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Robust Feedback Stabilization of Chemical Reactors

F. Viel, F. Jadot, and G. Bastin

Abstract—This paper deals with the temperature stabilization exothermic irreversible reactiod — B in a cooled continu-
of a large class of continuously stirred tank chemical reactors. oysly stirred tank reactor (CSTR). The related robust control
We design state feedback controllers, and we show their ability to . ,p1em is to find a feedback law (for the heating rate provided
globally stabilize the temperature at an arbitrary set point in spite . .
of uncertainties on the kinetics. Furthermore, it is also shown O the reactor) in order to regulate and to globally stabilize
that these controllers can handle input constraints along the the temperature at an arbitrary set point with some robustness
closed-loop trajectories in some instances. For the implementation against uncertainties in the knowledge of the kinetics. It has
e moesanen. s e rovs e o ooy 256N hown In 7] tht n the case f fstorce Knetes,
ﬁ\ the feedback loops doe’s not impgir the nominal stat?ilization simple Pl controllgr can glqbally stabilize thi; kind 9f reactor.
properties of the controllers. Such a controller is robust in the sense that its design does not
require an exact knowledge of the kinetics. Considered in [8]
and [9] fornth order kinetics is input/output (I/O) linearization
(i.e., feedback of concentrations and temperature). In these
papers, the uncertainty of the kinetics is restricted to lie in a
.- INTRODUCTION few constant parameters entering linearly in the model, and a
HE DESIGN of stabilizing feedback control laws forclassical adaptive techniqgue model reference adaptive control
unstable chemical reactors has been studied extensivelyMRAC)-type is used, which can globally stabilize the closed
the past since the pioneering paper of Aris and Admunsen [Idop. In [10], the I/O linearization technique is combined
The engineering motivation relies on the fact that the reactwith the robust stabilization methods of [11] and [12]. The
operation near or at unstable steady states often correspondsrtmosed controller is time varying (it involves an explicitly
an optimal process performance (like, for instance, an optimuime-dependent decaying term) and makes the temperature
tradeoff between yield and productivity, or between conversignactically stable at its set point. It is also worth noting that
and selectivity, or between catalyst activity and longetivityione of these mentioned control methods is able to account
see, e.g., [2]). for a saturation of the control input along the closed-loop
The feedback control of chemical reactors is a problefrajectories. It is, however, well known, as illustrated in [13],
which is made difficult by the inherent nonlinear nature ahat saturating the temperature controller of an exothermic
the involved mechanisms. Open chemical reactors, indeglactor can impair its nominal stabilization properties.
are well known to exhibit multiple (stable or unstable) steady |n this paper, for a general class of CSTR’s, we propose
states, limit cycles, and even chaotic behavior. a set of controllers that guarantee thobal temperature
In the last ten years, there has been a great deal of activityapilization in spite of strong uncertainties on the dependence
the nonlinear feedback control (especially feedback linearizge the kinetic functions with respect to the temperature. A main
tion) of chemical reactors. Typical references among othggsiyre of these controllers lies in their capability of handling
are [3]-{6]. Numerous successful applications have also b&&g;t constraints in some instances. Moreover, if the reactor is
reported in the literature. _ _ lobally asymptotically stable in the isothermal condition, then
There are, nevertheless, important theoretical questions IEE}F results turn into global stabilization of both temperature
are stllllopen. Ong of them, which is the main concern of théc‘nd concentrations. (Here, we point out that in spite of the
paper, is the design of feedback control laws that are: global asymptotic stability in the isothermal condition, the

Index Terms—Chemical reactors, robust feedback stabilization,
robust observer, temperature control.

* globally stabilizing; o overall dynamics of the open-loop reactor can be unstable).
* robustagainstkinetic uncertainties The design is based on I/O state feedback linearization with
* robustagainstcontrol input saturations an appropriate dynamic extension.

One of the particular control problems which was most The stability results that are available in the literature are
commonly investigated is the temperature regulation of a&xtended in five main directions.
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In particular, we do not restrict ourselves to mass- the concentrations that vanishes if and only: jf= 0 for

action type kinetics, and we allow for nonmonotonic  some reactanj involved in theith reaction.

dependence on both concentrations and temperature. « B(z,T) = KT (T)e(z) with KT(T) = (biki(T),
3) For each proposed controller we give a rigorous proof of  boko(T), - -+, bk (T)), Where the coefficientd; are

theglobal temperature stabilization. By global, we mean  constant ando(z) = (¢1(z), @2(z), -, @m(z))?.

that the temperature stabilization is achieved, whatevernopte thatyT stands for the transpose Vectorgpf

the initial conditions of the system are. (We only require Let us introduce the first assumption that will be used
that the initial conditions are located inside the physic@hroughout the paper.

domain of existence of the system.) H1 (Principle of Mass Conservation)There exists a pos-
4) In some instances, we prove the ability of the contive vector of dimensionn,w = (wy,wa, -+, wy) T
trollers to handle input constraints: the control inpuf, > 0,5 = 1,---,n such thatw? C = 0.
remainsnonnegativealong the closed-loop trajectories Thjs assumption implies that the reaction system is mass-
(in accordance with the physical requirements of theéonservative, or in other words, that what is produced by the
problem). reaction system cannot be larger than what is consumed. It
5) Since our controllers are state feedback controllergiso enables one to state a useful result on the boundedness
they require for implementation purpose the on-lingf the concentrations in a chemical reactor described by the
knowledge of the full state, i.e., concentrations anghodel (S).
temperature. A robust state observer is designed in the_emma A.1 (Uniform Boundednesd)inder ~ Assumption
case of partial state measurements. We prove that e, the concentrations:;(t) remain nonnegative for alt
incorporation of this observer in the feedback loops dogs ;(0) > 0, and we admit, furthermore, as a positively
not impair our nominal stabilization properties. invariant domain, the compact sét = {z € R™:Vi,z; >
The organization of our paper is as follows: in Section Ip, w"z < w?z"}.
we present the general class of CSTR we consider, and we Proof: The dynamic equation for th&h concentration
define the control problem. In the third and fourth sections, vie given by
address the control design when the kinetics are, respectively,
known or uncertain. Section V is devoted to the observer &= Zciﬂ’j(%T) +d($§n — ;)
design and to its use together with the nominal stabilizing -
state-feedback controllers. For the sake of illustration, a simple
application is presented in Section VI. and we havei;(z; = 0) > 0 since Y¢;;r;(z,7) > 0
whenz; = 0. Hence, the concentrations remain nonnegative
provided thatz;(0) > 0,Vi. Defining Z as Z = w?z, we
have by Assumption H1Z = —d(Z — w¥z'™). Hence,
Z(t) < wlz™ for Z(0) < whz™, and the compact set
Q= {r € R:Vi,z; > 0,wlsz < wlz™} is positively

7

J

Il. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

A. System Description

We will consider throughout the paper CSTR’s that ar@variant by the dynamics of (S). [ |
described by the following set of dynamic equations: As a consequence of Lemma A.1, the vector of concentra-
‘ tions z will be restricted to the bounded s@tthroughout the
(S){jz =Cr(z,T)+d(z"™ — x) paper. Thisuniform boundedness of the concentrations with
T=B(T)-ql +u. respect to the temperature trajectory will be a key point for

] ) our future developments.
In these equations, we have the following.

* z is the vector of the concentrations of the involve% Control Problem Statement

chemical species (reactants and products), €ig n. o -
« 2" is the vector of nonnegative and constant feed con- The control problem we consider is to globally stabilize the

centrations, dimz* = n. temperature at a given set pofiit' > 0 with a nonnegative
« T is the reactor temperature. feedback controk(z,T) = 0.
« r(z,T) is the vector of reaction kinetics, dim= m, and The requirement of monnegativefeedback control comes
(2, T) = (ro(z,T),r2(@,T), -, rm(z, T)). Note that from the fact that the control inpui represents a heating

m is equal to the number of chemical reactions takingt€. provided to the reactor from outside. So, it has to be

place in the reactor. nonnegative for having a physical meaning.
« C is the stoichiometric matrix, din® = n x m. This control problem will be considered under the following
* B(z,T) is the reaction heat. assumptions.
» d,q are positive constants!(is the dilution rateg is a H2) The full state(x,T’) is measured.

heat transfer coefficient). H3) The functionsk;(7T") are positive, bounded, and glob-
* v is the input, i.e., the manipulated heat. ally Lipschitz on]0; £o0].

o ri(x,T) = ki(T)pi(z), wherek;(T) is a positive and  H4) The isothermal dynamics
bounded function of the temperature (for instance, the ‘
Arrhenius law), andp;(z) is a nonnegative function of & =Cr(z,T%)+dz™ —z)
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are globally asymptotically stable at the single equi- point 7*, the feedback controk(z,T) is nonnegative
librium pointz € §2. By Lyapunov converse theorems along the closed-loop trajectories, afd(t),7'(t)) €
[14], we know that there exists a positive definite Q2x]0, +o0[ for all ¢.

Lyapunov functionW (z,z,T*) such that its time-  2) If, in addition, Assumption H4 is satisfied, then for all

derivative 3> q, the closed-loop system is globally asymptotically
ow 17T ‘ stable at the equilibrium poin@, 7).
[%} (Cr(z,T*) +d(z" —x)) Proof i): By definition, the state feedback controller

w(zx,T) is always nonnegativ&’t > 0,u(x(t),T(t)) > 0.
is negative definite. We further assume that there existforeover, we have

a positive definite functio such that
oW B VTle:ﬁL, T<0.
Or <arp(z —7T) P-q

ow 17T . in ) _ Hence, after a finite time¢; we haveTl” > T; and the state
{8—33} (Cr(z,T7) + d(z™ — x)) < —a2¢™(x — 7) feedback controller reduces to

for some positive constants and a,. w(z, T) = B(T* = T) + qT — Bz, T)
We will see in Sections V and VI how Assumption H2
can be relaxed by using an observer. The reader can refefdp¢ > ¢,. Then, the temperature dynamics are
[15] and [16], where fairly general sufficient conditions on the
kinetic scheme are given so that the isothermal stability As- T = B(T* = T).
sumption H4 holds even in the case of autocatalytic reactions.

We point out that in spite of the global asymptotic stability of ii): Now, using H4 and Lemma A.1 together with Theorem

the isothermal dynamics, the overall dynamics can .be OP&d of Appendix A, we obtain that the closed-loop dynamics
loop unstable. Note also that the technical Assumption H3 dge globally asymptotically stable (g.a.s.) at the equilibrium
satisfied when thé;(T) functions are given by the Arrhenluspoim @, T%). -

law. _ _ Before considering the exothermic cagei,b; >0), we
Two situations for our control problem will be consideredingguce the following additional realistic assumption:

1) The kinetic rate functions(x, T") and the reaction heat H5) The temperature set poiff* is such thatve e
B(z,T) are assumed to be known. Q,qI* — B(z,T%) > 0.

2) The temperature functionk;(I') and theb; constants This assumption can be regarded as a kind of feasibility

Ir::\;l(zzlt\i/grcui 'hneg;g (I;ln;')tlca::tlejrl:tligg\[,lvonns(a:,T) and in the condition on the open—l_oop system. Indegd, it implies that the
SN ) ' static input corresponding to the equilibrium poiat 7*) is

The second situation is motivated by the fact that 'Positive. Then, we can state the result.
many applications, although the sto_lghlometry a_nd the kineticTheorem 3.2—Exothermic Cag#i,b; >0): We have the
scheme are well known, the empirical Arrhenius law M3 lowing.
exhibit some uncertainty.

In this paper, we do not take into account any time-varying
parametric uncertainty. This type of uncertainty has been
considered in [17] for the control of a chemical reactor.

1) Under Assumptions H1, H2, and H4, for &> 0, for
any initial condition (z(0),7°(0)) € Qx]0,+oc[, the
state feedback controller

. CONTROL DESIGN: KNOWN KINETICS u(@, T) = f(I" = 1) +qT = B(,T)

By known kinetics, we mean that the functiong, T') and is such thatz(t), T(t)) € Qx]0, +oc] for all ¢, and the
B(z,T) are known, which implies in particular that all the closed-loop system is globally asymptotically stable at
coefficients involved in these functions are perfectly known. the equilibrium point(z, 7).

Our first result to be presented hereafter states that &) If, in addition, Assumption H5 is satisfied, there exists
saturated (lower bounded) state feedback controller resulting * g« - ¢ Jarge enough and >0 small enough such that

from 1/O-linearization produces the global stabilization of an  \ith the state feedback controller
endothermic reactofvi, b; < 0) described by the model (S).

Theorem 3.1—Endothermic Cas#, b; < 0): Consider the wz,T)=8(T)- (T* -=T)+ ¢TI — B(z,T)
state feedback controller B(T) = B* VT €]0;T*]

€
T—=T*

w(x, T) = max[0,8(T* = T) + ¢qT] — B(z,T).

B(T) = min [ /3*}, VI € [T, 4+o0]

We have the following.

1) Under Assumptions H1 and H2, for &> g, for any the closed-loop dynamics are globally asymptotically
initial condition (x(0), 7(0)) € 2x]0,+occ[, the reac- stable at{z, 7). Moreover,u{x,T) > 0 on Qx]0; 1],
tor temperaturel” converges asymptotically to the set for someT, > T*.
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Proof i): Under the feedback controller temperaturel’ globally converge tar and 7™ (for any
initial condition (z(0),7°(0), #(0)) € £x]0, +-oo[x R).
wz,T)=p(T* -=T)+qT — B(z,T) Proof i): The closed-loop dynamics can be written as

— * T ) — T
the temperature dynamics are given by . AT AR el ) = g0 ele)
8; = (T — T%)sign (b;)b:pi(x)
= B(T* - T). with AK(T) = K(T) — K(T*).
It is easy to check that fof3>0 large enough, the set

Using Assumption H4 and Lemma A.1 together with Then x]0, +oo[x R is positively invariant by the closed-loop
orem A.1 of Appendix A, we conclude that this feedbaclynamics.

controller will stabilize (S) a(z, ™). Let us consider the candidate Lyapunov function
ii): At first, let us consider the casg(0) < 7*. Hence,

Assumption H5 implies that

Note that this function is differentiable, has a global minimum,

I <T* stV >0, VoeQ, VIel[l,T7] and is radially unbounded oR x R"*. We obtain
w(z, T)>0 .
V< =BT = TP + |AKD)]| - le(@)]| - |T* = T
For T € [T(0),T1], we haveu(z,T) > #*(T* —T1) +
qT'(0) — B(z,T). By choosing #* such thatV(z,T) €
x]0,71], * > B(z,T), the inputw(z,T) will be positive.

Using Lemma A.1 together with Assumption H3, there
exists a positive constart/ such that

Assume now thafl’(0) >T*. Hence,vt > 0,T* < T(t) < V< =BT =T+ M(T* = T)%
T(0). Assumption H5 also implies that for>0 such that )
e<ql* — B(z,T),Vz € Q, then Hence, by choosing > 0 large enough, we have

V< (=B+MY(T*-T)?<o0.
I >T st.VeeQ, VI e€[T* T, ¢ —BxT)>e¢
Using the properties of our Lyapunov functidn it then

On the set) x [1*, 1], we haveu(z,T) > B(T) - (I* — follows that the reactor temperatuféand the variable8; are
T)+e¢, and by using3(T") = min [e/(T'—T*), 5*], we obtain bounded. (Remember that by Lemma A.1, the concentrations
w(z, T) > 0. m <z are already bounded.) So, we can invoke the Invariance Prin-

ciple [18] to claim that whatever the concentration trajectory
is, the reactor temperatufg will converge to7™*.
ii): It remains to prove now that under Assumption H4, the
What we mean precisely by uncertain kinetics is that th&ncentrations will converge to their equilibrium point To
functions k;(T") and the constants; of the model (S) are do so, we introduce a new Lyapunov function. From Assump-
unknown, but the sign of the constaritsis assumed to be tion H4, there exists a positive definite functidh(z, z, 7*)
known. To know the sign ob; is equivalent to knowing such that in isothermal operation, its time derivative is negative

whether theth reaction is exothermic or endothermic. Accorddefinite. Then, consider the candidate Lyapunov function
ing to Assumption H3, we will denote by; the upperbound W. We have

on the functions|b;|k;(T). More precisely,«; is such that

a; > b |k: (T). [What we really need is that; > |b;|k;(7%).] VW <(=f+M)(T*—T)*+ [
Theorem 4.1—General Case (Endothermic or Exothermic):

Consider the dynamic state feedback controller

u(z, T,0) = (T" = T)+qT — g* () ()
6; = (T — T*) sign (b;)0;0i(z) t=1,---,m

IV. CONTROL DESIGN: UNCERTAIN KINETICS

oWt
Oz
A(Cr(z, T*) + d(z™ — z)) + H%—Z/

NCr(x, T) — Cr(z, TY)||.

From Assumption H4, we know that
with 2>0,6 = (---,6;,--)7 € R and g() = (--- -
sign (b;)(i0; /(i +6:)),-- ). Then, we have the foIIowmg {8_W} (Cr(z, T*) + d(z™ — 2)) < —asda(s — T)
1) Under Assumptions H1-H3, fof >0 large enough, z -
for any initial condition (x(0),7(0),6(0)) € Qx]0, gng
oo[ xR, the state (x(t),T(t),0(t)) € Qx]o,

+oo[x R for all time ¢, the reactor temperatur@ H H < a1z —T).
converges to the set poifit*, and the variable®; are
bounded.

. . . . L Now, using Lemma A.1 and Assumption H3, we obtain
2) If, in addition, Assumption H4 is satisfied, then for

2> 0 large enough, the concentratiansnd the reactor |Cr(x,T) = Cr(z, T*)|| < a3|T = T7|



VIEL et al. ROBUST FEEDBACK STABILIZATION OF CHEMICAL REACTORS 477

for some constants > 0. So, there exist two positive constants Proof i): By definition, the input is nonnegativét >
ay and a4 such that 0,u(x(t), T(t),6(t)) > 0. Moreover, we have

VAW S (=p+MT* = T)* - a¢*(z — 7)
+ asp(x —T)|T = T7|.
Eventually, it is easy to check that fgr> 0 large enough, (Note that this property holds because of the role played by
the right-hand side of the preceding inequality is negati\;Be h(T) function in the feedback control law.) Hence, after

definite. More precisely, fop > 0 large enough, there exists? finite time#; we haveT < 7;, and the feedback control
a positive definite matrix? such that reduces to

VYT >T, Vo e Ry, T<o.

V+W < ~(¢(a =), |T = T*)P(¢(z ~ 7), |T - T*|)7. u(z, T,0) = B(I" = 1)+ qT = K(T)g" (O)p(z)

Hence, it follows from the Invariance Principle [18] that th
concentrations: converge to their equilibrium poiri. ]
The design of the dynamic state feedback controller " T " T
Theorem 4%[ is based gn the 1/O-linearization technique t(())i: =" = 1) + [AE(D)) () + [K(T7) = M(T)g(0)]
gether with an appropriate dynamic extension. The dynamic ()
extension has been obtained via the Lyapunov redesign methfd= (T* = T)8;0:(x)
using a Lyapunov function inspired from the one considered
in [15] for the open-loop analysis of a class of isothermglith A(K)T" = K(T) — K(T*). As a candidate Lyapunov
reactors. The additional staieés an internal and bounded statgynction, we choose
of the controller which is able to asymptotically compensate
for the m(_)del uncertaint.ies. Let us point out that our modgh _ % (T*—T)Q—l-Z(oci In (cv; In (o +6;)+biks (T7) In (6;)).
uncertainties do not satisfy the structural property known as p
the matching conditiorsince they also appear in the control-
free dynamics of the concentrations. The technical keypointwe obtain
to overcome this situation lies in the use of the uniform
boundedness of the concentrations (Lemma A.1). For the use V < —3(T* — T)? + ||AK(D)|| - ||¢(x)|| - |T* = T
of the matching condition in the robust control of chemical . a;0;
processes, the reader can refer to [19], where the practical +(T-T )Z%(a:) o +9i(h(T) - 1.
stabilization of two isothermal reactors has been obtained. ‘
Although the result presented in Theorem 4.1 is general (it
covers for instance the situation where a mixture of endoth%;— T
mic and exothermic reactions take place), the nonnegativen 8
of the input along the closed-loop trajectory is not ensured.
However, in the endothermic case (the constdptare all
negative), we have the deeper result. ) ) )
Theorem 4.2—Endothermic Cag#, b; <0): Considerthe ~ USing Assumption H3 and Lemma A.l, there exists a
dynamic state feedback controller positive constantl/ such that

Sor ¢ > t;. Then, we can consider the closed-loop dynamics

Since h(T") — 1 vanishes forI’ < T* and is negative for
, we have

V< =BT =T + ||AK(D)|| - lp(@)l| - [T+ = T.

(e, T,8) = max (0, B(T* = T) + qT] = i(T)g" (6)p(x) V< =BT =T)? + M(T* - T)>
0; =(T* = T)bigi(x) i=1,---,m
Hence, by choosing > 0 large enough, we have
with /3>Q79 = (7 eiv"')T € %7-17}7.9(9) =
(oo, —(ab;/(c; + 6)),--)T and h(T) a decreasing V < (=B+M)T*—T)2 <.
positive C3; +oc[-function such thatu(7) = 1 for T < T* - -
andh(T) = 0 for T > Ty, whereT; = gT*/ ( — q). Then,

we have the following. So, T converges tdl™.

ii): The rest of the proof is similar to that of Theorem 4.1.

1) Under Assumptions H1-H3, fof > ¢ large enough, [ |
for any initial condition (xz(0),7°(0),6(0)) € £x]0, Corollary 4.1—Single Reaction Casén the single reac-
+oo[x R, the state (x(t),T(t),6(t)) € Qx]0; tioncasgm = 1), if all the reactants are fed to the reactor (the
+oo[ xR for all ¢, the reactor temperatuf converges zero entries of the vectar;,, correspond to reaction products),
to the set poinf™*, the variable®; are bounded, and thethen in addition to the statements of Theorems 4.1 and 4.2,
input is nonnegative along the closed-loop trajectorieghe variabled globally converges to the constaht R, such

2) If in addition Assumption H4 is satisfied, then fér> ¢ that g(8) = K(T*).
large enough, the concentrationsand the reactor tem- The proof of this Corollary directly follows from the ap-
peraturél” globally converge t@ and7™ (for any initial  plication of the Invariance Principle [18] to our Lyapunov
condition (z(0), 7°(0), 6(0)) € 2x]0, +oo[xR7"). function V' and from the fact that the variabteis scalar.
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V. CONTROL DESIGN WITH STATE OBSERVER determined by the value of the dilution rate This is why

So far in the paper we have assumed that the temperaturfis algorithm is called amsymptoticobserver in [20]. ,
and the state vectar of concentrations are fully measurable Ve Will now examine the effect of the closed-loop dynamics
and available for feedback. From now on, we shall assume tH4ten this observer is combined with the nominal stabilizing
in addition to the temperatufg, asubsebf the concentrations controllers of Section Vi (unc?rtz%|n kinetics).
only is available for on-line measurement. The vector of these-€t US denote byt = (z1,d2)" the vector of measured

measurements is denoteg, while the vector of the remaining @Nd estimated concentrations. It can be noted ihanight
nonmeasured concentrations is denated take values outside the domaid. When incorporating the

The system(S) can therefore be rewritten as observer into the loop, we therefore introduce a nonnegative
‘ function ¢(%) such thatp(2) = ¢(&) whenz € Q and ¢(&)
1 =Cir(zy, z2,T) + d(z™ — x1) is globally Lipschitz on®”.
iy = Cyr(z1, 22, T) + d(zh* — 2) Let us address the following question.
T:B(a:l 20, T) — qT + Q: Will the temperature stabilization properties of the
e nominal controllers (Theorems 4.1 and 4.2) remain
with appropriate definitions of the vectar§® andz%", and of valid when the observer is incorporated in the loop?
the matricesC; and C>. First, we consider the controller of Theorem 4.1 using the

The objective of this section is to develop a state observeibserver. The resulting control structure is
for the on-line reconstruction of the nonmeasured partial state
z2. The observer design must, however, account for the fact (&, T,0) = p(I" = T) +qT - gt (0)p (%)
that the kinetic function(zy, z», T) is assumed to be partially ()¢ % = (L' = T7) sign (b:)ii(2)
unknown. We therefore use a methodology proposed in [20] 2 = —d2 + d(Nzy" + 73")
and [21], based on the concept of “chemical invariants” [22] 2=%2— Nuzxy.
and on the technique of observers for linear systems with
unknown disturbance input as discussed, e.g., in [23] and [ZfH

The application of the methodology requires one to intro- Theorem 5.1—General Case (Endothermic or Exothermic):

duce the following additional assumptions. _Assume that the above controlig?1) is applied to the system
H6) dim x; > rank C: the number of measured species i85). Then, we have the following.

larger or equal to the rank of the stoichiometric matrix. 1) Under Assumptions H1, H3, H6, and H7, for

H7) rank Cy = rankC. #>0 large enough, for any initial condition
Assumptions H6 and H7 will be used to relax the demand- (x(0),£(0), T(0),0(0)) € € x Qx]0;+o0[xR™,

ing condition of H2 in our preceding results. They explicit the reactor temperatur@ still converges to the set
the conditions that allow partial state measurement. In the point T*.

single reaction case, these assumptions mean that only ong) |f in addition, Assumption H4 is satisfied, then for
single species must be measurable (whatever the number of 3> 0 large enough, the concentrationgnd the reactor

chemical species involved in the reaction) as it is illustrated in temperaturel” still globally converge taz and 7* (for
Section VI: this is certainly a realistic and weak requirement. any initial condition (z(0), #(0), 7(0),6(0)) € € x

=

>

> >

The answer to the above question is positive as shown in
e following theorem.

Under these assumptions, it is obvious that a malfiexists Qx]0; +oo[ X RT).
such that Proof i): Let us consider the candidate Lyapunov func-
NC; + Cy = 0. tion V 4+ V with
We define the auxiliary partial state V= %(T* -T2+ Z(O‘i In (v +6;) — |bil ki (T*) In (6;))
o 7 =L - a2 = e
whose dynamics are easily shown to be 2 2 '

4= —dz + d(Nai" + i), On the one hand, we have
Note that this equation is clearly independent of the ut < (=B+M)(T* =T)*+|T=T*|-||K(T*)||-||¢(z) - ¢(&]]
known kinetic functionr(z1,z,T). A simple and natural

observer is then derived from the last two equations as follow¥l1€ré M is a positive constant.
On the other hand, we have

2 =—dz +d(Nz™ + i)

#— Nzxy V < —d||x - 2||2.

P
wherez and 2, denote on-line estimates efand -, respec- From the smoothness of the functigh we deduce that
tively. The exponential convergence of this observer is eviddhiere exists a positive constantsuch that

since the dilution ratel is a positive constant. However, the .
speed of convergence is not assignable and is completély-V < (—3—M)(T*=T)*+c|T-T|* ||z —2||—d||z—2]]>.
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It is then easy to check that fg¥ > 0 large enough, there

exists a positive definite matri®; such that

V4V < (le = 2l 1T = T Pulle = 21|, |7 = T*)"
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VI. APPLICATION

For the sake of illustration of these results, let us consider
the following CSTR in which the first-order reactioh— B

takes place:
(z(t),e(t), T(t),0(t)) being bounded, we can use the Invari-
ance Principle [18] to conclude thdt still converges tal™.

ii): It remains to prove now that under the Assumption
H4, the concentrations will converge to their equilibrium
point . From Assumption H4, we know that there exists a
positive definite functioriV (z,z, T*) such that in isothermal
operation, its time derivative is negative definite. Consider the Assumption H1 is satisfied witw? = (1,1). Hence, by
candidate Lyapunov functio¥ + V + W. Using the same Lemma A.1, the concentrations i8.15) admit as a positively
technique as in the proof of Theorem 4.1, it can be shown thavariant domain the compact s€t = {z4 > 0,zp >
for 2> 0 large enough 0,4 +xp < z'7'}. Suppose for instance that(7’) is
given by an Arrhenius law with unknown coefficients. Then,
Assumption H3 holds. It is also straightforward to check that
- Py(p(x —7), ||z — ||, |T - T*)* the isothermal stability Assumption H4 holds. However, the

reactor described by the systeffi;5) may have an open-

where P, is a positive definite matrix ang is the positive "
definite function defined in Assumption H4. So, it followdC0P Unstablebehavior. It can be shown that, ;) may

. . T . exhibit up to three different equilibrium points for some
again from the Invariance Principle [18] that the concentrauo%%nstant values of the input These equilibrium points are
x converge to their equilibrium poirit.

i . either asymptotically stable or unstable [7]. For economic and
ob(s:grrzlse,:?e':'hr:)\rlésg:gnCocn;;(zlgelrs?rl;greeozgm 4.2 using thf?ractical reasons, it can be Qgsirable tp regulate the reactor
' 9 at an open-loop unstable equilibrium point. Suppose now that
w(2,T,0) = max [0, 3(T* = T) + qT] — (T)g*(9) the temperaturd” and the concentrationg of the productB
@(E) are measured. As a consequence, Assumptions H6 and H7 are
0; = (T* — T)8;@:(&) also satisfied.
5= —dz+ d(Nzi™ + i) Let 7* > 0 be the temperature set point. Let the non-
To=%2—Nuz. negative functiong(#,4) and the positive constard be,
respectively, defined by

T4 = —/{;(T).’IZA =+ d(a:ff - .’I?A)
ng = k(T)a:A d da:B
T =bk(T)x s — qT + u.

(SaB)

VA VAW <—(pla =)o - 3], 1T - 1)

(C2)

Theorem 5.2 Endothermic Caéei, b; < 0): Assume that
the controller(C?2) is applied to the systemiS). Then, we

have the following. (b af (T
1) Under Assumptions H1, H3, H6, and H7, for sign ( )a+§ = bk(T7)
B>q large enough, for any initial condition G(2a) =84 1z 500

((0),£(0), 7(0),6(0)) € € x Qx]0;+oo[xRY,

the reactor temperatutg still converges to the set point

T+, and the input is nonnegative along the closed—loo;% From Theorem 5.1 and Corollary 5.1, we can dedchlthat
trajectories. there _eX|sts/3 >A0 large enough such that for any initial

2) If, in addition, Assumption H4 is satisfied, then foicondition (z(0),(0),7°(0),6(0)) € € x @ x Ry x Ry, the

3> q large enough, the concentrationgnd the reactor ollowing control structure:

temperaturéel” still globally converge taz and 7 (for

any initial condition (x(0), £(0),7(0),0(0)) € € x wZa,2p,T,0) =BT —T)+ ¢l —sign(b)

Qx]0; +oo[xRP). o

The proof of this result is left to the reader. The mechanism ((1)¢ , o .
of the proof is similar to that of Theorem 5.1. 0= (T —T17)sign (b)0p(ia)

Corollary 5.1—Single Reaction Casén the single reac-
tion caseg'm = 1), if all the reactants are fed to the reactor (the
zero entries of the vectar;,, correspond to reaction products),
then in addition to the statements of Theorems 5.1 and 5f2pduces the global asymptotic stability of the closed-loop
the variabled globally converges to the constaht R, such dynamics at the equilibrium poir(t, 7, 7%, 6). By the way,
that g(8) = K(T™). if the set point7™* is chosen such thatz, T*) is an open-

It has been shown in [25] and [26], for instance, that tHeop unstable equilibrium point ofS.15), then the preceding
problem of output feedback stabilization can be solved nesult means that we are able to regulate the system at this
a semiglobal manner, according to the terminology of [27dpen-loop unstable equilibrium point.

Here it is worth noting that Theorems 5.1 and 5.2 are really In the endothermic case (we then hawe 0), according to
global results. Indeed, the tuning of the control parameéter Theorem 5.2 and Corollary 5.1, there exi8ts ¢ large enough
is independent of the initial states. such that for any initial conditiorfz(0),2(0),7(0),6(0)) €
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Q x Q x Ry x Ry, the following control structure: APPENDIX A
STABILITY OF GLOBALLY MINIMUM PHASE SYSTEMS
w@a,xp,T,0) = max [0,3(T* = T) + ¢TI+ h(T) Consider the normal form
(04
: P(24) {Z = f(Z,¢)
a+6 N 4 ’

that one obtains when the 1/O-linearization technique for non-
linear systems is applied. Assume ttfais smooth,f(0,0) =
0, and the matrix A is stable. It has been shown in [28] that the
which also produces the global asymptotic stability of thglobal asymptotic stability of the subsystefn= f(Z, 0) (then
closed-loop dynamics at the equilibrium poifit,z,7™,6). (N) is said to be globally minimum phase) does not imply
Furthermore, in this case, the inputi,xp,T,6) is non- that (V) is globally asymptotically stable at zero. However,
negative along the closed-loop trajectories. the following result holds.

Theorem A.1—Stability of Cascade Nonlinear Systems:
Consider the following cascade nonlinear system:

In this i i - (S) Z=1(2.¢)
paper, we investigated the global temperature sta £ = g(&)
bilization problem for CSTR. More precisely, the control

problem we considered was the design of feedback contighere f and g are smoothZ and¢ evolve in®R*—* and ®¥
laws that allow the global temperature stabilization, that arespectively, ang(0,0) = g(0) = 0. Assume that:

robust against kinetic uncertainties, and robust against controbl) 7 - £(2,0) is globally asymptotically stable @ €
input saturations. fn—k.

We have proposed a set of controllers that can guarantegp) ¢ — 97(5) is globally asymptotically stable @ec R*.

the global temperature stabilization of CSTR. In spite ‘.Jf Then, under Conditions C1 and C2, we have the following.
strong uncertainties on the dependence of the kinetic function

with respect to the temperature. The uniform boundedness of) (%) is asymptotically stable & & R

the concentrations with respect to the temperature was th ) Any trajectory of (S), A(Z (0)’5(.0)) ~ .{(.Z (£),
keypoint in our proofs. The design of the stabilizing controllers 5@” € ®}, such that its semitrajectory,
was based on /O state feedback linearization with an appro- AT(Z2(0),£(0)) = {(Z(t)’g(t)).’t > 0} is bounded,
priate dynamic extension. We ensure the nonnegativeness of belongs to the basin of attraction 0fe X

(©29 6 = (1 - T)0(3.0)

. 3 in
2 = —dZ 4 dz'}
A=Z—zB

8> N>

VII. CONCLUSION
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