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Robust Feedback Stabilization of Chemical Reactors
F. Viel, F. Jadot, and G. Bastin

Abstract—This paper deals with the temperature stabilization
of a large class of continuously stirred tank chemical reactors.
We design state feedback controllers, and we show their ability to
globally stabilize the temperature at an arbitrary set point in spite
of uncertainties on the kinetics. Furthermore, it is also shown
that these controllers can handle input constraints along the
closed-loop trajectories in some instances. For the implementation
purpose, we design a robust state observer for the case of
partial state measurement, and we prove that its incorporation
in the feedback loops does not impair the nominal stabilization
properties of the controllers.

Index Terms—Chemical reactors, robust feedback stabilization,
robust observer, temperature control.

I. INTRODUCTION

T HE DESIGN of stabilizing feedback control laws for
unstable chemical reactors has been studied extensively in

the past since the pioneering paper of Aris and Admunsen [1].
The engineering motivation relies on the fact that the reactor
operation near or at unstable steady states often corresponds to
an optimal process performance (like, for instance, an optimum
tradeoff between yield and productivity, or between conversion
and selectivity, or between catalyst activity and longetivity;
see, e.g., [2]).

The feedback control of chemical reactors is a problem
which is made difficult by the inherent nonlinear nature of
the involved mechanisms. Open chemical reactors, indeed,
are well known to exhibit multiple (stable or unstable) steady
states, limit cycles, and even chaotic behavior.

In the last ten years, there has been a great deal of activity in
the nonlinear feedback control (especially feedback lineariza-
tion) of chemical reactors. Typical references among others
are [3]–[6]. Numerous successful applications have also been
reported in the literature.

There are, nevertheless, important theoretical questions that
are still open. One of them, which is the main concern of this
paper, is the design of feedback control laws that are:

• globally stabilizing;
• robust againstkinetic uncertainties;
• robust againstcontrol input saturations.

One of the particular control problems which was most
commonly investigated is the temperature regulation of an
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exothermic irreversible reaction in a cooled continu-
ously stirred tank reactor (CSTR). The related robust control
problem is to find a feedback law (for the heating rate provided
to the reactor) in order to regulate and to globally stabilize
the temperature at an arbitrary set point with some robustness
against uncertainties in the knowledge of the kinetics. It has
been shown in [7] that in the case of first-order kinetics, a
simple PI controller can globally stabilize this kind of reactor.
Such a controller is robust in the sense that its design does not
require an exact knowledge of the kinetics. Considered in [8]
and [9] for th order kinetics is input/output (I/O) linearization
(i.e., feedback of concentrations and temperature). In these
papers, the uncertainty of the kinetics is restricted to lie in a
few constant parameters entering linearly in the model, and a
classical adaptive technique model reference adaptive control
(MRAC)-type is used, which can globally stabilize the closed
loop. In [10], the I/O linearization technique is combined
with the robust stabilization methods of [11] and [12]. The
proposed controller is time varying (it involves an explicitly
time-dependent decaying term) and makes the temperature
practically stable at its set point. It is also worth noting that
none of these mentioned control methods is able to account
for a saturation of the control input along the closed-loop
trajectories. It is, however, well known, as illustrated in [13],
that saturating the temperature controller of an exothermic
reactor can impair its nominal stabilization properties.

In this paper, for a general class of CSTR’s, we propose
a set of controllers that guarantee theglobal temperature
stabilization in spite of strong uncertainties on the dependence
of the kinetic functions with respect to the temperature. A main
feature of these controllers lies in their capability of handling
input constraints in some instances. Moreover, if the reactor is
globally asymptotically stable in the isothermal condition, then
our results turn into global stabilization of both temperature
and concentrations. (Here, we point out that in spite of the
global asymptotic stability in the isothermal condition, the
overall dynamics of the open-loop reactor can be unstable).
The design is based on I/O state feedback linearization with
an appropriate dynamic extension.

The stability results that are available in the literature are
extended in five main directions.

1) A general class of systems with multiple coupled reac-
tions is considered. The number of involved reactions is
arbitrary. In other words, the analysis is not restricted to
the special case of systems including only one or two
reactions.

2) We do not make any restrictive assumptions regarding
the dependence of the kinetic function with respect to
the concentrations of the involved chemical species.
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In particular, we do not restrict ourselves to mass-
action type kinetics, and we allow for nonmonotonic
dependence on both concentrations and temperature.

3) For each proposed controller we give a rigorous proof of
theglobal temperature stabilization. By global, we mean
that the temperature stabilization is achieved, whatever
the initial conditions of the system are. (We only require
that the initial conditions are located inside the physical
domain of existence of the system.)

4) In some instances, we prove the ability of the con-
trollers to handle input constraints: the control input
remainsnonnegativealong the closed-loop trajectories
(in accordance with the physical requirements of the
problem).

5) Since our controllers are state feedback controllers,
they require for implementation purpose the on-line
knowledge of the full state, i.e., concentrations and
temperature. A robust state observer is designed in the
case of partial state measurements. We prove that the
incorporation of this observer in the feedback loops does
not impair our nominal stabilization properties.

The organization of our paper is as follows: in Section II,
we present the general class of CSTR we consider, and we
define the control problem. In the third and fourth sections, we
address the control design when the kinetics are, respectively,
known or uncertain. Section V is devoted to the observer
design and to its use together with the nominal stabilizing
state-feedback controllers. For the sake of illustration, a simple
application is presented in Section VI.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

A. System Description

We will consider throughout the paper CSTR’s that are
described by the following set of dynamic equations:

In these equations, we have the following.

• is the vector of the concentrations of the involved
chemical species (reactants and products), dim .

• is the vector of nonnegative and constant feed con-
centrations, dim .

• is the reactor temperature.
• is the vector of reaction kinetics, dim and

Note that
is equal to the number of chemical reactions taking

place in the reactor.
• is the stoichiometric matrix, dim .
• is the reaction heat.
• are positive constants (is the dilution rate, is a

heat transfer coefficient).
• is the input, i.e., the manipulated heat.
• , where is a positive and

bounded function of the temperature (for instance, the
Arrhenius law), and is a nonnegative function of

the concentrations that vanishes if and only if for
some reactant involved in the th reaction.

• with
where the coefficients are

constant and

Note that stands for the transpose vector of
Let us introduce the first assumption that will be used

throughout the paper.
H1 (Principle of Mass Conservation):There exists a pos-

itive vector of dimension
such that

This assumption implies that the reaction system is mass-
conservative, or in other words, that what is produced by the
reaction system cannot be larger than what is consumed. It
also enables one to state a useful result on the boundedness
of the concentrations in a chemical reactor described by the
model (S).

Lemma A.1 (Uniform Boundedness):Under Assumption
H1, the concentrations remain nonnegative for all
if , and we admit, furthermore, as a positively
invariant domain, the compact set

Proof: The dynamic equation for theth concentration
is given by

and we have since
when Hence, the concentrations remain nonnegative
provided that Defining as we
have by Assumption H1: Hence,

for , and the compact set
is positively

invariant by the dynamics of (S).
As a consequence of Lemma A.1, the vector of concentra-

tions will be restricted to the bounded setthroughout the
paper. Thisuniform boundedness of the concentrations with
respect to the temperature trajectory will be a key point for
our future developments.

B. Control Problem Statement

The control problem we consider is to globally stabilize the
temperature at a given set point with a nonnegative
feedback control

The requirement of anonnegativefeedback control comes
from the fact that the control input represents a heating
rate, provided to the reactor from outside. So, it has to be
nonnegative for having a physical meaning.

This control problem will be considered under the following
assumptions.

H2) The full state is measured.
H3) The functions are positive, bounded, and glob-

ally Lipschitz on
H4) The isothermal dynamics
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are globally asymptotically stable at the single equi-
librium point By Lyapunov converse theorems
[14], we know that there exists a positive definite
Lyapunov function such that its time-
derivative

is negative definite. We further assume that there exists
a positive definite function such that

for some positive constants and

We will see in Sections V and VI how Assumption H2
can be relaxed by using an observer. The reader can refer to
[15] and [16], where fairly general sufficient conditions on the
kinetic scheme are given so that the isothermal stability As-
sumption H4 holds even in the case of autocatalytic reactions.
We point out that in spite of the global asymptotic stability of
the isothermal dynamics, the overall dynamics can be open-
loop unstable. Note also that the technical Assumption H3 is
satisfied when the functions are given by the Arrhenius
law.

Two situations for our control problem will be considered.

1) The kinetic rate functions and the reaction heat
are assumed to be known.

2) The temperature functions and the constants
involved in the kinetic rate functions and in the
reaction heat are unknown.

The second situation is motivated by the fact that in
many applications, although the stoichiometry and the kinetic
scheme are well known, the empirical Arrhenius law may
exhibit some uncertainty.

In this paper, we do not take into account any time-varying
parametric uncertainty. This type of uncertainty has been
considered in [17] for the control of a chemical reactor.

III. CONTROL DESIGN: KNOWN KINETICS

By known kinetics, we mean that the functions and
are known, which implies in particular that all the

coefficients involved in these functions are perfectly known.
Our first result to be presented hereafter states that a

saturated (lower bounded) state feedback controller resulting
from I/O-linearization produces the global stabilization of an
endothermic reactor described by the model (S).

Theorem 3.1—Endothermic Case : Consider the
state feedback controller

We have the following.

1) Under Assumptions H1 and H2, for all , for any
initial condition the reac-
tor temperature converges asymptotically to the set

point , the feedback control is nonnegative
along the closed-loop trajectories, and

for all
2) If, in addition, Assumption H4 is satisfied, then for all

the closed-loop system is globally asymptotically
stable at the equilibrium point

Proof i): By definition, the state feedback controller
is always nonnegative

Moreover, we have

Hence, after a finite time we have and the state
feedback controller reduces to

for Then, the temperature dynamics are

ii): Now, using H4 and Lemma A.1 together with Theorem
A.1 of Appendix A, we obtain that the closed-loop dynamics
are globally asymptotically stable (g.a.s.) at the equilibrium
point

Before considering the exothermic case we
introduce the following additional realistic assumption:

H5) The temperature set point is such that

This assumption can be regarded as a kind of feasibility
condition on the open-loop system. Indeed, it implies that the
static input corresponding to the equilibrium point is
positive. Then, we can state the result.

Theorem 3.2—Exothermic Case : We have the
following.

1) Under Assumptions H1, H2, and H4, for all , for
any initial condition the
state feedback controller

is such that for all , and the
closed-loop system is globally asymptotically stable at
the equilibrium point

2) If, in addition, Assumption H5 is satisfied, there exists
large enough and small enough such that

with the state feedback controller

the closed-loop dynamics are globally asymptotically
stable at Moreover, on
for some
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Proof i): Under the feedback controller

the temperature dynamics are given by

Using Assumption H4 and Lemma A.1 together with The-
orem A.1 of Appendix A, we conclude that this feedback
controller will stabilize (S) at

ii): At first, let us consider the case Hence,

Assumption H5 implies that

For we have
By choosing such that

the input will be positive.
Assume now that Hence,

Assumption H5 also implies that for such that
then

On the set we have
and by using we obtain

IV. CONTROL DESIGN: UNCERTAIN KINETICS

What we mean precisely by uncertain kinetics is that the
functions and the constants of the model (S) are
unknown, but the sign of the constants is assumed to be
known. To know the sign of is equivalent to knowing
whether theth reaction is exothermic or endothermic. Accord-
ing to Assumption H3, we will denote by the upperbound
on the functions More precisely, is such that

[What we really need is that .]
Theorem 4.1—General Case (Endothermic or Exothermic):

Consider the dynamic state feedback controller

with and
Then, we have the following.

1) Under Assumptions H1–H3, for large enough,
for any initial condition

the state
for all time the reactor temperature

converges to the set point and the variables are
bounded.

2) If, in addition, Assumption H4 is satisfied, then for
large enough, the concentrationsand the reactor

temperature globally converge to and (for any
initial condition ).

Proof i): The closed-loop dynamics can be written as

with
It is easy to check that for large enough, the set

is positively invariant by the closed-loop
dynamics.

Let us consider the candidate Lyapunov function

Note that this function is differentiable, has a global minimum,
and is radially unbounded on We obtain

Using Lemma A.1 together with Assumption H3, there
exists a positive constant such that

Hence, by choosing large enough, we have

Using the properties of our Lyapunov function it then
follows that the reactor temperatureand the variables are
bounded. (Remember that by Lemma A.1, the concentrations

are already bounded.) So, we can invoke the Invariance Prin-
ciple [18] to claim that whatever the concentration trajectory
is, the reactor temperature will converge to

ii): It remains to prove now that under Assumption H4, the
concentrations will converge to their equilibrium point To
do so, we introduce a new Lyapunov function. From Assump-
tion H4, there exists a positive definite function
such that in isothermal operation, its time derivative is negative
definite. Then, consider the candidate Lyapunov function

We have

From Assumption H4, we know that

and

Now, using Lemma A.1 and Assumption H3, we obtain
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for some constant So, there exist two positive constants
and such that

Eventually, it is easy to check that for large enough,
the right-hand side of the preceding inequality is negative
definite. More precisely, for large enough, there exists
a positive definite matrix such that

Hence, it follows from the Invariance Principle [18] that the
concentrations converge to their equilibrium point

The design of the dynamic state feedback controller of
Theorem 4.1 is based on the I/O-linearization technique to-
gether with an appropriate dynamic extension. The dynamic
extension has been obtained via the Lyapunov redesign method
using a Lyapunov function inspired from the one considered
in [15] for the open-loop analysis of a class of isothermal
reactors. The additional stateis an internal and bounded state
of the controller which is able to asymptotically compensate
for the model uncertainties. Let us point out that our model
uncertainties do not satisfy the structural property known as
the matching conditionsince they also appear in the control-
free dynamics of the concentrations. The technical keypoint
to overcome this situation lies in the use of the uniform
boundedness of the concentrations (Lemma A.1). For the use
of the matching condition in the robust control of chemical
processes, the reader can refer to [19], where the practical
stabilization of two isothermal reactors has been obtained.

Although the result presented in Theorem 4.1 is general (it
covers for instance the situation where a mixture of endother-
mic and exothermic reactions take place), the nonnegativeness
of the input along the closed-loop trajectory is not ensured.
However, in the endothermic case (the constantsare all
negative), we have the deeper result.

Theorem 4.2—Endothermic Case : Consider the
dynamic state feedback controller

with
and a decreasing

positive -function such that for
and for where Then,
we have the following.

1) Under Assumptions H1–H3, for large enough,
for any initial condition

the state
for all , the reactor temperatureconverges

to the set point , the variables are bounded, and the
input is nonnegative along the closed-loop trajectories.

2) If in addition Assumption H4 is satisfied, then for
large enough, the concentrationsand the reactor tem-
perature globally converge to and (for any initial
condition

Proof i): By definition, the input is nonnegative
Moreover, we have

(Note that this property holds because of the role played by
the function in the feedback control law.) Hence, after
a finite time we have , and the feedback control
reduces to

for Then, we can consider the closed-loop dynamics

with As a candidate Lyapunov
function, we choose

We obtain

Since vanishes for and is negative for
we have

Using Assumption H3 and Lemma A.1, there exists a
positive constant such that

Hence, by choosing large enough, we have

So, converges to
ii): The rest of the proof is similar to that of Theorem 4.1.

Corollary 4.1—Single Reaction Case:In the single reac-
tion case if all the reactants are fed to the reactor (the
zero entries of the vector correspond to reaction products),
then in addition to the statements of Theorems 4.1 and 4.2,
the variable globally converges to the constant such
that

The proof of this Corollary directly follows from the ap-
plication of the Invariance Principle [18] to our Lyapunov
function and from the fact that the variableis scalar.
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V. CONTROL DESIGN WITH STATE OBSERVER

So far in the paper we have assumed that the temperature
and the state vector of concentrations are fully measurable
and available for feedback. From now on, we shall assume that
in addition to the temperature a subsetof the concentrations
only is available for on-line measurement. The vector of these
measurements is denoted, while the vector of the remaining
nonmeasured concentrations is denoted

The system can therefore be rewritten as

with appropriate definitions of the vectors and and of
the matrices and

The objective of this section is to develop a state observer
for the on-line reconstruction of the nonmeasured partial state

The observer design must, however, account for the fact
that the kinetic function is assumed to be partially
unknown. We therefore use a methodology proposed in [20]
and [21], based on the concept of “chemical invariants” [22]
and on the technique of observers for linear systems with
unknown disturbance input as discussed, e.g., in [23] and [24].

The application of the methodology requires one to intro-
duce the following additional assumptions.

H6) the number of measured species is
larger or equal to the rank of the stoichiometric matrix.

H7)

Assumptions H6 and H7 will be used to relax the demand-
ing condition of H2 in our preceding results. They explicit
the conditions that allow partial state measurement. In the
single reaction case, these assumptions mean that only one
single species must be measurable (whatever the number of
chemical species involved in the reaction) as it is illustrated in
Section VI: this is certainly a realistic and weak requirement.

Under these assumptions, it is obvious that a matrixexists
such that

We define the auxiliary partial state

whose dynamics are easily shown to be

Note that this equation is clearly independent of the un-
known kinetic function A simple and natural
observer is then derived from the last two equations as follows:

where and denote on-line estimates ofand , respec-
tively. The exponential convergence of this observer is evident
since the dilution rate is a positive constant. However, the
speed of convergence is not assignable and is completely

determined by the value of the dilution rate This is why
this algorithm is called anasymptoticobserver in [20].

We will now examine the effect of the closed-loop dynamics
when this observer is combined with the nominal stabilizing
controllers of Section VI (uncertain kinetics).

Let us denote by the vector of measured
and estimated concentrations. It can be noted thatmight
take values outside the domain When incorporating the
observer into the loop, we therefore introduce a nonnegative
function such that when and
is globally Lipschitz on

Let us address the following question.

Will the temperature stabilization properties of the
nominal controllers (Theorems 4.1 and 4.2) remain
valid when the observer is incorporated in the loop?

First, we consider the controller of Theorem 4.1 using the
observer. The resulting control structure is

The answer to the above question is positive as shown in
the following theorem.

Theorem 5.1—General Case (Endothermic or Exothermic):
Assume that the above controller is applied to the system

Then, we have the following.

1) Under Assumptions H1, H3, H6, and H7, for
large enough, for any initial condition

the reactor temperature still converges to the set
point

2) If, in addition, Assumption H4 is satisfied, then for
large enough, the concentrationsand the reactor

temperature still globally converge to and (for
any initial condition

).

Proof i): Let us consider the candidate Lyapunov func-
tion with

On the one hand, we have

where is a positive constant.
On the other hand, we have

From the smoothness of the function we deduce that
there exists a positive constantsuch that



VIEL et al.: ROBUST FEEDBACK STABILIZATION OF CHEMICAL REACTORS 479

It is then easy to check that for large enough, there
exists a positive definite matrix such that

being bounded, we can use the Invari-
ance Principle [18] to conclude that still converges to

ii): It remains to prove now that under the Assumption
H4, the concentrations will converge to their equilibrium
point From Assumption H4, we know that there exists a
positive definite function such that in isothermal
operation, its time derivative is negative definite. Consider the
candidate Lyapunov function Using the same
technique as in the proof of Theorem 4.1, it can be shown that
for large enough

where is a positive definite matrix and is the positive
definite function defined in Assumption H4. So, it follows
again from the Invariance Principle [18] that the concentrations

converge to their equilibrium point
Consider now the controller of Theorem 4.2 using the

observer. The resulting control structure is

Theorem 5.2 Endothermic Case : Assume that
the controller is applied to the system Then, we
have the following.

1) Under Assumptions H1, H3, H6, and H7, for
large enough, for any initial condition

the reactor temperature still converges to the set point
and the input is nonnegative along the closed-loop

trajectories.
2) If, in addition, Assumption H4 is satisfied, then for

large enough, the concentrationsand the reactor
temperature still globally converge to and (for
any initial condition

).

The proof of this result is left to the reader. The mechanism
of the proof is similar to that of Theorem 5.1.

Corollary 5.1—Single Reaction Case:In the single reac-
tion case if all the reactants are fed to the reactor (the
zero entries of the vector correspond to reaction products),
then in addition to the statements of Theorems 5.1 and 5.2,
the variable globally converges to the constant such
that

It has been shown in [25] and [26], for instance, that the
problem of output feedback stabilization can be solved in
a semiglobal manner, according to the terminology of [27].
Here it is worth noting that Theorems 5.1 and 5.2 are really
global results. Indeed, the tuning of the control parameter
is independent of the initial states.

VI. A PPLICATION

For the sake of illustration of these results, let us consider
the following CSTR in which the first-order reaction
takes place:

Assumption H1 is satisfied with Hence, by
Lemma A.1, the concentrations in admit as a positively
invariant domain the compact set

Suppose for instance that is
given by an Arrhenius law with unknown coefficients. Then,
Assumption H3 holds. It is also straightforward to check that
the isothermal stability Assumption H4 holds. However, the
reactor described by the system may have an open-
loop unstable behavior. It can be shown that may
exhibit up to three different equilibrium points for some
constant values of the input These equilibrium points are
either asymptotically stable or unstable [7]. For economic and
practical reasons, it can be desirable to regulate the reactor
at an open-loop unstable equilibrium point. Suppose now that
the temperature and the concentration of the product
are measured. As a consequence, Assumptions H6 and H7 are
also satisfied.

Let be the temperature set point. Let the non-
negative function and the positive constant be,
respectively, defined by

From Theorem 5.1 and Corollary 5.1, we can deduce that
there exists large enough such that for any initial
condition the
following control structure:

produces the global asymptotic stability of the closed-loop
dynamics at the equilibrium point By the way,
if the set point is chosen such that is an open-
loop unstable equilibrium point of then the preceding
result means that we are able to regulate the system at this
open-loop unstable equilibrium point.

In the endothermic case (we then have ), according to
Theorem 5.2 and Corollary 5.1, there exists large enough
such that for any initial condition
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the following control structure:

which also produces the global asymptotic stability of the
closed-loop dynamics at the equilibrium point
Furthermore, in this case, the input is non-
negative along the closed-loop trajectories.

VII. CONCLUSION

In this paper, we investigated the global temperature sta-
bilization problem for CSTR. More precisely, the control
problem we considered was the design of feedback control
laws that allow the global temperature stabilization, that are
robust against kinetic uncertainties, and robust against control
input saturations.

We have proposed a set of controllers that can guarantee
the global temperature stabilization of CSTR in spite of
strong uncertainties on the dependence of the kinetic function
with respect to the temperature. The uniform boundedness of
the concentrations with respect to the temperature was the
keypoint in our proofs. The design of the stabilizing controllers
was based on I/O state feedback linearization with an appro-
priate dynamic extension. We ensure the nonnegativeness of
the input in the endothermic case.

To be implemented, our state feedback controllers require
the on-line knowledge of the full state: the concentrations
and the temperature. In the case of partial state measurement,
we have used a robust state observer. This observer provides
an exponentially converging estimation error, the rate of
which is determined by the dilution rate. We proved that the
incorporation of this observer in the feedback loops does not
impair the nominal stabilization properties of our controllers.

As a general conclusion, we have obtained control structures
that are capable of performing the global temperature stabiliza-
tion of CSTR with uncertain kinetics but also of guaranteeing
the nonnegativeness of the input in the endothermic case. A
practical consequence of these results lies in the opportunity
of operating chemical reactors at unstable open-loop steady
states that correspond to optimal operating conditions.

In our control problem framework, several theoretical ques-
tions are still left open. In the endothermic case, we have
only considered lowerbounds on the input. It can be of some
interest to address the problem when we take into account
some upperbounds. It is likely that in some cases, this might
defeat the global stabilization property.

In the exothermic case, a robust stabilizing feedback con-
troller such that the input is nonnegative along the closed-loop
trajectories is lacking here. However, this problem has been
recently addressed, and a solution has been proposed by the
authors in [29].

APPENDIX A
STABILITY OF GLOBALLY MINIMUM PHASE SYSTEMS

Consider the normal form

that one obtains when the I/O-linearization technique for non-
linear systems is applied. Assume thatis smooth,
, and the matrix A is stable. It has been shown in [28] that the

global asymptotic stability of the subsystem (then
is said to be globally minimum phase) does not imply

that is globally asymptotically stable at zero. However,
the following result holds.

Theorem A.1—Stability of Cascade Nonlinear Systems:
Consider the following cascade nonlinear system:

where and are smooth, and evolve in and
respectively, and Assume that:

C1) is globally asymptotically stable at

C2) is globally asymptotically stable at

Then, under Conditions C1 and C2, we have the following.

1) is asymptotically stable at
2) Any trajectory of

such that its semitrajectory,
is bounded,

belongs to the basin of attraction of

The proof of this result is given in [25].
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the Université Catholique de Louvain, Louvain-la-
Neuve, Belgium.

His research interests include estimation and con-
trol for nonlinear systems with applications to phys-
ical processes.

G. Bastin received the electrical engineering de-
gree and the Ph.D. degree, both from the Uni-
versit́e Catholique de Louvain, Louvain-la-Neuve,
Belgium.

He is currently a Professor at the Center for
Systems Engineering and Applied Mechanics (CE-
SAME) at the Universit́e Catholique de Louvain and
Head of the Department of Mathematical Engineer-
ing. His research interests include system identifica-
tion, nonlinear control theory, adaptive systems and
random fields with applications to mechanical sys-

tems and robotics, biological and chemical processes, transportation systems,
and environmental problems.


