N } under the constraints (14) leads to 
fields). In this last case, the relationship (7) is no the system 
longer valid; the RF variance can be infinite, and the 
variogram can become unbounded: N 

2 ]tjy(dij) + p = 7(doi) i = 1 . . . . .  N (15a) 

lim 7(d) = oo. (9) ~= l 
d~ x N 

2j = l (15b) 
Optimal interpolation ; = 1 

We consider now the following situation (Fig. 1). where # is a Lagrange parameter. 
Given a finite realization Z = (zl , . . . ,  zu) of the RF 

The interpolation error variance is given by 
measured at N scattered points in fl, find an optimal 
linear minimum variance unbiased estimate of s 
Z(xo, Yo) at an arbitrary point (xo, Yo)~fl. We solve SZo = ]a -P ~ A[[(doi ). (16) 
this problem both for stationary and intrinsic i=1 
random fields. 

Remark: Evidently, method 2 can also be viewed as a 

Method 1. Stationaryfields with known mean and suboptimal interpolation method in the case of 
covariance. The linear minimum variance estimator stationary fields with known mean and covariance. 
for Z(Xo, Yo) is given by (see e.g. Papoulis, 1965) In such a case, the following relationship between 6o z 

and s 2 can be established (Bastin and Henriet, 1982; 
N s Gevers 1984) 

7.o = 5(xo, Yo) = Vo + ~ vizi = m + ~ vi(zi - m) 
i :  1 i :  l (1 -- UTR- 1Ro)2 

(10) s2 - -  6 2  -f- U T R -  1U {17)  

where { v~, i = 1 . . . . .  N } is the solution of the system: where 

u 
vjR(d~;)=R(doi) i = 1  . . . . .  N. (11) R is a N × N matrix with entries R(d~;) 

j=, (i,j = 1 . . . . .  N)  
Rois a column N-vector with entries R(do~) 

The interpolation error variance is given by (i = 1,. . . ,  N) 

U is a column N-vector with entries 1. 
N 

a~ = ~2 ~ viR(doi). (12) 
i= 1 Clearly, in such case, sZ0/> a g. 

This estimator is unbiased and is a straightforward 3. WHY SHOULD WE USE METHOD 2? 
extension of the well known Levinson predictor for In Section 2, we have presented two methods for 
stochastic processes to the case of interpolation in 2- the optimal interpolation of random fields. The 
D RF (see e.g. Anderson and Moore, 1979). Note basic assumptions are as follows: 

that (10) and (11) are also valid for nonstationary For method 1 (Weak sense) stationary assumption; 
RF with known mean and covariance but it is of the covariance of the RF R(d) i s  stationary; 
little practical use: situations where a nonstationary the mean m and the covariance R(d) are known. 
covariance is known are rather rare. For method 2: Intrinsic assumption; 
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the values of m, R(d) or ~/(d) are not given. The only 900 
available information on the RF is the set of data. 
From the set of data, it is then necessary to: soo 

(a) make a stationarity assumption; 70o 
(b) estimate the mean m and the covariance _ 1  

R(d) or the variogram y(d). 600 

The first step in the analysis can be to draw the ~ 500 ~ 
'experimental variogram' of the RF. 

4 0 0  

Computation of the experimental variogram 
The experimental variogram is obtained by 300 h i  

computing the mean square differences between 200 ,y. measured values of z taken at all couples of 
points that are separated by a same distance. For a ~oo 
distance d M J 1, 

0 I 2 3 4 5 
1 

y(d) - 2N(d)~k.j (Zk -- Z3) 2 (18) kin) 
FIG. 2. Experimental variogram of the water level (piezometry) 

where the sum is taken over all couples of points in a 6 × 6km aquifer. 
(k,j) separated by a distance d, and where N(d) 
represents the number of such couples. 

Except perhaps in mining applications where the In practice, the range of available distances is often 
drillings are often regularly spaced, N(d) will usually too small to decide whether the variogram would 
be 0 or 1. Therefore, in order to obtain a more reach a constant value for large d: Fig. 2 illustrates 
representative picture, the following device is used. this. Worse, in case of a nonstationary RF with 
The interval of useful distances is divided in m sub- stationary increments, the procedures of statistical 
intervals [di, di+l], i = 1 . . . . .  m, and for each inference which are used for the estimation of the 
subinterval the following estimator is used sample covariance will make the hypothesis of a 

stationary covariance plausible, even though the RF 
1 7(~i) - 5 ~ . ~  (zk - zj) 2 (19) has an infinite variance. See e.g. Matheron (1971) for 

~ ,  ~ k,j an illuminating example. 
(2) It is just as difficult to validate a stationarity 

where the sum is over all couples of points (k,j) assumption on the variogram. However, since a 
separated by a distance d such that d~ ~< d < d~+ 1, N~ stationary variogram exists for a wider class of RF 
is the number of such couples, and 81 = 1/2 than a stationary covariance, it is always safer to opt 
(di + di+l), for method 2 in case of doubt (see, e.g., the 

The experimental variogram has the graphical experimental variogram of Fig. 2). Notice in 
appearance of a broken line: a typical example is particular that the variogram can be stationary 
shown on Fig. 2, where the experimental variogram without any condition on lim 7(d). 
of a piezometric field is drawn. (See Section 6 for a~ 

(3) Suppose nevertheless that the RF were known details.) 
to be wide-sense stationary. Then 

Comparison between methods 1 and 2 - - i f  m and R(d) are known, method 1 is better than 
First notice that method 2 can be used in all cases method 2" see (17). 

where method 1 can be used but the converse is not - - i f  R(d) is known, but m is unknown and is replaced 
in (10) by its sample mean, then method 2 yields a true. Therefore the questions we face are: 
smaller interpolation error variance than method 1 : - -Are  we allowed to use method 1 ? i.e. can we 

check whether the RF is stationary? see Gevers (1984). 
- - I f  the RF is wide-sense stationary, does method In the more realistic situation where m and R(d) 

1, in practice, have any advantage over method 2? are both unknown, the following can be shown (see 
The following comments can be made. Gevers (1984)for a time-seriesversion of this result). 
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Note: In the stationary case, the variogram model function, then the following inequalities are satisfied 
would be chosen such that lim ? (d) is bounded. (Papoulis, 1965) 

d ~  z~ 

Suppose further that a minimum variance 
unbiased estimate rh is computed from the data (a) IR(d)l < R(0) for d > 0 
using the above /~(d) as the covariance function. (b)4"[R(O) - R(d)] < R(0) - R(4"d) for d > 0. 

Then the estimator (10) of .%, with m and R(d) Clearly, these inequalities are necessary (but not 
replaced by rh and/~(d), coincides with the estimator 

sufficient) conditions for R(d) to be a covariance. 
(13) of 30, with ?(d) replaced by ~(d), i.e. with this For intrinsic RF (with possibly infinite variance), 
estimation procedure for thestat is t icsoftheRF, the a wider class of functions are admissible as 
two methods are equivalent in the stationary case. variograms. Following similar arguments as for the 
Since method 2 is computationally simpler, and 

covariance, it can be shown (e.g. Matheron, 1965) 
since it also applies to some nonstationary random that a real function 7(d) is an admissible variogram if 
fields, it is to be preferred in practice, and only if 

4. ESTIMATION OF THE VARIOGRAM MODEL -E~i~j'[(dij) > 0 w i t h ~ ;  = 0 (24) 

4.1. Introductiou ;4 i 

In most applications, the number of equispaced for any set of arbitrary data points and arbitrary 
measure points is so small that it is difficult to obtain zero-sum numbers ~i. If a function y(d) has this 
a reasonable estimate of the variogram from the property, then -? (d)  has been called 'conditionally 
available data. Using the 'experimental variogram' positive definite' (Matheron, 1971). Note that the 
(see Fig. 2) in the interpolation formulas (15) may interpolation error variance s2o can be written 
lead to an ill-conditioned coefficient matrix and, in 
most cases, to completely absurd values for the (F F o ) ( 2 1 )  
interpolates ~; the application in Section 6 will S2o = - ( ) J - 1 )  F~ - " 
illustrate this point. It is therefore necessary to use 

analytic variogram models, and to infer the Therefore, if -v(d)  is conditionally positive definite, 
parameters of these models from the data. 

In this section, we shall briefly define the class of then s g is guaranteed to be positive for all possible 
locations of data points. As for the covariance, it is 

admissible variogram models, present some com- 
monly used models and describe various estimation easy to derive the following necessary conditions for 
methods for the parameters of the variogram an admissible variogram 

models. These methods can be subdivided into two 
classes: y(0) = 0 

li) either the parameters are adjusted so that the 7(d) > 0 for d > 0 
variogram model fits the experimental variogram in ?(2"d) < 4"7(d) for d > 0. (25) 

some sense: or 4.3. Commonly used variogram models 
(ii) or they are adjusted so as to minimize, in some The range of admissible parametric variogram 

sense, the interpolation errors computed with this models is of course endless, but the shape of the 
variogram model, experimental variogram obtained in numerous 

practical applications indicates that fairly simple 
4.2. The class oJ'admissible variogram models models can be used. The most commonly used 

It is well known that a real function R(d) is an variogram models are (Matheron, 1965; 
admissible autocovariance function for a wide-sense Delhomme, 1976): 
stationary RF if and only if it is nonnegative definite, 

i.e. ?(d) = c~d ~ (26a) 

~,~jR(d,j) ?(d) = ct [1 - exp(-rid) (26b) 
>/ 0 (22) 

7(d) = ~[1 - exp(-fld2)] (26c) 
for any set of arbitrary points (xi, y~) and arbitrary 
numbers {i. In fact, within the framework of BLU y(d) = ctlog(l + rid). (26d) 
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With this form, ct is called the 'scale factor' while Although very simple in principle, the least- 
~,*(d; fl) is called the shaping factor or the spatial squares method has a serious drawback: the 
autocorrelation factor. Then it is important to observations qi~ that are used in this least-squares 
observe that: regression are correlated, and this can lead to the 

N very undesirable situation where the addition of new 
(a) the optimal interpolator ~o = ~ 2izi is observations can deteriorate the quality of the 

i=1 estimated parameters. The following example 
independent of the scale factor, i.e. the 2~ coefficients illustrates this point. Consider five equispaced 
are independent of ~, but depend only on the measure points on a straight line: z l , . . . , z5  (see Fig. 
shaping factor (see (15a)); 3) and assume that the true variogram of the field is 

(b) the variance of the interpolation error (16) can linear: 7(d; ~) --- ~d. 
be written as 

I 2 5 4 5 
s~ = a V*(fl); and (28) ---o o o ~ o---- 

FIG. 3. Five equispaced data points. 
(c) in the case of a stationary field, with finite 

variance a 2 and covariance R(d), one can identify 
The least-squares estimate ~LS is given by (33) 

= a 2 (29) 
E E qijdij 

¥*(d;fl) = 1 - R(d)/a 2. (30) ~LS -- E Z d 2 " 

This clearly justifies the name of 'autocorrelation As Table 1 demonstrates, adding a third increment 

factor' for ~,*(d;fl). to {q13,q35} can either increase or decrease the 
variance of the estimation error. Note that in this 

4.4. Estimation of  ct and fl by the least squares 
case all overlapping increments are correlated. This 

method very simple example illustrates the problem that 
Given the measurements zl , . . . ,zN, one can arises when one uses a least-squares method with 

compute experimental squared increments correlated observations. In a 2-D context this 

problem is even worsened, because with any 
1 qij = ~(Zi -- Zj) 2 i = 1 . . . .  N;  j = i + 1 . . . . .  N reasonable variogram model two increments will 

almost always be correlated. This drawback can be 
partially removed by the generalized least-squares 

q~j is an unbiased estimate of T(i,j) and we can write method that we present now. 

qij = 7 ( d i j )  + Vij with E [vi~ ] = 0. (31) 4.5. Estimation of  ~ and fl by a generalized 

least-squares method 
Having chosen a theoretical model 7(d;0t, fl), the Assume as before a variogram of the form 
parameters ~ and fl are then obtained by minimizing 7(do) = ~*(dij;f l) .  We can now rewrite (31), for 
the cost function i = 1,... ,  N; j = i + 1 . . . . .  N, in vector notation 

N N 
J(ot, fl) = ~ ~ {q i j  - -  ~ ' [ * ( d i j ; f l ) }  2 (32) Q = ~F*(fl) + V (35) 

i=l j=i+l  
with the obvious definitions for Q, F* and V. Note 

Since J(~, fl) is quadratic in 0t, 8J/d~ = 0 yields that E{V} -- 0 by the constant mean assumption on 
the random field. We call C the covariance of V 

~LS(fl) = Z ~ qijT*(dij, fl) 
E E  [~,*(dii, fl)] 2 (33) C = E{VVT}. (36) 

fl is then obtained by minimizing TABLE 1. VARIANCE OF ~LS/O~ 
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Then the linear minimum variance unbiased (or experimental variogram by least-squares methods. 
Markov) estimate dM of ~ is obtained by minimizing Now if the variogram is estimated in order to design 
the following cost function: an optimal interpolator, it makes sense to use the 

minimization of the interpolation errors as a 
j(~, fl) = {Q _ ~F,(fl)}Tc I{Q _ ctF*(fl)}. (37) criterion for the estimation of the parameters of the 

variogram model. This is analogous to the idea of 
C is of course a function of ~ and ft. using a prediction error identification method for 

If the random field is Gaussian the estimation of the parameters of a dynamical 
model when this model is to be used for prediction 

g{1.'ijb'kl } = 2(yi/-~Yjk--]/ik--~jl) 2 purposes. This idea is developed in the present 
= 2~2(T~ + T~'k -- T~ -- T)~) 2 (38) section. 

Recall that, when the variogram has the form 
where the 7*s are functions of fl only. Therefore 7(d) = ~7*(d;fl), the optimal interpolation is inde- 

pendent of a (see Section 4.3). The scale factor 
C = ~2Z([3) (39) influences only the interpolation error variance. 

Therefore, by minimizing some measure of the 
where Z(fl) is a matrix function of [3 only. In such interpolation error, we shall be able to estimate [3 
case the estimation of ~ and fl can be decoupled, just only. The method proceeds as follows. 
as for the ordinary least-squares method 

(1) At each measure point ( i=  1 . . . . .  N)  an 
dM= dM(fl) = {F*(fl)TZ - l(fl) optimal estimate fi is computed based on the N - 1 

F * ( f l ) } - l F * ( f l ) v E - l ( f l ) Q  (40) other measure points, using the interpolation 
formulas of Section 2. In matrix notations, one can 

and ffM is obtained by minimizing write 

Z = A([3)Z. {42} 
J*(fl)  = J(~u(fl),  [3). (41) 

Comments  A([3) is a N × N matrix with zeroes on the diagonal; 
it depends only on /3 and on the location of the 

(a) If/3 is known, the estimation of a is more measure points. 
robust than with the ordinary least squares. Indeed, 
one can show that: (2) A vector of interpolation errors is defined 

(i) Var {iM} ~< Var {(~LS}; 
(ii) Var {dM} decreases when new increments are E ~ Z - Z = [IN - A([3)]Z. 143) 

added. 
This contrasts with the least-squares method, as The mean square interpolation error can then be 
illustrated in the previous section defined as 

The assumption that fl is known is not as severe as 
it might appear because, as we shall see below, [3 can Eq ~ (ERE) 1/2 = {Z x [I - A([3)] x [i - A(fi)]Z ] L,2. 
be estimated independently by an interpolation (44) 
error method. 

(b) A drawback of this method is that the matrix (3) The estimate fi is obtained by minimizing Eq 

Z([3), which must be inverted, can become very large, with respect to [3. 
Example: if N = i00, then the number of incre- 
ments (which is also the size of g(fl)) is 4950! This Comments  
dimensionality problem, coupled with the problem (a) As will be illustrated in Sections 6 and 7, the 
of correlation between the qij, leads one to think that interpolation error method gives better results than 
it might be better to estimate a and [3 using only a the least-squares methods, particularly when few 
subset of the available increments. The selection of a data are available. 
suitable subset of increments is the subject of (b)The drawback of the methodis that it does not 
continuing research. See Gevers and Bastin (1980) take into account the geometry of the measure 
for a further discussion of this problem and an points. One would expect that the interpolation 
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maximum likelihood method, which we shall now while fl is the minimizing value of 
describe, will tend to eliminate this drawback by 
incorporating the geometry o f  the measure points. 

L*(fl) = L ( ~ M L ( f l ) ,  f l )  = leTR-l(f l )e .u IX//~fl)l. 

4.7. Estimation of • and fl by a maximum (50) 
likelihood method 

We assume that the random field is Gaussian. The Remark: In the hypothetical case where the 
basic idea of the method is to search the values of ~ interpolation errors are uncorrelated, R(fl) is 
and fl that maximize the probability density of the diagonal: 
vector of interpolation errors E, see (43). Formally, 
this density is written R(fl) = diag { Vff/(fl)} 

{ 1 T 'E} withE*~(fl)definedforeacherrorasV*(fl)in(28).In 
f (E)  = {(2nfflREI}- 1/2 exp - ~ E  RE . (45) such case, no matrix inversion is required in (49). In 

actual applications however, the interpolation 
errors are never uncorrelated, but, in order to avoid 

But, obviously, (45) makes sense only if the the computation of R-l(fl), we shall often replace 
covariance matrix RE of E is invertible; this is the ML estimator (49) by a suboptimal estimator 
evidently not the case for the interpolation error derived under the implicit assumption that R(fl) is 
vector E defined by (43). In this case, indeed, the diagonal. We shall call this estimator 0~AM L (for 
matrix [IN - A(fl) ] is singular and the interpolation approximate maximum likelihood) 
errors in E are not linearly independent. 

The solution is to select a subset of M errors 1 ~ e 2 
among the N available ones in such a way that the (XAML(fi) ~--" M i=--~l ~ / "  (51) 

covariance is non singular. The vector ~ of these M 

errors can be written: We shall often refer to ~AML in later sections. 

= [A( f l )  - A ] Z  (46)  
4.8. Selection of a variogram model 

with A(fl) a M x N submatrix of A(fl) in (43) and A The procedure used in practice for the selection of 
is the corresponding M x N submatrix of I~ in (43). a variogram model among a set of candidate models 

It is easy to see that the covariance matrix ofe is of will be illustrated in the application of Section 6. 

the form 
5. N U M E R I C A L  S I M U L A T I O N  

In this section we illustrate, by a simple 
R~ = Eli; ~X] = ~R(fl) simulation study, some of the variogram estimation 

methods which have been described in Section 4. To 
and the distribution f0;)  is keep things simple, we consider a 1-D random field 

generated by the model 
f 1 ) 

f(£) = {(27z)M~M[R(fl)l}-l/2 e x p ~ - ~ c X R - l ( f l ) ~ "  Z k +  l = Z k  -~ - Wk (52) 

(47) 
where k denotes the kth point along a straight line; 

The likelihood function L(~, fi) is given by the points are assumed to be equispaced with an 
elementary space-step of unit length. Wk is a zero- 
mean Gaussian white noise with variance a 2 = 1. It 

L(~,fl) = - l o g f ( e )  is well known that Z k is a discrete Wiener-Levy 
M 1 M l process with variogram: 

= ~- og 27z + ~- og a 

0 -2 " 

+ ~log IR(fl)] + l exR- l ( f l ) e .  (48) ~'(d,j) = ~-It - J ]  = 0.5 dij. (53) 



148 G. BASTIN and M. GEVERS 

TABLE 2. THIRTY-THREE DATA 
POINTS GENERATED BY A 1-D 

WIENER-LEvY PROCESS f5o / Estimated LS 

/ k Zk 

1 0.076 qoo / / T r u e  
3 0.009 ~ f Estimated IE 

10 -4.631 ~,, 
11 -4.919 5o 
17 - 1.391 
18 0.250 
19 - 1.084 
20 -0.173 ~ t I t 
21 0.676 o ~o ~oo tso 
24 1.363 d 
25 0.893 FIG. 5. True and estimated variogram for model [52 L (53). 
26 2.819 
34 4.407 
43 4.388 
47 3.852 
57 3.908 interpolation error Eq, defined by (44), obtained 
68 4.087 with the true variogram and with each of the 
89 8.552 estimated variograms. 
95 8.232 
98 8.719 

102 8.351 Discuss ion  

133 11.179 (1) Notice the erratic behaviour of the experimen- 
138 9.890 
144 12.045 tal variogram. 
155 13.565 (2) Clearly the IE method provides a much higher 
163 12.545 accuracy for the parameter estimates ~ and fl than 
167 12.588 
168 11.583 the LS method (Fig. 5) although the latter gives a 
169 12.248 better fit to the experimental variogram (Fig. 4). 
170 13.130 (3) The mean square interpolation error Eq 
176 13.095 
185 11.462 obtained with the IE method is lower than that 
197 16.102 obtained with the LS method. This is to be expected, 

since with the IE method the interpolation criterion 
coincides with the variogram model selection 

parameters ~ and fl have been estimated using the criterion. 
least-squares (LS) and the interpolation (IE) 
methods described in Section 4. The results are 6. APPLICATION 1: CONTOUR MAPPING OF THE 
presented in Figs 4 and 5 and in Table 3. WATER LEVEL IN A GROUNDWATER RESERVOIR 

In this table, IE-AML means that fl is computed A typical application is the contour mapping of 
by the IE method of Section 4.6 and ~ by the the piezometric level (i.e. the level of the top of the 
approximate maximum likelihood (AML)formula  water table) in a groundwater reservoir. Such a 

contour mapping requires the estimation of the (51). Table 3 also shows the mean square 
piezometric level at all nodes of the grid covering the 
domain (in order to establish a chart of the 
piezometry) from measurements made at a few 

zoo Experimentat piezometers scattered within the reservoir (Fig. 6). 
The piezometric chart is of course of interest per  se: 

~ Estimated LS sometimes it is also used as input of an identification 
,50 procedure, whose objective is the modelling of the 

groundwater flow (Bastin and Duque, 1981)in the 

,oo aquifer. 

~ I"* t-'Estimated. IE  
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~ c e  • I 
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• 28 

B e d r o c k  2 ; 
e21 e27  

17 e3 
FIG. 6. Groundwater reservoir with piezometer, e26 e e 

I I~ 18 

• 2 0  

Here we shall use this application to illustrate o I ~ ~ ~ 
some of the features of the theory presented before: km 
computation of an experimental variogram, choice FIG. 8. Location of the 28 piezometers in the studied domain. 
of a variogram model, estimation of the variogram 
parameters by different methods, optimal in- 
terpolation of the piezometric field in view of 6.2. The experimental variogram 
contour mapping. A distance dmax = 5km is considered. This 

distance has been divided into 50 segments of 100 m 
6.1. Description of the data each, and the experimental variogram has been 

Figures 7 and 8 show the studied domain" a drawn as explained in Section 3. The result has been 
6 x 6 km area around Louvain-la-Neuve presented in Fig. 2. This experimental variogram is 
(Belgium). Twenty-eight piezometers were available fairly chaotic, and if it were used as such to compute 
and observed during October and November 1977: interpolated values of the piezometry, it would lead 
they are numbered 1-28 (Fig. 8). The coordinates to a mean square interpolation error at the data 
(xl, Yi) and the measured piezo levels z(xl, yg) are points of Eq = 171 m. This is totally unacceptable, 
indicated on Table 4. since the data points are all between 56 and 117 m. 

TABLE 4. (x, y) COORDINATES AND MEASURED WATER LEVELS FOR 
Archennes THE 28 PIEZOMETERS OF FIG. 8 

0 I k m  X Y Z 
t _ _ J  ~ No. (m) (m) (m) 

1 165390.0 153810.0 56.00 
2 168860.0 153365.0 89.47 
3 169040.0 149456.0 116.60 
4 167470.0 152785.0 84.73 

P 
i ,~  5 166650.0 152000.0 83.00 

' 6 167610.0 152175.0 89.08 
f'~ ,-J 7 167608.0 151651.0 90.00 

~ 8 166057.0 151156.0 83.12 
9 166329.0 150786.0 86.93 

10 166477.0 150590.0 88.48 
z-5 11 167345.0 151040.0 91.20 

J , 12 167899.0 150891.0 107.04 
' ~ 13 167629.0 150603.0 105.80 

14 167972.0 150942.0 109.17 
15 168042.0 150499.0 110.71 

Ottignies L / t  Grand 16 167965.0 150384.0 110.00 
~, ~ N  N 17 167115.0 149340.0 103.66 

18 167013.0 149312.0 104.03 
19 166325.0 149100.0 98.07 
20 165575.0 148600.0 85.50 
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This example shows clearly that the use of analytic 
variograms is absolutely essential. We shall see that aoc 
with such models the mean-square interpolation Toe / 
error will be of the order of 3 m. , / /  

60C ( 
6.3. Estimation of the parameters ct and fl /7  

Table 5 shows the result of the estimation of the ~oo / /  
parameters ~ and fl for the models (25) and for some 
combinations of the estimation methods proposed ~ ,oo A ~ , /  
in Section 4. 300 ,..,Z-, , ~ z ~  

In Table 5, LS means that ~ and/~ are computed i i i ~ i ¢ ~ / i / I  
by the least-squares method of Section 4.4, IE-AML 
means that ff is computed by the interpolation 
Method of Section 4.6 and ~ by the approximate 0 I 2 3 4 5 
maximum likelihood formula (51), IE-ML means d(km) 

that ff is computed by the IE method and ~ by the • i~) Model. ad•; LS method 
maximum likelihood formula (49). Figure 9 • ~) Model a[ I-exp(-/gdZ)]; LS method 
illustrates graphically some of the identified models. • @ Model. adg; IE-AML method 
Comments " @ Model a r l - e x p ( - ~ d  ? )] ; IE-AML method 

(l) As can be expected from Fig. 2, only FIG. 9. Estimated v a r i o g r a m m o d e l s f o r t h e p i e z o m e t r i c R F .  

variograms with positive curvature (i.e. ~d B and a [ 1- 
exp(-f ldZ)])  can be reasonably fitted to the 
experimental variogram. Indeed both LS and IE (4) For  the model ~d a, the mean square errors Eq 
methods converge to an estimate ff = 0 for the obtained with the LS and the IE methods are quite 
models with negative curvature, close (3.27 and 3.01). This does not mean that both 

(2) With the mean-square interpolation error Eq models are equivalent: although the interpolated 
as criterion, Table 5 shows that ~d p is by far superior values will be very close, the estimation error 
to ~ [ 1-exp( - fld2) ], even though the latter gives in variance s 2 (which is proportional to ~: see (27)) will 
fact a better least-squares fit to the experimental be twice as large with the LS model than with the IE 
variogram, model. 

(3) For the model ctd a, we have ~ML = 40.2 and 6.4. Contour mapping of the piezometricfield 
~AML = 31.2. ~AML, which can be considered as an To conclude the analysis of the previous section, 
approximation of ~ML, is of interest because it is the model 7(d;~,fl) = ~d p is selected with ~ = 31.2 
much easier to compute (no matrix inversion). On and fl = 1.44. This model can be used to estimate the 
the other hand, under the assumptions of Section 
4.7, it can be shown that (~ML)-1 has a Z 2 piezometric level at any point of f~ (Fig. 7). A grid 

with square elements of size Ax = Ay = 0.5 km is 
distribution with N degrees of freedom. This superimposed on fL and z(x, y) is estimated at each 
provides a statistical test to compare ~ML and node of the grid using the interpolation formulas 
~AML : ~AML is accepted as an approximation of (~ML, ( 13)- ( 15 ). A contour map can then be obtained from 
with 90% confidence, if the following inequality this grid and is represented in Fig. 10. Since the 
holds 

(~AML] -1 /2  optimal interpolation technique provides not only 
0.778 ~< ~< 1.215. piezometric estimates, but also estimation standard 

~ M L  / deviations, a contour map can also be drawn 
It is the case here. showing the areas of equal deviations. This is shown 

TABLE 5. ESTIMATION OV ~ AND/~ FOR VARIOUS VATIOGRAM MODELS 

Variogram Estimation 
model  me thod  ~ ff Eq JLS 

~d ~ LS @ 91.49 1.29 3.27 3.51 107 

IE-AML (3) 31.20 1.44 3.01 
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! i !  / / / / ~  observations made at a few rain-gauges scattered in 
the basin. This estimate is needed for the 
development of real-time rainfall-riverflow fore- 

5 casting models (Lorent and Gevers, 1976). 
The 'rainfall function' is denoted z(k, x, y): it is the 

volume, per unit area, of precipitated water at the 
point (x, y) during the day of index k. For a fixed k, 
the function z(k, x, y) is viewed as a realization of a 2- 
D random field denoted Z(k,x,y) whose mean, 
variance and variogram are assumed space- 
stationary and denoted" 

re(k) = [Z(k,x,y)] (54) 

• " " ' a2(k) = E{ [Z(k,x,y) - re(k)] 2 } (55) 

/ 7 : / /  / / ?(k'i'J)=~E{[Z(k'xi'yi)-Z(k'xj'YJ']z}'(56' 

7.1. Description of the data FIG. 10. Contour map of the piezometry for the studied area in 
Fig. 7, with piezometric levels in meters above sea level. The dots A map of the Semois river basin (1230 km z, 

indicate thelocationsofthepiezometers. Belgium) is shown in Fig. 12. Seven years 
(1969-1975) of daily rainfall observations are 
available in 17 rain-gauges, the locations of which in Fig. 11. As could be expected, the standard 
are indicated on the map. deviation increases in areas where there are few 

measure points. In practice, the computation of the 
7.2. Optimal estimation of the average rainfall experimental variogram, the fitting of various 

standard variogram models, the optimal in- Assume that N rain-gauges, numbered l-N, are 
terpolation, the computation of Eq and the contour available in the basin, and denote the observations 

on day k by mapping can be done automatically by a software 
package KRIGEA/CARTO developed at Louvain 
University by the Automatic Control Group. z(k, 1), z(k, 2) .... z(k, N). (57) 

Consider a discretization square grid of M nodes, 7. APPLICATION 2: ESTIMATION OF THE AVERAGE 
RAINFALL OVER A RIVER BASIN numbered N + 1 to N + M, superimposed on the 

We consider the problem of estimating the daily basin, and denote the (unknown) rainfall at these 
average rainfall over a river basin, from daily rainfall nodes on day k by 

Z(k,N + 1) . . . . .  Z(k,N + M). 

I l l  t" / 
~ \  ~ 3  ~ t~ ] /  \ basin)The daily average rainfall over the area (i.e. t h e i s  defined as 

5 ~ 3 1M 
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Note that A(k) is a space-average, not a time- variogram identification can be found in Lorent et 
average: it is a discrete time series with variance al. (1982). In this brief report we give only the main 

result. The selected variogram is of the form 
o2(k) -- o'2(k) - 6A(k) (59) 

y(l, dij)=ct(l)d~j l =  1 . . . . .  12 (64) 
where 

The estimate offl, obtained by LS, is ff = 0.51. The 
= ~1 ),(k, N + i, N + j). (60) monthly values of ~(l) are shown in Table 6 and 

6A(k) M~i-  j=l illustrated in Fig. 13. These results clearly show the 
seasonal behaviour of the rainfall field: in summer, 

Clearly a~(k) is smaller than a2(k), since 6A(k) is local storm showers tend to produce large spatial 
positive. By a straightforward extension of Section variations in rainfall, while in winter the rain is more 
2, a linear minimum variance estimator of A(k) homogeneously distributed over the whole catch- 
can be obtained from the measurements ment area. 
z(k, 1 ),..., ztk, N) 

7.4. Identification of daily variogram models 
M Our analysis has shown that choosing a unique 

,4(k) = ~, 2iz(k,i). (61) model within a given month would lead to a 
i = 1  

systematic bias of the estimation variance: a 
The coefficients 2~ are the solution of the linear systematic underevaluation of a 2 for high-intensity 
system rainfalls and an overevaluation for low-intensity 

rainfalls (see Lorent et al., 1982). Therefore, we have 
~ 1  M N been led to a variogram of the form 2j?(k, i,j) + # = ~ j 7(k, i, + J) 

j= 1 "= 

i =  1 . . . . .  N 7(k,d~j) = 7(k)d~ (65) 
M 

2j = 1. (62) with ff = 0.51 as in (64), but where ~(k) is estimated 
j¢= 1 daily by a least-squares fit to the cluster of points 

The estimation error variance is written corresponding to the experimental variogram of 
that particular day. The structure (65) of the 
variogram has important implications for the 

at(k) = E{ [A(k) - A(k)] 2} computation of A(k) and a2(k). 
1 v'M x-'M (1) It can be shown that the coefficients ~i of/l(k) 

_-/7'1 ~1 217(k, i, N + j). (see (61)) are independent of ~(k) and consequently 
(63) time-invariant. Hence ,4(k) turns out to be a unique 

time-invariant weighted sum of the observations 
7.3. Identification of  monthly variogram models z(k, i), where the weighting coefficients depend only 

In order to take the potential seasonal trends of upon the geometrical location of the rain-gauges 
the rainfall into account, we assume a piecewise and can be computed once and for all. 
stationary seasonal trend (on a monthly basis) for (2) It can also be shown that 
the rainfall RF. More precisely we assume that the 
variogram 7(k,i,j) is time invariant during one aZ(k) = ct(k)V~ (66) 
month, but not necessarily from one month to 
another. Furthermore we assume that the time non- TABLE 6. MONTHLY LS ESTIMATES 
stationarity of the RF is periodic with a period of ov ~t FOR THE VAR1OGRAM MODEL 

y ( 1 , d )  = ~t(1)d ~ WITH fl = 0.51 
one year. Then, all the available rainfall events are 
divided into 12 classes, one class for each month: for k ~ik) 
example, the data of November 1969, November 
1970 . . . . .  November 1975 are taken in the same class January 0.23 
and processed together for the estimation of a February 0.31 March 0.34 
variogram model. April 0.30 



Estimation in random fields 153 

TABLE 7. SEMOIS RIVER BASIN. 
WEIGHTING COEFFICIENTS OF THE 

26 d 0 I.y OPTIMAL RAINFALL ESTIMATOR 

24 
Rain-gauge 21 

a2 No. (%) 

2c 1 0.8 
2 2.0 
3 3.8 

J 6 4 2.0 
5 3.6 

\ 6 3.3 I;:: 14 
E 7 8.5 

"7-_ 12 8 9.6 
~ ,  May 9 6.5 

io ~ 10 3.9 
11 5.2 
12 8.9 
13 4.0 
14 9.8 

Feb 15 7.4 
16 8.6 

Nov 17 12.1 

2 ~ I~ 0.48 

I I I I I I 
,o ao 30 40 ~o 80 

dijtkm) (ii) compute 0t(k) by least-squares fit to the 
FIG. 13. Estimated month ly  variograms,  experimental variogram; and 

(iii) compute 62(k) = 4(k)V~E. 

with V~E a normalizedzt t.-~time-invariant variance. The With this procedure, the time-nonstationarity of the 
time dependence o f  trE~,~J is only through ~t(k). rainfall field is concentrated in the time-varying 

Therefore, the practical procedure for the daily parameter ¢(k) which takes into account both the 
computation of the average areal rainfall is as seasonal and the intensity variations. Tables 7 and 8 
follows: show some typical results of this estimation 

(a) compute, once and for all, the weighting procedure. 
factors 2i and the normalized error variance V~; 

(b) for each day k 7.5. Optimal selection of rain-gauge locations 
N 

(i) compute/i(k) = ~ 2iz(k, i); Once the variogram parameter model has been 
~= ~ fixed, the normalized variance V~E can be viewed as 

TAaLE 8. SEMOIS RIVER 8ASIN. ESTIMATION RESULTS FOR SOME DAYS CHOSEN IN THE YEAR 1971 

Rain-gauge 
No. 26/1 26/4 18/6 16/8 19/12 

1 33.7 14.4 27.0 14.2 11.4 
2 34.7 17.2 26.0 11.4 11.8 
3 32.3 16.3 31.6 24.0 12.9 
4 29.0 15.5 34.2 14.2 16.3 
5 33.8 16.6 33.6 20.0 13.2 
6 32.0 16.8 35.2 9.1 9.8 
7 30.3 20.0 26.4 7.7 9.5 
8 35.8 17.8 32.3 12.3 11.2 
9 31.5 15.7 19.3 8.2 10.0 

10 28.4 15.6 41.8 23.2 7.3 
11 33.9 20.7 28.2 7.0 12.4 
12 39.5 19.6 39.6 22.8 9.2 
13 35.3 12.8 29.3 24.5 12.8 
14 28.2 24.5 32.9 11.0 12.0 
15 24.5 23.1 38.4 11.1 8.0 
16 31.0 21.4 24.3 7.8 11.1 



154 G. BASTIN and M. GEVERS 

depending exclusively on the location of the rain- random fields with stationary increments, but also 
gauge locations. Therefore, V~ is an efficient tool for because it is as efficient as the covariance in practical 
solving rain-gauge allocation problems. We illus- applications to presumed stationary fields. The 
trate this point by showing an iterative selection of problem then becomes one of choosing an 
the most representative rain-gauges in the basin, appropriate variogram model and of estimating its 
Two potential supplementary rain-gauges (num- parameters. We have defined the class of admissible 
bered 18 and 19) are added to the seven existing ones variogram models, and examined several parameter 
(Fig. 12). For each of the 19 locations, we can estimation techniques. We have illustrated these 
compute V* as if each of these locations was the only techniques with two applications, both drawn from 
one available, and select the one that leads to the the field of hydrology but very different technically. 
smallest V~'. Next we can add to this first gauge a From the experimental results we have concluded 
second station which, combined with the first one, that the IE and M L methods seem to be more robust 
leads to a minimum V* again. This procedure can be than the LS method for the estimation of fi and that 
continued, adding more stations and monitoring the mean square error  Eq turns out to be better than 
the decrease of ~ ,  until the obtained precision is the LS criterion J for the selection of a variogram 
judged satisfactory. The result is shown in Fig. 14. model among a set of candidate models. 
We notice that: Certainly there is room for refinements and 

(a) The last seven rain-gauges chosen (Nos. further theoretical developments. We may mention 
6,10,5,11,4,2,1) are obviously superfluous, since the following points which are the matter of our 
including them in the optimal estimator does not present research: 
result in any significative decrease of V*. theoretical analysis of the robustness of the 

(b) The two supplementary locations (18 and 19), identification methods with small data sets; 
where no measurements had been collected, are convergence analysis of the identification 
clearly among the best possible locations. Following methods for large data sets (the difficulty here is to 
our study of the rainfall in the Semois river basin, give a precise meaning to the notion of a 'large' data 
two additional rain-gauges were installed in these set in a 2-D context); 
two locations, use of cross validation to validate the 

variogram models (in our applications, cross 
8. CONCLUSIONS validation was almost impossible due to the scarcity 

We have given a self-contained and hopefully of the data points: 28 in the piezometric application, 
informative presentation of the interpolation 16 in the rainfall application; examples of cross 
problem in 2-D random fields with scattered data. validation can be found in Lebel and Bastin, in press; 
We have shown that the major difficulty in applying tests of stationarity in R F with scarce and non- 
Best Linear Unbiased Estimators to real life 2-D equispaced data points. 

problems is the estimation of a model for the RF. To We hope the reader is by now convinced that this 2- 
obtain meaningful results in applications where the D interpolation technique has a wide range of 
data are scarce, this model must take the form of an 
analytic expression for the spatial covariance or for potential applications. 

the spatial variogram. We have argued that the Acknowledgements The authors wish to thank the Fondation 
variogram is preferable, mainly because it covers Universitaire Luxembourgeoise and the Fonds de 

Developpement Scientifique (UCL) for providing the support for 
this research, B. Lorent and the members of the Department de 
Genie Rural (UCL) for providing the data and for useful 
discussions, and also C. Obled for some interesting discussions. 
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